1
|
Zhang Z, Yin H, Zheng C, Yu Z, Ahmed RZ, Niu Y, Zhou C, Ding J, Lin H, Lin Y, Zheng Y, Jin X. PFOS impairs cardiac function and energy metabolism under high-fat diet: Insights into role of circulating macrophage emphasized by exposure distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175139. [PMID: 39084357 DOI: 10.1016/j.scitotenv.2024.175139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), widely utilized in consumer products, have been linked to an increased risk of cardiovascular disease (CVD). With the increasing prevalence of high-fat diet, a common risk factor for CVD, the PFAS exposed populations who consume a high-fat diet will inevitably grow and may have a higher CVD risk. However, the potential toxic effect and mode of action remain elusive. We constructed a mouse model orally exposed to perfluorooctane sulfonate (PFOS), a prototypical PFAS, and fed a high-fat diet. PFOS exposure induced cardiomyopathy and structural abnormalities in the mice heart. Moreover, a characteristic of energy metabolism remodeling from aerobic to anaerobic process was observed. Interestingly, PFOS was rarely detected in heart but showed high level in serum, suggesting an indirect route of action for PFOS-caused cardiac toxicity. We further demonstrated that PFOS-caused circulating inflammation promoted metabolic remodeling and contractile dysfunction in cardiomyocytes. Wherein, PFOS stimulated the release of IL-1β from circulating proinflammatory macrophages mediated by NF-κB and caspase-1. This study provides valuable data on PFAS-induced cardiac risks associated with exposed populations with increasing high-fat diet consumption, highlighting the significance of indirect pathways in PFOS's impact on the heart, based on the distribution of internal exposure.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hao Yin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Chuer Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Zhenhua Yu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China; Qingdao Institute of Preventive Medicine, Qingdao, China
| | | | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chengying Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jian Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Huan Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Nolen RM, Prouse A, Russell ML, Bloodgood J, Díaz Clark C, Carmichael RH, Petersen LH, Kaiser K, Hala D, Quigg A. Evaluation of fatty acids and carnitine as biomarkers of PFOS exposure in biota (fish and dolphin) from Galveston Bay and the northwestern Gulf of Mexico. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109817. [PMID: 38101762 DOI: 10.1016/j.cbpc.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a ubiquitous pollutant that elicits a wide range of toxic effects in exposed biota. Coastal zones in highly urbanized or industrial areas are particularly vulnerable to PFOS pollution. At present, information is lacking on biomarkers to assess PFOS effects on aquatic wildlife. This study investigated the efficacy of l-carnitine (or carnitine) and fatty acids as biomarkers of PFOS exposure in aquatic biota. The levels of PFOS, total and free carnitine, and 24 fatty acids (measured as fatty acid methyl esters or FAMEs) were measured in the liver, and muscle or blubber, of fish and dolphins sampled from Galveston Bay and the northern Gulf of Mexico (nGoM). Overall, bottlenose dolphins (Tursiops truncatus) had the highest hepatic PFOS levels. Galveston Bay fish, gafftopsail catfish (Bagre marinus), red drum (Sciaenops ocellatus), and spotted seatrout (Cynoscion nebulosus), had hepatic PFOS levels ∼8-13× higher than nGoM pelagic fish species, red snapper (Lutjanus campechanus) and yellowfin tuna (Thunnus albacares). The multivariate analysis of PFOS liver body-burdens and biomarkers found carnitine to be a more modal biomarker of PFOS exposure than FAMEs. Significant positive correlation of hepatic PFOS levels with total carnitine was evident for biota from Galveston Bay (fish only), and a significant correlation between PFOS and total and free carnitine was evident for biota from the nGoM (fish and dolphins). Given the essential role of carnitine in mediating fatty acid β-oxidation, our results suggest carnitine to be a likely candidate biomarker of environmental PFOS exposure and indicative of potential dyslipidemia effects.
Collapse
Affiliation(s)
- Rayna M Nolen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA.
| | - Alexandra Prouse
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Mackenzie L Russell
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Jennifer Bloodgood
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA; Cornell Wildlife Health Lab, Cornell University College of Veterinary Medicine, 240 Farrier Rd, Ithaca, NY 14853, USA
| | - Cristina Díaz Clark
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA
| | - Ruth H Carmichael
- University Programs, Dauphin Island Sea Lab, 101 Bienville Blvd, Dauphin Island, AL 36528, USA; Stokes School of Marine and Environmental Sciences, University of South Alabama, 307 N University Blvd, Mobile, AL 36688, USA
| | - Lene H Petersen
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Karl Kaiser
- Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| | - David Hala
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA
| | - Antonietta Quigg
- Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX 77553, USA; Department of Oceanography, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA; Department of Ecology and Conservation Biology, Texas A&M University, 3146 TAMU, College Station, TX 77843, USA
| |
Collapse
|
3
|
Dunder L, Salihovic S, Lind PM, Elmståhl S, Lind L. Plasma levels of per- and polyfluoroalkyl substances (PFAS) are associated with altered levels of proteins previously linked to inflammation, metabolism and cardiovascular disease. ENVIRONMENT INTERNATIONAL 2023; 177:107979. [PMID: 37285711 DOI: 10.1016/j.envint.2023.107979] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) have been linked to immunotoxic and cardiometabolic effects in both experimental and epidemiological studies, but with conflicting results. AIM The aim of the present study was to investigate potential associations between plasma PFAS levels and plasma levels of preselected proteomic biomarkers previously linked to inflammation, metabolism and cardiovascular disease. METHODS Three PFAS (perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA) and perfluorohexane sulfonic acid (PFHxS)) were measured by non-targeted metabolomics and 249 proteomic biomarkers were measured by the proximity extension assay (PEA) in plasma from 2,342 individuals within the Epidemiology for Health (EpiHealth) study from Sweden (45-75 years old, 50.6 % men). RESULTS After adjustment for age and sex, 92% of the significant associations between PFOS concentrations and proteins were inverse (p < 0.0002, Bonferroni-adjusted). The results were not as clear for PFOA and PFHxS, but still with 80% and 64 % of the significant associations with proteins being inverse. After adjustment for age, sex, smoking, education, exercise habits and alcohol consumption, levels of epidermal growth factor receptor (EGFR), and paraoxonase type 3 (PON3) remained positively associated with all three PFAS, while resistin (RETN) and urokinase plasminogen activator surface receptor (uPAR) showed inverse associations with all three PFAS. CONCLUSIONS Our findings imply that PFAS exposure is cross-sectionally linked to altered levels of proteins previously linked to inflammation, metabolism and cardiovascular disease in middle-aged humans.
Collapse
Affiliation(s)
- Linda Dunder
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden.
| | | | - P Monica Lind
- Department of Medical Sciences, Occupational and Environmental Medicine, Uppsala University, Uppsala, Sweden
| | - Sölve Elmståhl
- Division of Geriatric Medicine, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Lars Lind
- Department of Medical Sciences, Cardiovascular Epidemiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Thomas S, Ricke WA, Li L. Toxicoproteomics of Mono(2-ethylhexyl) phthalate and Perfluorooctanesulfonic Acid in Models of Prostatic Diseases. Chem Res Toxicol 2023; 36:251-259. [PMID: 36749316 PMCID: PMC10041651 DOI: 10.1021/acs.chemrestox.2c00328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Benign and malignant prostatic diseases are common, costly, and burdensome; moreover, they share fundamental underlying molecular processes. Several ubiquitous contaminants may perturb these processes, possibly via peroxisome proliferator-activated receptor (PPAR) signaling, but the role of environmental exposures─particularly mixtures─in prostatic diseases is undefined. In the present study, nontumorigenic prostate stromal cells and metastatic prostate epithelial cells were exposed to ubiquitous exogenous PPAR ligands under different dosing paradigms, including a mixture, and effects were assessed via mass spectrometry-based global proteomics. In prostate stromal cells, environmentally relevant levels of mono(2-ethylhexyl) phthalate (MEHP), alone and in combination with perfluorooctanesulfonic acid, led to significant changes in proteins involved in key processes underlying prostatic diseases: oxidative stress defense, proteostasis, damage-associated molecular pattern signaling, and innate immune response signaling. A follow-up experiment in metastatic prostate epithelial cells showed that the occupationally relevant levels of MEHP perturbed similar processes, including lipid, cholesterol, steroid, and alcohol metabolism; apoptosis and coagulation regulation; wound response; and aging. This work shows that environmental exposures may contribute to prostatic diseases by perturbing key processes of a proposed adverse outcome pathway, including lipid metabolism, oxidative stress, and inflammation. Future in vivo research will investigate the role of contaminants in prostatic diseases and in preventative agents.
Collapse
Affiliation(s)
- Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - William A. Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53706, USA
- George M. O’Brien Research Center of Excellence, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
5
|
Driessen M, van der Plas-Duivesteijn S, Kienhuis AS, van den Brandhof EJ, Roodbergen M, van de Water B, Spaink HP, Palmblad M, van der Ven LTM, Pennings JLA. Identification of proteome markers for drug-induced liver injury in zebrafish embryos. Toxicology 2022; 477:153262. [PMID: 35868597 DOI: 10.1016/j.tox.2022.153262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.
Collapse
Affiliation(s)
- Marja Driessen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | | | - Anne S Kienhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Evert-Jan van den Brandhof
- Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Marianne Roodbergen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Magnus Palmblad
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leo T M van der Ven
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O.Box 1, 3720 BA Bilthoven, the Netherlands.
| |
Collapse
|
6
|
Rericha Y, Cao D, Truong L, Simonich MT, Field JA, Tanguay RL. Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. iScience 2022; 25:103789. [PMID: 35146398 PMCID: PMC8819378 DOI: 10.1016/j.isci.2022.103789] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously detected in environmental and biological samples and cause adverse health effects. Studies have predominately focused on long-chain PFAS, with far fewer addressing short-chain alternatives. This study leveraged embryonic zebrafish to investigate developmental toxicity of a short-chain series: perfluorobutane sulfonate (PFBS), perfluoropentanoic acid (PFPeA), perfluorobutane sulfonamide (FBSA), and 4:2 fluorotelomer sulfonic acid (4:2 FTS). Following static exposures at 8 h postfertilization (hpf) to each chemical (1-100 μM), morphological and behavioral endpoints were assessed at 24 and 120 hpf. Only FBSA induced abnormal morphology, while exposure to all chemicals caused aberrant larval behavior. RNA sequencing at 48 hpf following 47 μM exposures revealed only FBSA significantly disrupted normal gene expression. Measured tissue concentrations were FBSA > PFBS > 4:2 FTS > PFPeA. This study demonstrates functional head groups impact bioactivity and bioconcentration.
Collapse
Affiliation(s)
- Yvonne Rericha
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Dunping Cao
- Department of Chemistry, College of Science, Oregon State University, Corvallis, OR 97333, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA.,Sinnhuber Aquatic Research Laboratory, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97333, USA
| |
Collapse
|
7
|
Hermanowicz JM, Kalaska B, Pawlak K, Sieklucka B, Miklosz J, Mojzych M, Pawlak D. Preclinical Toxicity and Safety of MM-129-First-in-Class BTK/PD-L1 Inhibitor as a Potential Candidate against Colon Cancer. Pharmaceutics 2021; 13:pharmaceutics13081222. [PMID: 34452183 PMCID: PMC8400941 DOI: 10.3390/pharmaceutics13081222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal administration. No serious adverse events were reported for the use of MM-129, confirming a favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer effective dose of 10 μmol/kg. At the end of 14 days of administering hematological and biochemical parameters, liver and renal functions were all at normal levels. No sublethal effects were either detected in zebrafish embryos treated with a concentration of 10 μM. MM-129 has the potential as a safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.
Collapse
Affiliation(s)
- Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
- Correspondence: ; Tel./Fax: +48-8574-85601
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (B.K.); (B.S.); (J.M.); (D.P.)
| |
Collapse
|
8
|
Li D, Jiang L, Hong Y, Cai Z. Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115774. [PMID: 33143982 DOI: 10.1016/j.envpol.2020.115774] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the most widely used and distributed perfluorinated compounds proven to cause adverse health outcomes. Datasets of ecotoxico-genomics and proteomics have given greater insights for PFOS toxicological effect. However, the molecular mechanisms of hepatotoxicity of PFOS on post-translational modifications (PTMs) regulation, which is most relevant for regulating the activity of proteins, are not well elucidated. Protein glycosylation is one of the most ubiquitous PTMs associated with diverse cellular functions, which are critical towards the understanding of the multiple biological processes and toxic mechanisms exposed to PFOS. Here, we exploit the multilayered glycoproteomics to quantify the global protein expression levels, glycosylation sites, and glycoproteins in PFOS exposure and wild-type mouse livers. The identified 2439 proteins, 1292 glycosites, and 799 glycoproteins were displayed complex heterogeneity in PFOS exposure mouse livers. Quantification results reveal that 241 dysregulated proteins (fold change ≥ 2, p < 0.05) in PFOS exposure mouse livers were involved in the lipid and xenobiotic metabolism. While, 16 overexpressed glycoproteins were exclusively related to neutrophil degranulation, cellular responses to stress, protein processing in endoplasmic reticulum (ER). Moreover, the interactome and functional network analysis identified HP and HSP90AA1 as the potential glycoprotein biomarkers. These results provide unique insights into a deep understanding of the mechanisms of PFOS induced hepatotoxicity and liver disease. Our platform of multilayered glycoproteomics can be adapted to diverse ecotoxicological research.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
9
|
Christou M, Fraser TWK, Berg V, Ropstad E, Kamstra JH. Calcium signaling as a possible mechanism behind increased locomotor response in zebrafish larvae exposed to a human relevant persistent organic pollutant mixture or PFOS. ENVIRONMENTAL RESEARCH 2020; 187:109702. [PMID: 32474314 DOI: 10.1016/j.envres.2020.109702] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Persistent organic pollutants (POPs) are widespread in the environment and their bioaccumulation can lead to adverse health effects in many organisms. Previously, using zebrafish as a model vertebrate, we found larvae exposed to a mixture of 29 POPs based on average blood levels from the Scandinavian population showed hyperactivity, and identified perfluorooctanesulfonic acid (PFOS) as the driving agent for the behavioral changes. In order to identify possible mechanisms, we exposed zebrafish larvae from 6 to 96 h post fertilization to the same mixture of POPs in two concentrations or a single PFOS exposure (0.55 and 3.83 μM) and performed behavioral tests and transcriptomics analysis. Behavioral alterations of exposed zebrafish larvae included hyperactivity and confirmed previously reported results. Transcriptomics analysis showed upregulation of transcripts related to muscle contraction that is highly regulated by the availability of calcium in the sarcoplasmic reticulum. Ingenuity pathway analysis showed that one of the affected pathways in larvae exposed to the POP mixture and PFOS was calcium signaling via the activation of the ryanodine receptors (RyR). Functional analyses with RyR inhibitors and behavioral outcomes substantiate these findings. Additional pathways affected were related to lipid metabolism in larvae exposed to the lower concentration of PFOS. By using omics technology, we observed that the altered behavioral pattern in exposed zebrafish larvae may be controlled directly by mechanisms affecting muscle function rather than via mechanisms connected to neurotoxicity.
Collapse
Affiliation(s)
- Maria Christou
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway.
| | - Thomas W K Fraser
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Vidar Berg
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O Box 369 Sentrum, 0102, Oslo, Norway
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, 3584, CM Utrecht, the Netherlands
| |
Collapse
|
10
|
Zhang L, Sun W, Chen H, Tian F, Cai W. Transcriptome analysis of acute exposure of the Manila clam, Ruditapes philippinarum to perfluorooctane sulfonate (PFOS). Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108736. [PMID: 32142923 DOI: 10.1016/j.cbpc.2020.108736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
Perfluorooctane sulfonate (PFOS) is an increasingly important environmental pollutant, which has been detected almost everywhere in the environment. Despite the widespread presence of PFOS, much less notice is taken of its toxicology effects on marine bivalves. Thus, the transcriptome response to PFOS treatment (nominal concentration of 20 mg/L) in hepatopancreas of a sentinel organism, Ruditapes philippinarum was examined. Compared with the control group, 32,149 unigenes were up-regulated and 26,958 unigenes down-regulated. Notably, significant gene expression changes were found in carbohydrate metabolism, energy metabolism, amino acid metabolism, lipid metabolism and protein biosynthesis, indicating the metabolic disruptions caused by PFOS in R. philippinarum. Additionally, numerous other differentially expressed genes were involved in immune system, antioxidant defense system and detoxification metabolism. In summary, transcriptome profiling of R. philippinarum after exposure to PFOS provided molecular support for our current understanding of the detrimental toxicity of PFOS on marine bivalves.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Wei Sun
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Fei Tian
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
11
|
Lee JW, Choi K, Park K, Seong C, Yu SD, Kim P. Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:135334. [PMID: 31874399 DOI: 10.1016/j.scitotenv.2019.135334] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been widely used in many industrial and consumer products. They have been detected ubiquitously in ambient water along with other environmental matrices, and their adverse effects on aquatic organisms have been a subject of active investigation. Here, we intended to summarize and synthesize the existing body of knowledge on PFAA toxicity through an extensive literature review, and shed light on areas where further research is warranted. PFAA toxicity appears to be influenced by the sex and developmental stages of aquatic organisms, but not significantly by exposure route. PFAA-induced aquatic toxicity could be classified as metabolism disturbance, reproduction disruption, oxidative stress, developmental toxicity, thyroid disruption, etc. At the molecular level, these responses can be initiated by key events, such as nuclear receptor activation, reactive oxygen species induction, or interaction with a membrane, followed by a cascade of downstream responses. PFAA-induced toxicity involves diverse metabolic processes, and therefore elucidating crosstalk or interactions among diverse metabolic pathways is a challenging task. In the presence of other chemicals, PFAAs can function as agonists or antagonists, resulting in different directions of combined toxicity. Therefore, mixture toxicity with other groups of chemicals is another research opportunity. Experimental evidence supports the trans-generational toxicity of PFAAs, suggesting that their long-term consequences for aquatic ecosystems should become of concern. A recent global ban of several PFAAs resulted in an increasing dependence on PFAA alternatives. The lack of sufficient toxicological information on this emerging group of chemicals warrant caution and rigorous toxicological assessments.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Republic of Korea
| | - Kyunghwa Park
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Changho Seong
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Seung Do Yu
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Pilje Kim
- Research Department of Environmental Health, National Institute of Environmental Research, Incheon 404-708, Republic of Korea.
| |
Collapse
|
12
|
Zhang L, Sun W, Chen H, Zhang Z, Cai W. Transcriptomic Changes in Liver of Juvenile Cynoglossus semilaevis following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:556-564. [PMID: 31726483 DOI: 10.1002/etc.4633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an increasingly important environmental pollutant that is pervasive in the environment. A number of studies have focused on the toxicological effects of PFOS on model fish species (zebrafish and medaka), but little is known about the impact of PFOS on commercially important marine fish. Thus, the present study examined transcriptome responses to PFOS exposure in the liver of juvenile Cynoglossus semilaevis, an important farmed flatfish in China. Then, in response to PFOS challenges, 1695 and 5244 genes were identified as significantly increased and depressed, respectively. Significant expression changes were observed in immune-related genes (cytokine-cytokine receptor interaction, T-helper [Th]17 cell differentiation, and the chemokine nuclear factor-kappa B and T-cell receptor signaling pathways), indicating that immunotoxicity is a key aspect of the effects of PFOS on C. semilaevis. Exposure to PFOS also altered the gene expression levels of hormones (inhibin, insulin, somatostatin, and glucagon), which could lead to severe metabolic and endocrine dysfunction. As expected from previous studies, several phase I and phase II detoxification enzymes were significantly up-regulated, which could facilitate the biotransformation and detoxification of PFOS in C. semilaevis. The present study provides new insights into the molecular toxicology of PFOS in a commercially important fish species. Environ Toxicol Chem 2020;39:556-564. © 2019 SETAC.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Wei Sun
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Zhe Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
An overview of omics approaches to characterize the effect of perfluoroalkyl substances in environmental health. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Tian J, Xu H, Zhang Y, Shi X, Wang W, Gao H, Bi Y. SAM targeting methylation by the methyl donor, a novel therapeutic strategy for antagonize PFOS transgenerational fertilitty toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109579. [PMID: 31505405 DOI: 10.1016/j.ecoenv.2019.109579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
DNA methylation have been suggested as possible mediators of long-term health effects of environmental stressors. This study aimed to evaluate the potential therapy of methylation of S-adenosyl-l-methionine (SAM) on PFOS induced trangeneral reproductive toxicity. In this study, postnatal 5d Sprague Dawley rats were randomly divided into four groups: control, PFOS, PFOS + SAM, and PFOS + Decitabine (DAC). The F0 rats were exposed to 5 mg/kg PFOS and SAM or DAC until PND60. The development of the offsprings were monitored without PFOS exposure. The fertility in F0, F1 rats, and change in F1 testes were observed. The results were as follows. The significant increase in F0 pregnancy rate, and survival rate in F1 offspring in PFOS + SAM relative to PFOS group were observed. Changes of birth weights and physical development in F1 offspring with SAM were approached as a corresponding variation of the control after the deparation period. No pregnant in F1 maternal rats in the PFOS and DAC groups were found, but pregnant in the SAM group. Significantly decrease in the percentage of abnormal seminiferous tubules and increase in expression of promyelocytic leukemia zinc finger (PLZF+) spermatogonial stem cells in F1 testis compared with the PFOS group. Taken together, Methyl donor SAM improve PLZF + spermatogonia stem cell proliferation, attenuate damage in testicular tissue structure, which subsequently improve the transgenerational growth retard and infertility induced by PFOS chronic stress.
Collapse
Affiliation(s)
- Jianying Tian
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, 430068, Hubei, China; Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haiming Xu
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yawen Zhang
- Basic Medical School, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xinchen Shi
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wencheng Wang
- Department of Neurology, People's Hospital of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Huanmin Gao
- Department of Neurology, People's Hospital of Ningxia, Yinchuan, 750002, Ningxia, China
| | - Yongyi Bi
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, 430068, Hubei, China.
| |
Collapse
|
15
|
Bailone RL, Aguiar LKD, Roca RDO, Borra RC, Corrêa T, Janke H, Fukushima HCS. “Zebrafish as an animal model for food safety research: trends in the animal research”. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1673173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ricardo Lacava Bailone
- Department of Federal Inspection Service, Ministry of Agriculture, Livestock and Supply of Brazil, Federal Inspection Service, São Carlos, Brazil
- Food Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Luís Kluwe de Aguiar
- Department of Food Technology and Innovation, Harper Adams University, Edgmond, United Kingdom of Great Britain and Northern Ireland
| | - Roberto de Oliveira Roca
- Department of Food Economics, Sociology and Technology, Universidade Estadual Paulista Julio de Mesquita Filho, Sao Paulo, Brazil
| | - Ricardo Carneiro Borra
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Tatiana Corrêa
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Helena Janke
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | | |
Collapse
|
16
|
Taylor MD, Bräunig J, Mueller JF, Crompton M, Dunstan RH, Nilsson S. Metabolomic profiles associated with exposure to per- and polyfluoroalkyl substances (PFASs) in aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1980-1990. [PMID: 31553340 DOI: 10.1039/c9em00394k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are frequently detected in aquatic environments. Longer chained perfluoroalkyl acids (PFAAs), in particular, have been found to bioaccumulate in a broad range of aquatic biota. PFAAs have a physiochemical similarity to naturally occurring fatty acids and could potentially disrupt metabolic processes, however, there has been limited study in this area, especially in aquatic species. In this study, the associations between PFAAs and metabolite profiles were investigated in crustaceans. Eastern School Prawn (Metapenaeus macleayi) were obtained from three different locations (n = 15 per location) with similar environmental conditions but different levels of PFAA contamination. The concentrations of PFAAs, fatty acids and amino acids were analysed and differences in PFAA and metabolite profiles were evaluated. Different PFAA profiles were mirrored by significant differences in the composition of both fatty acid and amino acid profiles, indicating a potential association between PFAA concentration and the composition of metabolites in prawns. These results highlight a need for further research investigating the impacts of PFAA exposure, with the current study providing a foundation for further investigation of the relationship between PFAA bioaccumulation and organism metabolism.
Collapse
Affiliation(s)
- Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, NSW 2315, Australia. and The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia and School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Jennifer Bräunig
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Marcus Crompton
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - R Hugh Dunstan
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Sandra Nilsson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
17
|
Martínez R, Navarro-Martín L, Luccarelli C, Codina AE, Raldúa D, Barata C, Tauler R, Piña B. Unravelling the mechanisms of PFOS toxicity by combining morphological and transcriptomic analyses in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:462-471. [PMID: 31022537 DOI: 10.1016/j.scitotenv.2019.04.200] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Exposure to PFOS (perfluorooctanesulfonate) has been related to toxic effects on lipid metabolism, immunological response, and different endocrine systems. We present here a transcriptomic analysis of zebrafish embryos exposed to different concentrations of PFOS (0.03-1.0 mg/L) from 48 to 120 hpf. No major survival or morphological alterations (swimming bladder inflation, kyphosis, eye separation and size…) were observed below the 1.0 mg/L mark. Conversely, we observed significant increase in transcripts related to lipid transport and metabolism even at the lowest used concentration. In addition, we observed a general decrease on transcripts related to natural immunity and defense again infections, which adds to the recent concerns about PFOS as immunotoxicant, particularly in humans. Derived PoD (Point of Departure) values for transcriptional changes (0.011 mg/L) were about 200-fold lower than the corresponding PoD values for morphometric effects (2.53 mg/L), and close to levels observed in human blood serum or bird eggs. Our data suggest that currently applicable tolerable levels of PFOS in commercial goods should be re-evaluated, taking into account its potential effects on lipid metabolism and the immune system.
Collapse
Affiliation(s)
- Rubén Martínez
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain; Universitat de Barcelona (UB), Barcelona 08007, Spain.
| | | | | | - Anna E Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| | | | - Carlos Barata
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| | - Benjamin Piña
- IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
18
|
Horzmann KA, Reidenbach LS, Thanki DH, Winchester AE, Qualizza BA, Ryan GA, Egan KE, Hedrick VE, Sobreira TJP, Peterson SM, Weber GJ, Wirbisky-Hershberger SE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure elicits proteomic, behavioral, and brain abnormalities with developmental time specific gene expression signatures. J Proteomics 2018; 186:71-82. [PMID: 30012420 PMCID: PMC6193558 DOI: 10.1016/j.jprot.2018.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023]
Abstract
Atrazine (ATZ), the second most commonly used herbicide in the United States, is an endocrine disrupting chemical linked to cancer and a common drinking water contaminant. This study further investigates ATZ-related developmental toxicity by testing the following hypotheses in zebrafish: the effects of embryonic ATZ exposure are dependent on timing of exposure; embryonic ATZ exposure alters brain development and function; and embryonic ATZ exposure changes protein abundance in carcinogenesis-related pathways. After exposing embryos to 0, 0.3, 3, or 30 parts per billion (ppb) ATZ, we monitored the expression of cytochrome P450 family 17 subfamily A member 1 (cyp17a1), glyoxalase I (glo1), ring finger protein 14 (rnf14), salt inducible kinase 2 (sik2), tetratricopeptide domain 3 (ttc3), and tumor protein D52 like 1 (tpd52l1) at multiple embryonic time points to determine normal expression and if ATZ exposure altered expression. Only cyp17a1 had normal dynamic expression, but ttc3 and tpd52l1 had ATZ-related expression changes before 72 h. Larvae exposed to 0.3 ppb ATZ had increased brain length, while larvae exposed to 30 ppb ATZ were hypoactive. Proteomic analysis identified altered protein abundance in pathways related to cellular function, neurodevelopment, and genital-tract cancer. The results indicate embryonic ATZ toxicity involves interactions of multiple pathways. SIGNIFICANCE This is the first report of proteomic alterations following embryonic exposure to atrazine, an environmentally persistent pesticide and common water contaminant. Although the transcriptomic alterations in larval zebrafish with embryonic atrazine exposure have been reported, neither the time at which gene expression changes occur nor the resulting proteomic changes have been investigated. This study seeks to address these knowledge gaps by evaluating atrazine's effect on gene expression through multiple time points during embryogenesis, and correlating changes in gene expression to pathological alterations in brain length and functional changes in behavior. Finally, pathway analysis of the proteomic alterations identifies connections between the molecular changes and functional outcomes associated with embryonic atrazine exposure.
Collapse
Affiliation(s)
- Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Leeah S Reidenbach
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Devang H Thanki
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Anna E Winchester
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Brad A Qualizza
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Geoffrey A Ryan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Kaitlyn E Egan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Victoria E Hedrick
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Tiago J P Sobreira
- Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN 47907, United States
| | - Samuel M Peterson
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States
| | | | - Maria S Sepúlveda
- Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
19
|
Yan X, He B, Hu L, Gao J, Chen S, Jiang G. Insight into the endocrine disrupting effect and cell response to butyltin compounds in H295R cell: Evaluated with proteomics and bioinformatics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1489-1496. [PMID: 30045567 DOI: 10.1016/j.scitotenv.2018.02.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The widespread use of organotin compounds (OTs) as biocides in antifouling paints and agricultural applications poses a serious threat to the ecosystem and humans. Butyltin compounds (BTs), especially tributyltin (TBT), are considered to be endocrine disrupting chemicals in marine organisms. The underlying mechanism of disrupting effects on mammals, however, has not been sufficiently investigated. To determine the effect and action of these biocides, the present study evaluated the effects of BTs on human adrenocortical carcinoma cells (H295R) with a focus on endocrine disrupting effect. Two-dimensional electrophoresis (2-DE) and subsequent mass finger printing were used to identify proteins expression profiles from the cells after exposure to 0.1μM BTs for 48h. In total, 89 protein spots showed altered expression in at least two treatment groups and 69 of these proteins were subsequently identified. Bioinformatic analysis of the proteins indicated that BTs involved in the regulation of hormone homeostasis, lipid metabolism, cell death, and energy production. IPA analysis revealed LXR/RXR (liver X receptor/retinoid X receptor) activation, FXR/RXR (farnesoid X receptor/retinoid X receptor) activation and fatty acid metabolism were the top three categories on which BTs acted and these systems play vital roles in sterol, glucose and lipid metabolism. The expression of LXR and FXR mRNA in H295R cells was stimulated by TBT, confirming the ability of TBT to activate this nuclear receptor. In summary, the differentially expressed proteins discovered in this study may participate in the toxic actions of BTs, and nuclear receptor activation and lipid metabolism may play important roles in such actions of BTs.
Collapse
Affiliation(s)
- Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China.
| | - Jiejun Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Chen
- Department of Radiation Oncology, Washington University in St. Louis, 4511 Forest Park Ave, St. Louis, MO 63108, USA
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Cerveny D, Grabic R, Fedorova G, Grabicova K, Turek J, Zlabek V, Randak T. Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent. WATER RESEARCH 2018; 134:226-233. [PMID: 29427964 DOI: 10.1016/j.watres.2018.01.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/25/2017] [Accepted: 01/27/2018] [Indexed: 05/15/2023]
Abstract
The fate of fourteen target perfluoroalkyl substances (PFASs) are described within a small stream affected by a sewage treatment plant (STP) effluent. Concentrations of target PFASs in samples of water, benthic macroinvertebrates and brown trout (Salmo trutta) are presented. Two hundred brown trout individuals originating from clean sites within the same stream were tagged and stocked into an experimental site affected by the STP's effluent. As a passive sampling approach, polar organic chemical integrative samplers (POCIS) were deployed in the water to reveal the water-macroinvertebrates-fish biotransformation processes of PFASs. Bioconcentration/bioaccumulation of target compounds was monitored one, three, and six months after stocking. Twelve of the fourteen target PFASs were found in concentration above the LOQ in at least one of the studied matrices. The compound pattern varied significantly between both the studied species and water samples. Concerning the accumulation of PFASs in fish, the highest concentrations were found in the liver of individuals sampled after three months of exposure. These concentrations rapidly decreased after six months although the water concentrations were slightly increasing during experiment.
Collapse
Affiliation(s)
- Daniel Cerveny
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic; Department of Chemistry, Umea University, Umea, Sweden.
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Katerina Grabicova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Jan Turek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Vladimir Zlabek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
21
|
Abstract
The genome revolution represents a complete change on our view of biological systems. The quantitative determination of changes in all major molecular components of the living cells, the "omics" approach, opened whole new fields for all health sciences. Genomics, transcriptomics, proteomics, metabolomics, and others, together with appropriate prediction and modeling tools, will mark the future of developmental toxicity assessment both for wildlife and humans. This is especially true for disciplines, like teratology, which rely on studies in model organisms, as studies at lower levels of organization are difficult to implement. Rodents and frogs have been the favorite models for studying human reproductive and developmental disorders for decades. Recently, the study of the development of zebrafish embryos (ZE) is becoming a major alternative tool to adult animal testing. ZE intrinsic characteristics makes this model a unique system to analyze in vivo developmental alterations that only can be studied applying in toto approaches. Moreover, under actual legislations, ZE is considered as a replacement model (and therefore, excluded from animal welfare regulations) during the first 5 days after fertilization. Here we review the most important components of the zebrafish toolbox available for analyzing early stages of embryotoxic events that could eventually lead to teratogenesis.
Collapse
|
22
|
Blanc M, Kärrman A, Kukucka P, Scherbak N, Keiter S. Mixture-specific gene expression in zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonic acid (PFOS), perfluorohexanoic acid (PFHxA) and 3,3',4,4',5-pentachlorobiphenyl (PCB126). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 590-591:249-257. [PMID: 28283292 DOI: 10.1016/j.scitotenv.2017.02.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 06/06/2023]
Abstract
Perfluorooctane sulfonic acid (PFOS) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) are persistent organic pollutants of high concern because of their environmental persistence, bioaccumulation and toxic properties. Besides, the amphiphilic properties of fluorinated compounds such as PFOS and perfluorohexanoic acid (PFHxA) suggest a role in increasing cell membrane permeability and solubilizing chemicals. The present study aimed at investigating whether PFOS and PFHxA are capable of modifying the activation of PCB126 toxicity-related pathways. For this purpose, zebrafish embryos were exposed in semi-static conditions to 7.5μg/L of PCB126 alone, in the presence of 25mg/L of PFOS, 15.7mg/L of PFHxA or in the presence of both PFOS and PFHxA. Quantitative PCR was performed on embryos aged from 24h post fertilization (hpf) to 96 hpf to investigate expression changes of genes involved in metabolism of xenobiotics (ahr2, cyp1a), oxidative stress (gpx1a, tp53), lipids metabolism (acaa2, osbpl1a), and epigenetic mechanisms (dnmt1, dnmt3ba). Cyp1a and ahr2 expression were significantly induced by the presence of PCB126. However, after 72 and 78h of exposure, induction of cyp1a expression was significantly lower when embryos were co-exposed to PCB126+PFOS+PFHxA when compared to PCB126-exposed embryos. Significant upregulation of gpx1a occurred after exposure to PCB126+PFHxA and to PCB126+PFOS+PFHxA at 30 and 48 hpf. Besides, embryos appeared more sensitive to PCB126+PFOS+PFHxA at 78 hpf: acaa2 and osbpl1a were significantly downregulated; dnmt1 was significantly upregulated. While presented as environmentally safe, PFHxA demonstrated that it could affect gene expression patterns in zebrafish embryos when combined to PFOS and PCB126, suggesting that such mixture may increase PCB126 toxicity. This is of particular relevance since PFHxA is persistent and still being ejected into the environment. Moreover, it provides additional information as to the importance to integrate mixture effects of chemicals in risk assessment and biomonitoring frameworks.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Anna Kärrman
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Petr Kukucka
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Örebro Life Science Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| |
Collapse
|
23
|
Hou J, Su Y, Lin W, Guo H, Xie P, Chen J, Gu Z, Li L. Microcystin-LR retards gonadal maturation through disrupting the growth hormone/insulin-like growth factors system in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:27-35. [PMID: 28109900 DOI: 10.1016/j.ecoenv.2017.01.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Recent studies have documented that microcystins (MCs) have potential toxic effects on growth and reproduction in fish. However, no systematic data exist on whether MCs cause gonadal development retardation through disrupting the growth hormone/insulin-like growth factors (GH/IGFs) system. To this end, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30µg/L microcystin-LR (MC-LR) for 90 d until they reached sexual maturity. Life-cycle exposure to MC-LR caused delayed ovarian maturation and sperm development along with ultrapathological lesions in the brain and liver. Moreover, the retarded gonadal development was accompanied by an inhibition of the GH/IGFs system, which was characterized by significant decreases in the transcriptional levels of brain gh (males only), hepatic igf2a and igf2b as well as gonadal igf1 (males only), igf3 and igf2r. These findings for the first time point to the influence of MC-LR on fish gonadal development via the GH/IGFs system. Also, sex-differential impairments suggested that gonadal development of males is more vulnerable than that of female to MC-LR. Our results provide evidence that MC-LR at environmentally relevant concentrations is able to induce impairments on fish gonadal development.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
24
|
Ju L, Zhou Z, Jiang B, Lou Y, Zhang Z. miR-21 is involved in skeletal deficiencies of zebrafish embryos exposed to polychlorinated biphenyls. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:886-891. [PMID: 27761858 DOI: 10.1007/s11356-016-7874-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Polychlorinated biphenyl (PCB) exposure increases the incidence and severity of skeletal diseases, but little is known about the mechanisms that mediate this relationship. We exposed zebrafish embryos to PCB1254 and assessed the changes in bone morphology protein receptor II (BMPRII), which is involved in bone formation and embryonic development, miRNA-21, for which BMPRII is a known target, and calcium metabolism. PCB1254 upregulated the expression of miR-21 and suppressed BMPRII expression. The inhibition of miR-21 reversed the downregulation of BMPRII and alleviated the PCB1254-induced loss of calcium. These findings suggest new biomarkers of developmental defects of the skeleton caused by PCBs.
Collapse
MESH Headings
- Animals
- Bone Diseases, Developmental/chemically induced
- Bone Diseases, Developmental/embryology
- Bone Diseases, Developmental/metabolism
- Bone Diseases, Developmental/pathology
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Calcium/metabolism
- Embryo, Nonmammalian/abnormalities
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Embryonic Development/drug effects
- Embryonic Development/genetics
- MicroRNAs/genetics
- Polychlorinated Biphenyls/toxicity
- Water Pollutants, Chemical/toxicity
- Zebrafish/embryology
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Li Ju
- Department of Pediatric Orthopaedics, Children's Hospital of Nanjing Medical University, 72 Guang Zhou Road, Nanjing, 210008, People's Republic of China
| | - Zhiwen Zhou
- Department of Pediatric Orthopaedics, Children's Hospital of Nanjing Medical University, 72 Guang Zhou Road, Nanjing, 210008, People's Republic of China
| | - Bo Jiang
- Department of Pediatric Orthopaedics, Children's Hospital of Nanjing Medical University, 72 Guang Zhou Road, Nanjing, 210008, People's Republic of China
| | - Yue Lou
- Department of Pediatric Orthopaedics, Children's Hospital of Nanjing Medical University, 72 Guang Zhou Road, Nanjing, 210008, People's Republic of China
| | - Zhiqun Zhang
- Department of Pediatric Orthopaedics, Children's Hospital of Nanjing Medical University, 72 Guang Zhou Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
25
|
Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6410-6430. [PMID: 28461781 PMCID: PMC5408959 DOI: 10.1039/c6gc02061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world multi-chemical exposures. The zebrafish is poised to be an important model in bridging these two conventionally separate areas of toxicology and characterizing the biological effects of chemical mixtures that could augment its role in sustainable chemistry.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
26
|
Su Y, Li L, Hou J, Wu N, Lin W, Li G. Life-cycle exposure to microcystin-LR interferes with the reproductive endocrine system of male zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:205-212. [PMID: 27060240 DOI: 10.1016/j.aquatox.2016.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 06/05/2023]
Abstract
Recently, MC-LR reproductive toxicity drew great attention. Limited information was available on endocrine-disrupting effects of MC-LR on the reproduction system in fish. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30μg/L MC-LR for 90 d until they reached sexual maturity. Male zebrafish were selected, and changes in growth and developmental parameters, testicular histological structure as well as the levels of gonadal steroid hormones were studied along with the related-gene transcriptional responses in the hypothalamic-pituitary-gonadal axis (HPG-axis). The results, for the first time, show a life cycle exposure to MC-LR causes growth inhibition, testicular damage and delayed sperm maturation. A significant decrease in T/E2 ratio indicated that MC-LR disrupted sex steroid hormones balance. The changes in transcriptional responses of HPG-axis related genes revealed that MC-LR promoted the conversion of T to E2 in circulating blood. It was also noted that vtg1 mRNA expression in the liver was up-regulated, which implied that MC-LR could induce estrogenic-like effects at environmentally relevant concentrations and long-term exposure. Our findings indicated that a life cycle exposure to MC-LR causes endocrine disruption with organic and functional damage of the testis, which might compromise the quality of life for the survivors and pose a potent threat on fish reproduction and thus population dynamics in MCs-contaminated aquatic environments.
Collapse
Affiliation(s)
- Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Ning Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
27
|
Wang L, Yang G, Qi L, Li X, Jia L, Xie J, Qiu S, Li P, Hao R, Wu Z, Du X, Li W, Song H. A Novel Small RNA Regulates Tolerance and Virulence in Shigella flexneri by Responding to Acidic Environmental Changes. Front Cell Infect Microbiol 2016; 6:24. [PMID: 27014636 PMCID: PMC4782007 DOI: 10.3389/fcimb.2016.00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/12/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella flexneri is an important cause of bacillary dysentery in developing countries. Small regulatory RNAs (sRNAs) play essential roles in diverse cellular processes. We found a novel sRNA Ssr1 based on RT-PCR, northern blot, and 5′RACE in S. flexneri. Ssr1 responds to acidic environmental changes, as shown by a strong linear correlation between the pH value and Ssr1 expression (R = 0.785, P < 0.05) using the qRT-PCR method. Deletion of Ssr1 results in growth retardation at pH values ranging from 5.0 to 7.0 (P < 0.05), and the survival rate was reduced by 22% in acidic conditions (pH 3.0). Additionally, virulence was significantly increased in an Ssr1 mutant strain, as revealed in a murine lung invasion model and survival model assays. By using the sTarPicker method and proteomic analysis, we considered that DnaK, which is a major factor that confers acidic stress tolerance, may be a direct target of Ssr1. We also found that Ssr1 may enhance virulence by directly targeting OmpA; this leads to altered expression of genes in the type three secretion system (T3SS). This work provides new insight into the mechanism of adaptation to environmental stress and into the pathogenesis of Shigella.
Collapse
Affiliation(s)
- Ligui Wang
- Institute of Disease Control and Prevention, Academy of Military Medical SciencesBeijing, China; Center of Computational Biology, Beijing Institute of Basic Medical SciencesBeijing, China
| | - Guang Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Lihua Qi
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xiang Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Peng Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - RongZhang Hao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Zhihao Wu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Xinying Du
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| | - Wuju Li
- Center of Computational Biology, Beijing Institute of Basic Medical Sciences Beijing, China
| | - Hongbin Song
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences Beijing, China
| |
Collapse
|
28
|
Roland K, Kestemont P, Dieu M, Raes M, Silvestre F. Using a novel “Integrated Biomarker Proteomic” index to assess the effects of freshwater pollutants in European eel peripheral blood mononuclear cells. J Proteomics 2016; 137:83-96. [DOI: 10.1016/j.jprot.2016.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 01/04/2023]
|
29
|
Hou J, Li L, Wu N, Su Y, Lin W, Li G, Gu Z. Reproduction impairment and endocrine disruption in female zebrafish after long-term exposure to MC-LR: A life cycle assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:477-485. [PMID: 26552529 DOI: 10.1016/j.envpol.2015.10.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Microcystin-LR (MC-LR) has been found to cause reproductive and developmental impairments as well as to disrupt sex hormone homeostasis of fish during acute and sub-chronic toxic experiments. However, fish in natural environments are continuously exposed to MC-LR throughout their entire life cycle as opposed to short-term exposure. Here, we tested the hypothesis that the mechanism by which MC-LR harms female fish reproduction and development within natural water bodies is through interference of the reproductive endocrine system. In the present study, zebrafish hatchlings (5 d post-fertilization) were exposed to 0, 0.3, 3 and 30 μg/L MC-LR for 90 d until reaching sexual maturity. Female zebrafish were selected, and the changes in growth and developmental indicators, ovarian ultrastructure as well as the levels of gonadal steroid hormones and vitellogenin (VTG) were examined along with the transcription of related genes in the hypothalamic-pituitary-gonadal-liver axis (HPGL-axis). The results showed for the first time, a life cycle exposure to MC-LR caused growth inhibition, decreased ovary weight and ovarian ultra-pathological lesions. Decreased ovarian testosterone levels indicated that MC-LR disrupted sex steroid hormone balance. Significantly up-regulated transcription of brain FSHβ and LHβ along with ovarian ERα, FSHR and LHR suggested positive feedback regulation in the HPGL-axis was induced as a compensatory mechanism for MC-LR damage. It was also noted that ovarian VTG content and hepatic ERα and VTG1 expression were all down-regulated, which might be responsible for reduced vitellus storage noted in our histological observations. Our findings indicate that a life cycle exposure to MC-LR impairs the development and reproduction of female zebrafish by disrupting the transcription of related HPGL-axis genes, suggesting that MC-LR has potential adverse effects on fish reproduction and thus population dynamics in MCs-contaminated aquatic environment.
Collapse
Affiliation(s)
- Jie Hou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| | - Ning Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Yujing Su
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Wang Lin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| |
Collapse
|
30
|
Abdel-Gawad FK, Khalil WK, El-Kady AA, Waly AI, Abdel-Wahhab MA. Carboxymethyl chitosan modulates the genotoxic risk and oxidative stress of perfluorooctanoic acid in Nile tilapia (Oreochromis niloticus). JOURNAL OF THE SAUDI SOCIETY OF AGRICULTURAL SCIENCES 2016; 15:57-66. [DOI: 10.1016/j.jssas.2014.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
31
|
Samenkova NF, Kisrieva YS, Petushkova NA, Kuznetsova GP, Larina OV, Trifonova OP, Karuzina II, Ipatova OM, Lisitsa AV. [Analysis of proteomic profile changes of zebrafish embryos during exposure to doxorubicin, built-in the phospholipid transport nanosystem]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015. [PMID: 26215412 DOI: 10.18097/pbmc20156103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The proteome profile of Danio rerio embryos grown in the medium containing doxorubicin, included in the phospholipid transport nanosystem (doxolip) has been investigated using combination of 1D-electrophoresis with subsequent MALDI-TOF-PMF mass spectrometry. Cultivation of growing of D. rerio embryos in the medium with doxolip caused a substantial increase in expression of the cytoskeletal proteins, a decrease in the number of nuclear proteins involved in DNA and RNA synthesis and disappearance of vitellogenin 2 in comparison with control (the cultivation medium containing the phospholipid transport nanosystem). Analysis of the proteomic profiles of doxolip-treated embryos suggests lower toxicity of doxorubicin incorporated in the phospholipid nanosystem.
Collapse
Affiliation(s)
| | - Y S Kisrieva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | | | - O V Larina
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - I I Karuzina
- Institute of Biomedical Chemistry, Moscow, Russia
| | - O M Ipatova
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A V Lisitsa
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
32
|
Zhang F, Qin W, Zhang JP, Hu CQ. Antibiotic toxicity and absorption in zebrafish using liquid chromatography-tandem mass spectrometry. PLoS One 2015; 10:e0124805. [PMID: 25938774 PMCID: PMC4418659 DOI: 10.1371/journal.pone.0124805] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/18/2015] [Indexed: 12/19/2022] Open
Abstract
Evaluation of drug toxicity is necessary for drug safety, but in vivo drug absorption is varied; therefore, a rapid, sensitive and reliable method for measuring drugs is needed. Zebrafish are acceptable drug toxicity screening models; we used these animals with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method in a multiple reaction monitoring mode to quantify drug uptake in zebrafish to better estimate drug toxicity. Analytes were recovered from zebrafish homogenate by collecting supernatant. Measurements were confirmed for drugs in the range of 10-1,000 ng/mL. Four antibiotics with different polarities were tested to explore any correlation of drug polarity, absorption, and toxicity. Zebrafish at 3 days post-fertilization (dpf) absorbed more drug than those at 6 h post-fertilization (hpf), and different developmental periods appeared to be differentially sensitive to the same compound. By observing abnormal embryos and LD50 values, zebrafish embryos at 6 hpf were considered to be suitable for evaluating embryotoxicity. Also, larvae at 3 dpf were adapted to measure acute drug toxicity in adult mammals. Thus, we can exploit zebrafish to study drug toxicity and can reliably quantify drug uptake with LC-MS/MS. This approach will be helpful for future studies of toxicology in zebrafish.
Collapse
Affiliation(s)
- Fan Zhang
- National Institutes for Food and Drug Control, Graduate School of Peking Union Medical College, Beijing, China
| | - Wei Qin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Graduate School of Peking Union Medical College, Beijing, China
| | - Chang-Qin Hu
- National Institutes for Food and Drug Control, Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Groh KJ, Suter MJF. Stressor-induced proteome alterations in zebrafish: a meta-analysis of response patterns. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:1-12. [PMID: 25498419 DOI: 10.1016/j.aquatox.2014.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 06/04/2023]
Abstract
Proteomics approaches are being increasingly applied in ecotoxicology on the premise that the identification of specific protein expression changes in response to a particular chemical would allow elucidation of the underlying molecular pathways leading to an adverse effect. This in turn is expected to promote the development of focused testing strategies for specific groups of toxicants. Although both gel-based and gel-free global characterization techniques provide limited proteome coverage, the conclusions regarding the cellular processes affected are still being drawn based on the few changes detected. To investigate how specific the detected responses are, we analyzed a set of studies that characterized proteome alterations induced by various physiological, chemical and biological stressors in zebrafish, a popular model organism. Our analysis highlights several proteins and protein groups, including heat shock and oxidative stress defense proteins, energy metabolism enzymes and cytoskeletal proteins, to be most frequently identified as responding to diverse stressors. In contrast, other potentially more specifically responding protein groups are detected much less frequently. Thus, zebrafish proteome responses to stress reported by different studies appear to depend mostly on the level of stress rather than on the specific stressor itself. This suggests that the most broadly used current proteomics technologies do not provide sufficient proteome coverage to allow in-depth investigation of specific mechanisms of toxicant action. We suggest that the results of any differential proteomics experiment performed with zebrafish should be interpreted keeping in mind the list of the most frequent responders that we have identified. Similar reservations should apply to any other species where proteome responses are analyzed by global proteomics methods. Careful consideration of the reliability and significance of observed changes is necessary in order not to over-interpret the experimental results and to prevent the proliferation of false positive linkages between the chemical and the cellular functions it perturbs. We further discuss the implications of the identified "top lists" of frequently responding proteins and protein families, and suggest further directions for proteomics research in ecotoxicology. Apart from improving the proteome coverage, further research should focus on defining the significance of the observed stress response patterns for organism phenotypes and on searching for common upstream regulators that can be targeted by specific assays.
Collapse
Affiliation(s)
- Ksenia J Groh
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, 8093 Zürich, Switzerland.
| | - Marc J-F Suter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Swiss Federal Institute of Technology, Department of Environmental Systems Science, 8092 Zürich, Switzerland
| |
Collapse
|
34
|
Hansmeier N, Chao TC, Herbstman JB, Goldman LR, Witter FR, Halden RU. Elucidating the molecular basis of adverse health effects from exposure to anthropogenic polyfluorinated compounds using toxicoproteomic approaches. J Proteome Res 2014; 14:51-8. [PMID: 25350270 DOI: 10.1021/pr500990w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Linear, short-chain polyfluorinated and perfluorinated alkyl compounds, often referred to as PFCs, have been in worldwide use as surfactants and polymer precursors for decades, and environmental dispersal of these highly persistent compounds represents a public health threat. Whereas ubiquitous low-level exposure to these compounds has been demonstrated in human populations from around the world, the exact mechanisms of toxicity and their toxic potency remain subject to investigation and scientific dispute. As with other environmental exposures, a major hurdle for gaining a better understanding of their human health impacts is the limited utility of cell culture and animal models serving as convenient, yet imperfect proxies to human physiology and disease. The present communication provides a brief overview of the current understanding of potential health effects of PFC exposure and examines how new toxicoproteomic methodologies can provide insight into the molecular mechanism of PFC exposure. Furthermore, we showcase an exemplary data set to illustrate how toxicoproteomic, population-wide studies might overcome limitations of animal models to more fully understand the metabolism and effects of PFCs and other environmental stressors where it matters most, in human populations experiencing real-world, chronic, low-level exposures.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Department of Biology, University of Osnabrück , Barbarastrasse 11, Osnabrück 49076, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Ng CA, Hungerbühler K. Bioaccumulation of perfluorinated alkyl acids: observations and models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4637-48. [PMID: 24762048 DOI: 10.1021/es404008g] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this review, we consider the two prevailing hypotheses for the mechanisms that control the bioaccumulation of perfluorinated alkyl acids (PFAAs). The first assumes that partitioning to membrane phospholipids, which have a higher affinity for charged species than neutral storage lipids, can explain the high bioaccumulation potential of these compounds. The second assumes that interactions with proteins--including serum albumin, liver fatty acid binding proteins (L-FABP), and organic anion transporters--determine the distribution, accumulation and half-lives of PFAAs. We consider three unique phenomena to evaluate the two models: (1) observed patterns of tissue distribution in the laboratory and field, (2) the relationship between perfluorinated chain length and bioaccumulation, and (3) species- and gender-specific variation in elimination half-lives. Through investigation of these three characteristics of PFAA bioaccumulation, we show the strengths and weaknesses of the two modeling approaches. We conclude that the models need not be mutually exclusive, but that protein interactions are needed to explain some important features of PFAA bioaccumulation. Although open questions remain, further research should include perfluorinated alkyl substances (PFASs) beyond the long-chain PFAAs, as these substances are being phased out and replaced by a wide variety of PFASs with largely unknown properties and bioaccumulation behavior.
Collapse
Affiliation(s)
- Carla A Ng
- Safety and Environmental Technology Group, Institute for Chemical and Bioengineering, ETH Zurich , Zurich 8093, Switzerland
| | | |
Collapse
|
36
|
Chen J, Tanguay RL, Tal TL, Gai Z, Ma X, Bai C, Tilton SC, Jin D, Yang D, Huang C, Dong Q. Early life perfluorooctanesulphonic acid (PFOS) exposure impairs zebrafish organogenesis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 150:124-32. [PMID: 24667235 PMCID: PMC4159678 DOI: 10.1016/j.aquatox.2014.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/23/2014] [Accepted: 03/03/2014] [Indexed: 05/07/2023]
Abstract
As a persistent organic contaminant, perfluorooctanesulphonic acid (PFOS) has been widely detected in the environment, wildlife, and humans. The present study revealed that zebrafish embryos exposed to 16 μM PFOS during a sensitive window of 48-96 hour post-fertilization (hpf) disrupted larval morphology at 120 hpf. Malformed zebrafish larvae were characterized by uninflated swim bladder, less developed gut, and curved spine. Histological and ultrastructural examination of PFOS-exposed larvae showed structural alterations in swim bladder and gut. Whole genome microarray was used to identify the early transcripts dysregulated following exposure to 16 μM PFOS at 96 hpf. In total, 1278 transcripts were significantly misexpressed (p<0.05) and 211 genes were changed at least two-fold upon PFOS exposure in comparison to the vehicle-exposed control group. A PFOS-induced network of perturbed transcripts relating to swim bladder and gut development revealed that misexpression of genes were involved in organogenesis. Taken together, early life stage exposure to PFOS perturbs various molecular pathways potentially resulting in observed defects in swim bladder and gut development.
Collapse
Affiliation(s)
- Jiangfei Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Robert L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Tamara L Tal
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97333, USA
| | - Zengxin Gai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xue Ma
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Susan C Tilton
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Daqing Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Dongren Yang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiaoxiang Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
37
|
Wang H, Lai D, Yuan M, Xu H. Growth inhibition and differences in protein profiles in azadirachtin-treated Drosophila melanogaster larvae. Electrophoresis 2014; 35:1122-9. [PMID: 24458307 DOI: 10.1002/elps.201300318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 12/16/2013] [Accepted: 01/12/2014] [Indexed: 11/06/2022]
Abstract
Azadirachtin A is a very effective biopesticide widely used in insect pest control. It has strong antifeeding and growth inhibitory activity against most insects, however, its mode of action is still unclear. Proteomic experiments using 2DE indicate significant effects of Azadirachtin A on the amount of proteins related to growth inhibition in Drosophila melanogaster larvae. Twenty-one spots with different intensity in azadirachtin-treated larvae were identified. These proteins are involved in cytoskeletal organization, transcription and translation, hormonal regulation, and energy metabolism. Protein network analysis reveals heat shock protein 23 to be a potential target of azadirachtin. These results provide new insights into understanding the mechanism of growth inhibition in insects in response to azadirachtin.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, P.R. China
| | | | | | | |
Collapse
|
38
|
Yan S, Wang J, Zhang W, Dai J. Circulating microRNA profiles altered in mice after 28d exposure to perfluorooctanoic acid. Toxicol Lett 2014; 224:24-31. [DOI: 10.1016/j.toxlet.2013.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Huang Q, Zhang J, Peng S, Du M, Ow S, Pu H, Pan C, Shen H. Proteomic analysis of perfluorooctane sulfonate-induced apoptosis in human hepatic cells using the iTRAQ technique. J Appl Toxicol 2013; 34:1342-51. [PMID: 24301089 DOI: 10.1002/jat.2963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/09/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the most commonly used perfluorinated compounds, whose environmental exposure has been associated with a number of adverse health outcomes. However, the molecular mechanisms involved in PFOS toxicity are still not well elucidated. In the present study, we applied iTRAQ labeling quantitative proteomic technology to investigate the differential protein expression profiles of non-tumor human hepatic cells (L-02) exposed to PFOS. A total of 18 proteins were differentially expressed in a dose-dependent manner in PFOS-treated cells versus the control. Among these, 11 proteins were up-regulated and 7 were down-regulated. Gene ontology analysis indicated that PFOS would exert toxic effects on L-02 cells by affecting multiple biological processes, including protein biosynthesis and degradation, mRNA processing and splicing, transcription, signal transduction and transport. Furthermore, the proteomic results especially proposed that the inhibition of HNRNPC, HUWE1 and UBQLN1, as well as the induction of PAF1 is involved in the activation of the p53 and c-myc signaling pathways, which then trigger the apoptotic process in L-02 cells exposed to PFOS. Overall, these data will aid our understanding of the mechanisms responsible for PFOS-mediated hepatotoxicity, and develop useful biomarkers for monitoring and evaluating PFOS contamination in the environment.
Collapse
Affiliation(s)
- Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tentative identification of sex-specific antibodies and their application for screening bovine sperm proteins for sex-specificity. Mol Biol Rep 2013; 41:217-23. [DOI: 10.1007/s11033-013-2854-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
|
41
|
Roland K, Kestemont P, Hénuset L, Pierrard MA, Raes M, Dieu M, Silvestre F. Proteomic responses of peripheral blood mononuclear cells in the European eel (Anguilla anguilla) after perfluorooctane sulfonate exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:43-52. [PMID: 23261670 DOI: 10.1016/j.aquatox.2012.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
Since the 1980s, the stocks of European eel have been declining in most of their geographical distribution area. Many factors can be attributed to this decline such as pollution by xenobiotics like perfluorooctane sulfonate (PFOS). This study aimed at evaluating the in vitro toxicity of eel peripheral blood mononuclear cells (PBMC) exposed to PFOS. Exposure time and two concentrations were chosen to avoid cell mortality (48 h exposure at 10 μg PFOS/L and 1mg PFOS/L). After in vitro contaminations, the post-nuclear fraction was isolated and a proteomic analysis using 2D-DIGE was performed to compare PBMC from the control group with cells exposed to the pollutant. On the 158 spots that were significantly affected by PFOS exposure, a total of 48 different proteins were identified using nano-LCESI-MS/MS and the Peptide and Protein Prophet of Scaffold software. These proteins can be categorized into diverse functional classes, related to cytoskeleton, protein folding, cell signaling, proteolytic pathway and carbohydrate and energy metabolism, which provide clues on the cellular pathways mainly affected by PFOS. Some of the identified proteins are rarely found in other ecotoxicological proteomic studies and could constitute potential biomarkers of exposure to PFOS in fish.
Collapse
Affiliation(s)
- Kathleen Roland
- Research Unit in Environmental and Evolutionary Biology (URBE), Narilis (Namur Research Institute for Lifesciences), University of Namur (FUNDP), Namur, Belgium.
| | | | | | | | | | | | | |
Collapse
|
42
|
Phosphoproteome analysis reveals an important role for glycogen synthase kinase-3 in perfluorododecanoic acid-induced rat liver toxicity. Toxicol Lett 2013; 218:61-9. [DOI: 10.1016/j.toxlet.2013.01.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/19/2022]
|
43
|
Tan F, Jin Y, Liu W, Quan X, Chen J, Liang Z. Global liver proteome analysis using iTRAQ labeling quantitative proteomic technology to reveal biomarkers in mice exposed to perfluorooctane sulfonate (PFOS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12170-12177. [PMID: 23046066 DOI: 10.1021/es3027715] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proteomic analysis allows detection of changes of proteins expression in organisms exposed to environmental pollutants, leading to the discovery of biomarkers of exposure and understanding of the action mechanism of toxicity. In the present study, we applied iTRAQ labeling quantitative proteomic technology for global characterization of the liver proteome in mice exposed to perfluorooctane sulfonate (PFOS). This successfully identified and quantified 1038 unique proteins. Seventy-one proteins showed a significant expression change in the treated groups (1.0, 2.5, 5.0 mg/kg of body weight) compared with the control group, and 16 proteins displayed strong dose-dependent changes. Gene ontology analysis showed that these differential proteins were significantly enriched and mainly involved in lipid metabolism, transport, biosynthetic processes, and response to stimulus. We detected significantly increased expression levels of enzymes regulating peroxisomal β-oxidation-including long-chain acyl-CoA synthetase, acyl-CoA oxidase 1, bifunctional enzyme, and 3-ketoacyl-CoA thiolase A. PFOS also significantly induced cytochrome P450s and glutathione S-transferases that are responsible for the metabolism of xenobiotic compounds. The expressions of several proteins with important biological functions-such as cysteine sulfinic acid decarboxylase, aldehyde dehydrogenase, and apolipoprotein A-I, also correlated with PFOS exposure. Together, the present results provide insight into the molecular mechanism and biomarkers for PFOS-induced effects.
Collapse
Affiliation(s)
- Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | |
Collapse
|
44
|
Huang Q, Dong S, Fang C, Wu X, Ye T, Lin Y. Deep sequencing-based transcriptome profiling analysis of Oryzias melastigma exposed to PFOS. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 120-121:54-58. [PMID: 22613580 DOI: 10.1016/j.aquatox.2012.04.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 06/01/2023]
Abstract
Oryzias melastigma is a newly emerging marine fish model. However, the application of this model has been restricted because of the lack of genomic information. Perfluorooctane sulfonate (PFOS), a persistent organic pollutant, is widely distributed in the estuarine/marine environment. The toxicological effects of PFOS on organisms, especially on marine fish species, remain largely unknown. In this study, the transcriptome of O. melastigma was sequenced using newly developed sequencing technology (Illumina RNA-seq). A total of 145,394 unigenes were obtained with 565 bp of unigene N50. These genes were further enriched in various molecular pathways involved in the toxicological response. We also investigated the transcriptional response of O. melastigma embryos after PFOS exposure from 2 days post fertilization (dpf) to 6 dpf by digital gene expression (DGE) technology. The differentially expressed genes were related to neurobehavioral defects, mitochondrial dysfunction and the metabolism of proteins and fats. A further quantitative RT-PCR study showed the down-regulation of ATP synthase and the up-regulation of uncoupling protein 2 (UCP2), which indicated mitochondrial dysfunction. In all, the transcriptome data represent the most comprehensive expressed gene catalog for O. melastigma and will serve as an important reference for various marine fish that are yet to be sequenced. The transcriptome profiling of O. melastigma embryos after exposure to PFOS are also expected to improve our current understanding of the molecular toxicology of PFOS.
Collapse
Affiliation(s)
- Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | | | | | | | | |
Collapse
|
45
|
Zhang W, Liu Y, Zhang H, Dai J. Proteomic analysis of male zebrafish livers chronically exposed to perfluorononanoic acid. ENVIRONMENT INTERNATIONAL 2012; 42:20-30. [PMID: 21481936 DOI: 10.1016/j.envint.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/29/2011] [Accepted: 03/02/2011] [Indexed: 05/27/2023]
Abstract
Perfluorononanoic acid (PFNA), a synthetic perfluorinated carboxylic acid and fluorosurfactant, is a known environmental contaminant found in people and wildlife. To understand the hepatotoxicity mechanism of PFNA, male zebrafish (n=200) were exposed to differing concentrations of PFNA (0, 0.1, 0.5, and 1.0 mg/L) for 180 days. A two-dimensional difference gel electrophoresis (2-D DIGE) approach coupled with MALDI-TOF-MS/MS analysis was employed to detect and identify the differential expressed proteins. A total of 57 proteins were successfully identified and categorized into functional classes that included metabolism (amino acid metabolism, TCA cycle and pyruvate metabolism, gluconeogenesis and glycolysis, protein metabolism and modification, and nucleotides metabolism), structure and motility, stress and defense, signal transduction, and cell communication. Our proteomic analyses added new perspective to PFNA hepatotoxicity in zebrafish. Results regarding mRNA levels demonstrated that the involvement of peroxisome proliferator-activated receptors (PPARs) could not sufficiently explain the hepatotoxicity mechanism of PFAAs in zebrafish. The extensive protein variations indicated that multiple cellular pathways were involved in and suggested that multiple protein molecules should be simultaneously targeted as an effective strategy to counter PFNA toxicity. Other potential modes should be further investigated.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | | | | | | |
Collapse
|
46
|
Gündel U, Kalkhof S, Zitzkat D, von Bergen M, Altenburger R, Küster E. Concentration-response concept in ecotoxicoproteomics: effects of different phenanthrene concentrations to the zebrafish (Danio rerio) embryo proteome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:11-22. [PMID: 22062151 DOI: 10.1016/j.ecoenv.2011.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/16/2011] [Accepted: 10/08/2011] [Indexed: 05/31/2023]
Abstract
Concentration-response experiments, based on the testing of less replicates in favour of more exposure concentrations, represent the typical design of choice applied in toxicological and ecotoxicological effect assessment studies using traditional endpoints such as lethality. However, to our knowledge this concept has not found implementation in the increasingly applied OMICS techniques studying thousands of molecular endpoints at the same time. The present study is among the first applying the concentration-response concept for an ecotoxicoproteomics study. The effects of six different concentrations in the low effect range (<LC₂₀) of the PAH phenanthrene to the proteome of the ecotoxicological vertebrate model zebrafish (Danio rerio) embryo were investigated (two replicates per concentration) after 5 days exposure. Proteomics analyses were performed on organism extracts using 2-DE DIGE. Protein abundance profiles of around 713 protein spots were studied. About one-third of the protein signals could be detected to show robust reactions correlating with stressor concentration. Within this group, 65 protein signals showed significant changes compared to controls already at 1% lethal concentration (LC₀₁). Interestingly, 28 proteins significantly reacted at very low concentrations (<LC₀₁) and showed an exposure concentration dependent regulation status. Characteristic protein spots were identified by mass spectrometry. With the results of the present study the utility and several benefits using a concentration-response approach in proteomics studies could be shown. These included (i) knowledge about and the ability to model concentration dependent dynamics of molecular endpoints, (ii) to gain information about sensitivity of the molecular response in comparison to traditional endpoints and (iii) to help selecting the most promising protein spots for further investigations such as protein identification and biomarker studies. Using this experimental design based on testing of several exposure concentrations and less replicates might provide a step forward in getting increased output from toxicoproteomics studies.
Collapse
Affiliation(s)
- Ulrike Gündel
- Department Bioanalytical Ecotoxicology, UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Fent K, Sumpter JP. Progress and promises in toxicogenomics in aquatic toxicology: is technical innovation driving scientific innovation? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:25-39. [PMID: 22099342 DOI: 10.1016/j.aquatox.2011.06.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/04/2011] [Indexed: 05/08/2023]
Abstract
In the last decade, new technologies have been invented to analyze large amounts of information such as gene transcripts (transcriptomics), proteins (proteomics) and small cellular molecules (metabolomics). Many studies have been performed in the last few years applying these technologies to aquatic toxicology, mainly in fish. In this article, we summarize the current state of knowledge and question whether the application of modern technology for descriptive purposes truly represents scientific advancement in aquatic toxicology. We critically discuss the advantages and disadvantages of these technologies and emphasize the importance of these critical aspects. To date, these techniques have been used mainly as a proof of principle, demonstrating effects of model compounds. The potential to use these techniques to better analyze the mode-of-action of a toxicant or the effects of a compound within organisms has rarely been met. This is partly due to a lack of baseline data and the fact that the expression of mRNA and protein profiles is rarely linked to physiology or toxicologically meaningful outcomes. It seems premature to analyze mixtures or environmental samples until more is known about the expression profiles of individual toxicants. Gene transcription, protein, or metabolic data give only a partial view of these effects. Thus, we emphasize that data obtained by these technologies must be linked to physiological changes to fully understand their significance. The use of these techniques in aquatic toxicology is still in its infancy, data cannot yet be applied to environmental risk assessment or regulation until more emphasis is placed on interpreting the data within their physiological and toxicological contexts.
Collapse
Affiliation(s)
- Karl Fent
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland.
| | | |
Collapse
|
48
|
Wang M, Chen J, Lin K, Chen Y, Hu W, Tanguay RL, Huang C, Dong Q. Chronic zebrafish PFOS exposure alters sex ratio and maternal related effects in F1 offspring. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2073-80. [PMID: 21671259 PMCID: PMC3272073 DOI: 10.1002/etc.594] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 02/22/2011] [Accepted: 05/18/2011] [Indexed: 05/19/2023]
Abstract
Perfluorooctanesulfonic acid (PFOS) is an organic contaminant ubiquitous in the environment, wildlife, and humans. Few studies have assessed its chronic toxicity on aquatic organisms. The present study defined the effects of long-term exposure to PFOS on zebrafish development and reproduction. Specifically, zebrafish at 8 h postfertilization (hpf) were exposed to PFOS at 0, 5, 50, and 250 µg/L for five months. Growth suppression was observed in the 250 µg/L PFOS-treated group. The sex ratio was altered, with a significant female dominance in the high-dose PFOS group. Male gonad development was also impaired in a dose-dependent manner by PFOS exposure. Although female fecundity was not impacted, the F1 embryos derived from high-dose exposed females paired with males without PFOS exposure developed severe deformity at early development stages and resulted in 100% larval mortality at 7 d postfertilization (dpf). Perfluorooctanesulfonic acid quantification in embryos indicated that decreased larval survival in F1 offspring was directly correlated to the PFOS body burden, and larval lethality was attributable to maternal transfer of PFOS to the eggs. Lower-dose parental PFOS exposure did not result in decreased F1 survival; however, the offspring displayed hyperactivity of basal swimming speed in a light-to-dark behavior assessment test. These findings demonstrate that chronic exposure to PFOS adversely impacts embryonic growth, reproduction, and subsequent offspring development.
Collapse
Affiliation(s)
| | | | - Kuanfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai, China
| | | | - Wei Hu
- Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | | - Qiaoxiang Dong
- Wenzhou Medical College, Wenzhou, Zhejiang, China
- To whom correspondence may be addressed ()
| |
Collapse
|
49
|
Usami M, Mitsunaga K. Proteomic analysis and in vitro developmental toxicity tests for mechanism-based safety evaluation of chemicals. Expert Rev Proteomics 2011; 8:153-5. [PMID: 21501008 DOI: 10.1586/epr.11.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanism-based safety evaluation and reduction of animal use are important issues in recent developmental toxicology. In vitro developmental toxicity tests with proteomic analysis are the most promising solution to these issues. Groebe et al. systematically applied proteomic analysis to the embryonic stem cell test, a validated in vitro developmental toxicity test, and found protein-expression changes induced by model test chemicals selected from various categories of toxicity. Cluster analysis of all the proteins with expression changes classified the test chemicals into two groups: highly embryotoxic chemicals and non- or weakly embryotoxic chemicals. In addition, some protein biomarker candidates that were known to be involved in normal development were identified. Although further mechanistic investigations are needed, the use of in vitro developmental toxicity tests with proteomic analysis will contribute to mechanism-based safety evaluation with minimal use of animals.
Collapse
Affiliation(s)
- Makoto Usami
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1, Kamiyoga, Setagaya, Tokyo, 158-8501 Japan.
| | | |
Collapse
|
50
|
Liu Y, Tam NFY, Guan Y, Yasojima M, Zhou J, Gao B. Acute toxicity of nonylphenols and bisphenol A to the embryonic development of the abalone Haliotis diversicolor supertexta. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1233-1245. [PMID: 21479784 DOI: 10.1007/s10646-011-0672-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
Acute toxic effects and mechanisms of two typical endocrine disrupting chemicals, nonylphenols (NPs) and bisphenol A (BPA), to the embryonic development of the abalone Haliotis diversicolor supertexta, were investigated by the two-stage embryo toxicity test. The 12-h median effective concentrations (EC(50)) of NPs and BPA to the trochophore development were 1016.22 and 30.72 μg L(-1), respectively, and the respective 96-h EC(50) values based on the completion of metamorphosis (another experimental endpoint) were reduced to 11.65 and 1.02 μg L(-1). Longer exposure time and magnified exposure concentrations in the benthic diatom, that serves as both food source and settlement substrate during the metamorphosis, via bioaccumulation, led to the higher sensitivity of metamorphosis to target EDCs compared with the trochophore development. The hazard concentrations for 5% of the species (HC(5)) could be employed as the safety thresholds for the embryonic development of the abalone. The 12-h HC(5) values of NPs and BPA were 318.68 and 13.93 μg L(-1), respectively, and the respective 96-h HC(5) values were 0.99 and 0.18 μg L(-1), which were at environmentally relevant levels. Results of proteomic responses revealed that NPs and BPA altered various functional proteins in the abalone larvae with slight differences between each chemical and affected various physiological functions, such as energy and substance metabolism, cell signalling, formation of cytoskeleton and cilium, immune and stress responses at the same time, leading to the failure of metamorphosis.
Collapse
Affiliation(s)
- Ying Liu
- Research Center of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | | | | | | | | | | |
Collapse
|