1
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
2
|
Goldstein ADC, Araujo-Lima CF, Fernandes ADS, Santos-Oliveira R, Felzenszwalb I. In vitro genotoxicity assessment of graphene quantum dots nanoparticles: A metabolism-dependent response. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503563. [PMID: 36669812 DOI: 10.1016/j.mrgentox.2022.503563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
Nanomaterials are progressively being applied in different areas, including biomedical uses. Carbon nanomaterials are relevant for biomedical sciences because of their biocompatibility properties. Graphene quantum dots (GQD) have a substantial potential in drug-delivery nanostructured biosystems, but there is still a lack of toxicological information regarding their effects on human health and the environment. We thus evaluated the mutagenicity, cytotoxicity and genotoxicity of this nanomaterial using alternative methods applied in regulatory toxicology guidelines. The Ames test was carried out in the presence and absence of exogenous metabolization. Salmonella enterica serovar Typhimurium strains TA97a, TA98, TA100, TA102, TA104, and TA1535 were exposed to GQD with concentrations ranging from 1 to 1000 μg/plate. The mammal cell viability assays were carried out with HepG2 and 3T3BalbC cell lineages and the in vitro Cytokinesis-Block Micronucleus assay (CBMN) was applied for 24 h of exposure in non-cytotoxic concentrations. Mutagenicity was induced in the TA97a strain in the absence of exogenous metabolization, but not in its presence. Mutagenicity was also detected in the TA102 strain in the assay with exogenous metabolization, suggesting redox misbalance mutagenicity. The WST-1 and LDH assays demonstrated that GQD decreased cell viability, especially in 3T3BalbC cells, which showed more sensitivity to the nanomaterial. GQD also increased micronuclei formation in 3T3BalbC and caused a cytostatic effect. No significant impact on HepG2 micronuclei formation was observed. Different metabolic systems interfered with the mutagenic, cytotoxic, and genotoxic effects of GQD, indicating that liver metabolism has a central role in the detoxification of this nanomaterial.
Collapse
Affiliation(s)
- Alana da Cunha Goldstein
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Carlos Fernando Araujo-Lima
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil; Department of Genetics and Molecular Biology, Federal University of the Rio de Janeiro State, Rio de Janeiro, Brazil.
| | - Andreia da Silva Fernandes
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, Brazil.
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenicity, Department of Biophysics and Biometry, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Tornesello ML, Tornesello AL, Starita N, Cerasuolo A, Izzo F, Buonaguro L, Buonaguro FM. Telomerase: a good target in hepatocellular carcinoma? An overview of relevant preclinical data. Expert Opin Ther Targets 2022; 26:767-780. [PMID: 36369706 DOI: 10.1080/14728222.2022.2147062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The expression of telomerase reverse transcriptase (TERT) in liver is restricted to rare cells, that are able to replace senescent hepatocytes and regenerate tissue in response to hepatic damage, while becoming extinguished in differentiated progeny cells. TERT gene is permanently activated in liver neoplasms from the very early stage of the hepatocarcinogenesis mainly through the accumulation of genetic alterations, virus-related insertional mutagenesis and somatic mutations in the TERT promoter region. Several lines of evidence suggest that telomerase, beyond the canonical function of telomeres elongation, has multiple oncogenic activities in cancer cells and may represent a promising therapeutic target in hepatocellular carcinoma (HCC). AREAS COVERED We review the mechanisms of activation of telomerase in HCC, the canonical and non-canonical functions of TERT as well as experimental strategies to directly target telomerase or to inhibit pathways associated with telomerase activity. EXPERT OPINION TERT holoenzyme and telomerase components represent promising therapeutic targets in the treatment of liver malignancies. Several chemical agents and natural products known to alter telomerase activity are under evaluation for their potency to inhibit telomeres attrition in cirrhosis and TERT function in liver cancer. Therefore, this review outlines the current strategies pursued to suppress the multiple mechanisms of the major telomerase components in liver cancer.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| |
Collapse
|
4
|
Liu Y, Chen W, Chen J, Ma Y, Cen Y, Wang S, He X, You M, Yang G. miR-122-5p regulates hepatocytes damage caused by BaP and DBP co-exposure through SOCS1/STAT3 signaling in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112570. [PMID: 34352581 DOI: 10.1016/j.ecoenv.2021.112570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
BaP and DBP are ubiquitously and contemporaneously present in the environment. However, Current studies largely concentrate on the effects of a single pollutant (BaP or DBP). The liver is vital for biogenic activities. The effects of BaP and DBP co-exposure on liver remain unclear. Thus, we treated human normal liver cell (L02 cell) with BaP or/and DBP. We found that compared to individual exposure, co-exposure to BaP and DBP induced further increased levels of AST and ALT. BaP and DBP co-exposure caused further increased levels of IL-2, IL-6, and TNF-α, decreased IL-10 level, and a higher percentage of apoptotic cells and S-phase arrest cells. BaP and DBP co-exposure worsen the decrease of miR-122-5p level and chaos of SOCS1/STAT3 signaling. Dual-luciferase reporter gene assays showed that SOCS1 was a validated target of miR-122-5p. miR-122-5p overexpression alleviated the increased SOCS1 expression, decreased phospho-STAT3 expression, decreased IL-10 level, increased TNF-α levels, increased percentage of apoptosis and S-phase arrest, and cytotoxicity induced by BaP and DBP co-exposure in hepatocytes. These results suggested that miR-122-5p negatively regulated the synergistic effects on apoptosis and disorder of inflammatory factor secretion involved in hepatocyte injury caused by BaP and DBP co-exposure through targeting SOCS1/STAT3 signaling.
Collapse
Affiliation(s)
- Yining Liu
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wenyan Chen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jing Chen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yemei Ma
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanli Cen
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Shengli Wang
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiu He
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingdan You
- School of Public Heath, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou 550004, China.
| |
Collapse
|
5
|
Repurposing of Antimicrobial Agents for Cancer Therapy: What Do We Know? Cancers (Basel) 2021; 13:cancers13133193. [PMID: 34206772 PMCID: PMC8269327 DOI: 10.3390/cancers13133193] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial costs of clinical trials, the lengthy timelines of new drug discovery and development, along the high attrition rates underscore the need for alternative strategies for finding quickly suitable therapeutics agents. Given that most approved drugs possess more than one target tightly linked to other diseases, it encourages promptly testing these drugs in patients. Over the past decades, this has led to considerable attention for drug repurposing, which relies on identifying new uses for approved or investigational drugs outside the scope of the original medical indication. The known safety of approved drugs minimizes the possibility of failure for adverse toxicology, making them attractive de-risked compounds for new applications with potentially lower overall development costs and shorter development timelines. This latter case is an exciting opportunity, specifically in oncology, due to increased resistance towards the current therapies. Indeed, a large body of evidence shows that a wealth of non-cancer drugs has beneficial effects against cancer. Interestingly, 335 drugs are currently being evaluated in different clinical trials for their potential activities against various cancers (Redo database). This review aims to provide an extensive discussion about the anti-cancer activities exerted by antimicrobial agents and presents information about their mechanism(s) of action and stage of development/evaluation.
Collapse
|
6
|
Gruevska A, Moragrega ÁB, Cossarizza A, Esplugues JV, Blas-García A, Apostolova N. Apoptosis of Hepatocytes: Relevance for HIV-Infected Patients under Treatment. Cells 2021; 10:cells10020410. [PMID: 33669403 PMCID: PMC7920460 DOI: 10.3390/cells10020410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Due to medical advances over the past few decades, human immunodeficiency virus (HIV) infection, once a devastatingly mortal pandemic, has become a manageable chronic condition. However, available antiretroviral treatments (cART) cannot fully restore immune health and, consequently, a number of inflammation-associated and/or immunodeficiency complications have manifested themselves in treated HIV-infected patients. Among these chronic, non-AIDS (acquired immune deficiency syndrome)-related conditions, liver disease is one of the deadliest, proving to be fatal for 15–17% of these individuals. Aside from the presence of liver-related comorbidities, including metabolic disturbances and co-infections, HIV itself and the adverse effects of cART are the main factors that contribute to hepatic cell injury, inflammation, and fibrosis. Among the molecular mechanisms that are activated in the liver during HIV infection, apoptotic cell death of hepatocytes stands out as a key pathogenic player. In this review, we will discuss the evidence and potential mechanisms involved in the apoptosis of hepatocytes induced by HIV, HIV-encoded proteins, or cART. Some antiretroviral drugs, especially the older generation, can induce apoptosis of hepatic cells, which occurs through a variety of mechanisms, such as mitochondrial dysfunction, increased production of reactive oxygen species (ROS), and induction of endoplasmic reticulum (ER) stress and unfolded protein response (UPR), all of which ultimately lead to caspase activation and cell death.
Collapse
Affiliation(s)
- Aleksandra Gruevska
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
| | - Ángela B. Moragrega
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy;
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| | - Juan V. Esplugues
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-396-4167; Fax: +34-96-398-3879
| | - Ana Blas-García
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Nadezda Apostolova
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (A.G.); (Á.B.M.); (N.A.)
- FISABIO—Hospital Universitario Dr. Peset, 46017 Valencia, Spain;
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
7
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
8
|
AZT oxidative damage in the liver. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Wang D, Dan M, Ji Y, Wu X, Wang X, Wen H. Roles of ROS and cell cycle arrest in the genotoxicity induced by gold nanorod core/silver shell nanostructure. NANOSCALE RESEARCH LETTERS 2020; 15:224. [PMID: 33284367 PMCID: PMC7721938 DOI: 10.1186/s11671-020-03455-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
To understand the genotoxicity induced in the liver by silver nanoparticles (AgNPs) and silver ions, an engineered gold nanorod core/silver shell nanostructure (Au@Ag NR) and humanized hepatocyte HepaRG cells were used in this study. The involvement of oxidative stress and cell cycle arrest in the DNA and chromosome damage induced by 0.4-20 µg mL-1 Au@Ag NR were investigated by comet assay, γ-H2AX assay and micronucleus test. Further, the distribution of Au@Ag NR was analyzed. Our results demonstrated that both Ag+ and Au@Ag NR led to DNA cleavage and chromosome damage (clastogenicity) in HepaRG cells and that the Au@Ag NR retained in the nucleus may further release Ag+, aggravating the damages, which are mainly caused by cell cycle arrest and ROS formation. The results reveal the correlation between the intracellular accumulation, Ag+ ion release and the potential genotoxicity of AgNPs.
Collapse
Affiliation(s)
- Dan Wang
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
- China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Mo Dan
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
- The State Key Laboratory of New Pharmaceutical Preparations and Excipients, 226 Huanghe Road, Shijiazhuang, 050035, Hebei, People's Republic of China
| | - Yinglu Ji
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China
| | - Xiaochun Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.
| | - Xue Wang
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China.
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, 100176, People's Republic of China.
| | - Hairuo Wen
- Beijing Key Laboratory, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China.
- National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Key Laboratory of Beijing for Nonclinical Safety Evaluation Research of Drugs, Beijing, 100176, People's Republic of China.
| |
Collapse
|
10
|
Şekeroğlu ZA, Şekeroğlu V, Küçük N. Effects of Reverse Transcriptase Inhibitors on Proliferation, Apoptosis, and Migration in Breast Carcinoma Cells. Int J Toxicol 2020; 40:52-61. [PMID: 32975457 DOI: 10.1177/1091581820961498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High telomerase activity in human breast cancer is associated with aggressive tumors resulting in decreased survival. Recent studies have shown that telomerase inhibitors may display anticancer properties in some human cancer cell lines. In the present study, we examined the effects of 4 reverse transcriptase inhibitors (RTIs), used for the treatment of HIV; Abacavir (AC), Lamivudine (LV), Stavudine (SV), and Tenofovir (TF) on proliferation, apoptosis, and migration in the normal human mammary epithelial cell line, hTERT-HME1, and the human breast cancer cell line, MCF-7. Cells were treated with AC, LV, SV, or TF alone or in combination with paclitaxel (PAC), a known drug used to treat breast cancer. Conduct of the thiazolyl blue tetrazolium bromide assay demonstrated that AC, SV, and TF had stronger cytotoxic effects on MCF-7 cells than in hTERT-HME1 cells. The combined treatment of RTIs and PAC caused high rates of cell death in MCF-7 and low rates of cell death in HTERT-HME1 by apoptosis. The percentages of apoptotic cells in the treatment of AC and SV in combination with PAC for 48 and 72 hours were higher than PAC. Significantly increased apoptosis and decreased migration levels were found in MCF-7 cells treated with AC and co-treatment of AC+PAC or SV+PAC than HME1 cells. These treatments can also prevent migration capacity more than PAC. Therefore, a combination strategy based on telomerase inhibitors such as AC or SV and anticancer drugs may be more effective in the treatment of certain breast cancers.
Collapse
Affiliation(s)
- Zülal Atlı Şekeroğlu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, 187474Ordu University, Ordu, Turkey
| | - Vedat Şekeroğlu
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, 187474Ordu University, Ordu, Turkey
| | - Nihan Küçük
- Faculty of Medicine, Department of Pharmacology, 63990Hitit University, Çorum, Turkey
| |
Collapse
|
11
|
Berrino E, Angeli A, Zhdanov DD, Kiryukhina AP, Milaneschi A, De Luca A, Bozdag M, Carradori S, Selleri S, Bartolucci G, Peat TS, Ferraroni M, Supuran CT, Carta F. Azidothymidine "Clicked" into 1,2,3-Triazoles: First Report on Carbonic Anhydrase-Telomerase Dual-Hybrid Inhibitors. J Med Chem 2020; 63:7392-7409. [PMID: 32463228 PMCID: PMC8154556 DOI: 10.1021/acs.jmedchem.0c00636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Cancer cells rely on the enzyme telomerase
(EC 2.7.7.49) to promote
cellular immortality. Telomerase inhibitors (i.e., azidothymidine)
can represent promising antitumor agents, although showing high toxicity
when administered alone. Better outcomes were observed within a multipharmacological
approach instead. In this context, we exploited the validated antitumor
targets carbonic anhydrases (CAs; EC 4.2.1.1) IX and XII to attain
the first proof of concept on CA–telomerase dual-hybrid inhibitors.
Compounds 1b, 7b, 8b, and 11b showed good in vitro
inhibition potency against the CAs IX and XII, with KI values in the low nanomolar range, and strong antitelomerase
activity in PC-3 and HT-29 cells (IC50 values ranging from
5.2 to 9.1 μM). High-resolution X-ray crystallography on selected
derivatives in the adduct with hCA II as a model study allowed to
determine their binding modes and thus to set the structural determinants
necessary for further development of compounds selectively targeting
the tumoral cells.
Collapse
Affiliation(s)
- Emanuela Berrino
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Angeli
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia.,Peoples Friendship University of Russia (RUDN University), Miklukho-Maklaya st. 6, 117198 Moscow, Russia
| | - Anna P Kiryukhina
- Institute of Biomedical Chemistry, Pogodinskaya st. 10/8, 119121 Moscow, Russia
| | - Andrea Milaneschi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Alessandro De Luca
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Murat Bozdag
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Silvia Selleri
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Gianluca Bartolucci
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Thomas S Peat
- CSIRO, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (Florence), Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
12
|
Duong VN, Zhou L, Martínez-Jiménez MI, He L, Cosme M, Blanco L, Paintsil E, Anderson KS. Identifying the role of PrimPol in TDF-induced toxicity and implications of its loss of function mutation in an HIV+ patient. Sci Rep 2020; 10:9343. [PMID: 32518272 PMCID: PMC7283272 DOI: 10.1038/s41598-020-66153-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
A key component of antiretroviral therapy (ART) for HIV patients is the nucleoside reverse transcriptase inhibitor (NRTI) is tenofovir. Recent reports of tenofovir toxicity in patients taking ART for HIV cannot be explained solely on the basis of off-target inhibition of mitochondrial DNA polymerase gamma (Polγ). PrimPol was discovered as a primase-polymerase localized to the mitochondria with repriming and translesion synthesis capabilities and, therefore, a potential contributor to mitochondrial toxicity. We established a possible role of PrimPol in tenofovir-induced toxicity in vitro and show that tenofovir-diphosphate incorporation by PrimPol is dependent on the n-1 nucleotide. We identified and characterized a PrimPol mutation, D114N, in an HIV+ patient on tenofovir-based ART with mitochondrial toxicity. This mutant form of PrimPol, targeting a catalytic metal ligand, was unable to synthesize primers, likely due to protein instability and weakened DNA binding. We performed cellular respiration and toxicity assays using PrimPol overexpression and shRNA knockdown strains in renal proximal tubular epithelial cells. The PrimPol-knockdown strain was hypersensitive to tenofovir treatment, indicating that PrimPol protects against tenofovir-induced mitochondrial toxicity. We show that a major cellular role of PrimPol is protecting against toxicity caused by ART and individuals with inactivating mutations may be predisposed to these effects.
Collapse
Affiliation(s)
- Vincent N Duong
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | - Lei Zhou
- Department of Pediatrics, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | | | - Linh He
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | - Moises Cosme
- Department of Pediatrics, Yale School of Medicine, 06510, New Haven, Connecticut, USA
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049, Madrid, Spain.
| | - Elijah Paintsil
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
- Department of Pediatrics, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
- Department of Epidemiology & Public Health, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
| | - Karen S Anderson
- Department of Pharmacology, Yale School of Medicine, 06510, New Haven, Connecticut, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, 06510, New Haven, Connecticut, United States of America.
| |
Collapse
|
13
|
Bojkova D, Westhaus S, Costa R, Timmer L, Funkenberg N, Korencak M, Streeck H, Vondran F, Broering R, Heinrichs S, Lang KS, Ciesek S. Sofosbuvir Activates EGFR-Dependent Pathways in Hepatoma Cells with Implications for Liver-Related Pathological Processes. Cells 2020; 9:cells9041003. [PMID: 32316635 PMCID: PMC7225999 DOI: 10.3390/cells9041003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Sandra Westhaus
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
| | - Rui Costa
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Lejla Timmer
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Nora Funkenberg
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
| | - Marek Korencak
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Hendrik Streeck
- Institute for HIV research, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (M.K.); (H.S.)
| | - Florian Vondran
- Clinic for General, Abdominal and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Center for Infection Research (DZIF), 45147 Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Karl S Lang
- Institute of Immunology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
| | - Sandra Ciesek
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany; (D.B.); (S.W.); (R.C.); (L.T.); (N.F.)
- Institute of Medical Virology, University Hospital, Goethe University Frankfurt am Main, 60590 Frankfurt, Germany
- German Center for Infection Research (DZIF), 45147 Essen, Germany
- Correspondence: ; Tel.: +49-69-63015219
| |
Collapse
|
14
|
Active repurposing of drug candidates for melanoma based on GWAS, PheWAS and a wide range of omics data. Mol Med 2019; 25:30. [PMID: 31221082 PMCID: PMC6584997 DOI: 10.1186/s10020-019-0098-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Drug repurposing is a swift, safe, and cheap drug discovery method. Melanoma disorders present low survival and high mortality rates and are challenging to diagnose and treat. Moreover, there is a high volume of worldwide investigations that are attempting to find melanoma-related genes of influence, which can be identified as responsive targets for reliable treatment. Method In this study, we used a wide range of data analyses to analyze over 1100 genes and proteins of influence with respect to cutaneous malignant melanoma. Our analysis included various investigational results from genome- and phenome-wide association studies (GWAS and PheWAS, respectively), biomedical, transcriptomic, and metabolomic datasets. We then researched the DrugBank for potential melanoma targets from the selected list. We excluded known melanoma targets to obtain a list of druggable proteins. We performed a precise analysis of the drugs’ pathogenesis and checked the expression profiles of the selected drugs having high associations with known anti-melanoma drugs. Result We found 35 drugs that interacted with 20 unique targets. These drugs appear to have high melanoma treatment potentials. We confirmed our results with previous studies and found supporting references for 30 of these drugs. In conclusion, this investigation can be applied to various diseases for the efficient and economical repurposing of various drug compounds. For further validation, the results may be applicable for in vivo tests and clinical trials.
Collapse
|
15
|
Cell Viability in Normal Fibroblasts and Liver Cancer Cells After Treatment with Iron (III), Nickel (II), and their Mixture. J Vet Res 2018; 62:535-542. [PMID: 30729213 PMCID: PMC6364161 DOI: 10.2478/jvetres-2018-0067] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction Nickel and iron are very commonly occurring metals. Nickel is used in industry, but nowadays it is also used in medical biomaterials. Iron is an element necessary for cell metabolism and is used in diet supplements and biomaterials, whence it may be released along with nickel. Material and Methods BALB/3T3 and HepG2 cells were incubated with iron chloride or nickel chloride at concentrations ranging from 100 to 1,400 μM. The following mixtures were used: iron chloride 200 μM plus nickel chloride 1,000 μM, or iron chloride 1,000 μM plus nickel chloride 200 μM. The cell viability was determined with MTT, LHD, and NRU tests. Results A decrease in cell viability was observed after incubating the BALB/3T3 and HepG2 cells with iron chloride or nickel chloride. A synergistic effect was observed after iron chloride 1,000 μM plus nickel chloride 200 μM treatment in all assays. Moreover, the same effect was observed in the pair iron chloride 200 μM plus nickel chloride 1,000 μM in the LDH and NRU assays. Conclusions Iron (III) and nickel (II) decrease cell viability. Iron chloride at a concentration of 200 μM protects mitochondria from nickel chloride toxicity.
Collapse
|
16
|
Terpiłowska S, Siwicka-Gieroba D, Siwicki AK. Cytotoxicity of Iron (III), Molybdenum (III), and their Mixtures in BALB/3T3 and HepG2 Cells. J Vet Res 2018; 62:527-533. [PMID: 30729212 PMCID: PMC6364151 DOI: 10.2478/jvetres-2018-0066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Iron and molybdenum are essential trace elements for cell metabolism. They are involved in maintaining proper functions of enzymes, cell proliferation, and metabolism of DNA. MATERIAL AND METHODS BALB/3T3 and HepG2 cells were incubated with iron chloride or molybdenum trioxide at concentrations from 100 to 1,400 μM. The cells were also incubated in mixtures of iron chloride at 200 μM plus molybdenum trioxide at 1,000 μM or iron chloride at 1,000 μM plus molybdenum trioxide at 200 μM. Cell viability was determined with MTT reduction, LHD release, and NRU tests. RESULTS A decrease in cell viability was observed after incubating both cell lines with iron chloride or molybdenum trioxide. In cells incubated with mixtures of these trace elements, a decrease in cell viability was observed, assessed by all the used assays. CONCLUSION Iron (III) and molybdenum (III) decrease cell viability in normal and cancer cells. A synergistic effect of the mixture of these elements was observed.
Collapse
Affiliation(s)
- Sylwia Terpiłowska
- Laboratory of Environmental Biology, Institute of Environmental Engineering, The John Paul II Catholic University of Lublin, 20-950Lublin, Poland
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Medical University in Lublin, 20-850Lublin, Poland
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957Olsztyn, Poland
| |
Collapse
|
17
|
Wagner MS, Schultze E, Oliveira TL, de Leon PMM, Thurow HS, Campos VF, Oliveira I, de Souza D, Rodrigues OED, Collares T, Seixas FK. Revitalizing the AZT Through of the Selenium: An Approach in Human Triple Negative Breast Cancer Cell Line. Front Oncol 2018; 8:525. [PMID: 30524958 PMCID: PMC6262369 DOI: 10.3389/fonc.2018.00525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/26/2018] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer represents about 15% of all cases of breast cancer, and still represents a therapeutic challenge. 3′-Azido-3′-deoxythymidine (AZT) is a nucleoside reverse transcriptase inhibitor with antitumor activity. Chalcogenides compounds, such as selenium, are very important intermediates applied in organic synthesis. Our objective was to investigate the effect and the underlying cell death mechanisms of AZT and its derivatives, in human breast cancer cell lines. The inhibitory effect of AZT and derivatives (1072, 1073, and 1079) was determined by MTT assay (0.1, 1, 10, 50, and 100 μM for concentrations and times 4, 24, 48, and 72 h) and Live/Dead in tumor cell lines MCF-7, MDA-MB 231 and also in non-tumor cell line CHO. Gene expression profiles related to apoptosis were investigated by qRT-PCR and induction of apoptosis was investigated by flow cytometry. MTT and Live/Dead assays showed that AZT derivatives decreased the rate of cell proliferation at concentrations of 50 and 100 μM in tumor cell lines MCF-7 and MDA-MB 231 while the commercial AZT presented a low antitumoral potential in all strains tested. In flow cytometry analysis we demonstrated that derivatives of AZT induced apoptosis, with an increase in both initial and late stages in both tumor cell lines evaluated, especially in MDA-MB 231. Our data show that the AZT derivative 1072 increased the expression of transcripts of the genes caspase 3 and 8 in MDA-MB 231 cell line when compared to control, suggesting that the extrinsic pathway of apoptosis was activated. In conclusion, derivatives of AZT, especially 1072, induce cytotoxicity in vitro in the triple negative breast cancer cell line through activation of the extrinsic pathway of apoptosis. These compounds containing selenium in its formulation are potential therapeutic agents for breast cancer.
Collapse
Affiliation(s)
- Mônica Silveira Wagner
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Thais Larre Oliveira
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Priscila Marques Moura de Leon
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Helena Strelow Thurow
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Vinicius Farias Campos
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Isabel Oliveira
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Diego de Souza
- LabSelen-NanoBio - Universidade de Federal de Santa Maria, Santa Maria, Brazil
| | | | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Fabiana Kömmling Seixas
- Programa de Pós-Graduação em Biotecnologia, Grupo de Pesquisa em Oncologia Celular e Molecular, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
18
|
Abstract
Introduction Inosine pranobex (Methisoprinol, ISO, Isoprinosine) is an immuno-modulatory antiviral drug that has been licensed since 1971 in several countries worldwide. In humans, the drug is approved for the treatment of viral infections, and it might also have therapeutic use in animals. The aims of the presented work were to investigate the genotoxicity of inosine pranobex on BALB/3T3 clone A1 and HepG2 cell lines and to elucidate its mutagenicity using the Ames test. Material and Methods The BALB/3T3 clone A1 and HepG2 cells were incubated with inosine pranobex at concentrations from 0.1 to 1,000 μg/mL. The genotoxicity was determined by comet and micronucleus assays, and the mutagenicity was determined by Ames assay. Results Inosine pranobex did not induce a significant dose-related increase in the number of comets or micronuclei in BALB/3T3 clone A1 and HepG2 cells. Moreover, based on the results of the Ames test, it was concluded that inosine pranobex is not mutagenic in the Salmonella typhimurium reverse mutation assay. Conclusion Based on the results of a comet assay, micronucleus assay, and Ames test, it was concluded that inosine pranobex is neither genotoxic nor mutagenic.
Collapse
|
19
|
Ecker A, Ledur PC, da Silva RS, Leal DBR, Rodrigues OED, Ardisson-Araújo D, Waczuk EP, da Rocha JBT, Barbosa NV. Chalcogenozidovudine Derivatives With Antitumor Activity: Comparative Toxicities in Cultured Human Mononuclear Cells. Toxicol Sci 2018; 160:30-46. [PMID: 29036705 DOI: 10.1093/toxsci/kfx152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Considering a novel series of zidovudine (AZT) derivatives encompassing selenoaryl moieties promising candidates as therapeutics, we examined the toxicities elicited by AZT and derivatives 5'-(4-Chlorophenylseleno)zidovudine (SZ1); 5'-(Phenylseleno)zidovudine (SZ2); and 5'-(4-Methylphenylseleno)zidovudine (SZ3) in healthy cells and in mice. Resting and stimulated cultured human peripheral blood mononuclear cells (PBMCs) were treated with the compounds at concentrations ranging from 10 to 200 µM for 24 and/or 72 h. Adult mice received a single injection of compounds (100 µmol/kg, s.c.) and 72 h after administration, hepatic/renal biomarkers were analyzed. Resting and stimulated PBMCs exposed to SZ1 displayed loss of viability, increased reactive species production, disruption in cell cycle, apoptosis and increased transcript levels and production of pro-inflammatory cytokines. In a mild way, most of these effects were also induced by SZ2. AZT and SZ3 did not cause significant toxicity towards resting PBMCs. Differently, both compounds elicited apoptosis and S phase arrest in stimulated cells. AZT and derivatives administration did not change the body weight and plasma biochemical markers in mice. However, the absolute weight and organ-to-body weight ratio of liver, kidneys and spleen were altered in AZT, SZ1-, and SZ2-treated mice. Our results highlighted the involvement of derivatives SZ1 and SZ2 in redox and immunological dyshomeostasis leading to activation of apoptotic signaling pathways in healthy cells under different division phases. On the other hand, the derivative SZ3 emerged as a promising candidate for further viral infection/antitumor studies as a new effective therapy with low toxicity for immune cells and after acute in vivo treatment.
Collapse
Affiliation(s)
- Assis Ecker
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | | | - Rafael S da Silva
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Daniela Bitencourt Rosa Leal
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil.,Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Oscar E D Rodrigues
- LabSelen-NanoBio - Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, Brazil
| | - Daniel Ardisson-Araújo
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | - Emily Pansera Waczuk
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | - João Batista Teixeira da Rocha
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| | - Nilda Vargas Barbosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Campus Universitário - Camobi, 97105-900 Santa Maria, RS, Brasil
| |
Collapse
|
20
|
Sharma A, Gorey B, Casey A. In vitro comparative cytotoxicity study of aminated polystyrene, zinc oxide and silver nanoparticles on a cervical cancer cell line. Drug Chem Toxicol 2018; 42:9-23. [PMID: 29359584 DOI: 10.1080/01480545.2018.1424181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanoparticles use in nano-biotechnology applications have increased significantly with Aminated polystyrene amine (AmPs NP), Zinc oxide (ZnO NP), and Silver (Ag NP) nanoparticles utilized in wide variety of consumer products. This has presented a number of concerns due to their increased exposure risks and associated toxicity on living systems. Changes in the structural and physicochemical properties of nanoparticles can lead to changes in biological activities. This study investigates, compares, and contrasts the potential toxicity of AmPs, ZnO and Ag NPs on an in vitro model (HeLa cells) and assesses the associated mechanism for their corresponding cytotoxicity relative to the surface material. It was noted that NPs exposure attributed to the reduction in cell viability and high-level induction of oxidative stress. All three test particles were noted to induce ROS to varying degrees which is irrespective of the attached surface group. Cell cycle analysis indicated a G2/M phase cell arrest, with the corresponding reduction in G0/G1 and S phase cells resulting in caspase-mediated apoptotic cell death. These findings suggest that all three NPs resulted in the decrease in cell viability, increase intracellular ROS production, induce cell cycle arrest at the G2/M phase and finally result in cell death by caspase-mediated apoptosis, which is irrespective of their differences in physiochemical properties and attached surface groups.
Collapse
Affiliation(s)
- Akash Sharma
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| | - Brian Gorey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland
| | - Alan Casey
- a NANOLAB Research Centre , Focas Institute, Dublin Institute of Technology , Dublin 8 , Ireland.,b School of Physics, Clinical and Optometric Sciences , Dublin Institute of Technology , Dublin , Ireland
| |
Collapse
|
21
|
Qiu S, Zhao F, Zenasni O, Li J, Shih WC. Catalytic assembly of DNA nanostructures on a nanoporous gold array as 3D architectures for label-free telomerase activity sensing. NANOSCALE HORIZONS 2017; 2:217-224. [PMID: 32260643 DOI: 10.1039/c7nh00042a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Telomerase, an enzyme known to catalyze telomere elongation by adding TTAGGG [thymine (T), adenine (A), and guanine (G)] repeats to the end of telomeres, is vital for cell proliferation. Overexpression of telomerase has been found in most tumor cells, resulting in telomere dysfunction and uncontrolled cellular proliferation. Thus, telomerase has been considered as a potential cancer biomarker, as well as a potential target in cancer therapy. In this study, telomerase-catalyzed growth of tandem G-quadruplex (G4) assembled on a nanoporous gold array (NPGA) resulted in the formation of three-dimensional hybrid nanoarchitectures. The generated nanostructure then captured malachite green (MG) (reporter molecule) without the need of a complicated labeling process. Upon laser irradiation, the captured MG molecules produced a surface-enhanced Raman scattering (SERS) signal that was generated by an abundant amount of plasmonic hot spots in the NPGA substrates. A limit of detection (LOD) of 10-10 IU along with a linear range, which was 3 orders of magnitude, was achieved, which was equivalent to the telomerase amount extracted from 20 HeLa cells. The LOD is 2 orders of magnitude better than that of the commercial enzyme-linked immunosorbent assay (ELISA), and it approaches that of the most sensitive technique, telomeric repeat amplification protocols (TRAP), which require a laborious and equipment-intensive polymerase chain reaction (PCR). In addition, X-ray photoelectron spectroscopy (XPS) was used to chemically identify and quantify the telomerase activity on the sensitized NPGA surface. Furthermore, the sensor was applied to screen the effectiveness of anti-telomerase drugs such as zidovudine, thus demonstrating the potential use of the sensor in telomerase-based diagnosis and drug development. Moreover, the framework represents a novel paradigm of collaborative plasmonic intensification and catalytic multiplication (c-PI/CM) for label-free biosensing.
Collapse
Affiliation(s)
- Suyan Qiu
- Department of Electrical and Computer Engineering, University of Houston, 4800 Calhoun Road, Houston, TX 77204, USA.
| | | | | | | | | |
Collapse
|
22
|
A Single Zidovudine (AZT) Administration Delays Hepatic Cell Proliferation by Altering Oxidative State in the Regenerating Rat Liver. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8356175. [PMID: 28479956 PMCID: PMC5396445 DOI: 10.1155/2017/8356175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/29/2022]
Abstract
The 3′-azido-3′-deoxythymidine or Zidovudine (AZT) was the first antiretroviral drug used in the treatment of HIV patients, which has good effectiveness but also hepatotoxic side effects that include cell cycle arrest and oxidative/nitrative mitochondrial damage. Whether such an oxidative damage may affect the proliferative-regenerative capacity of liver remains to be clearly specified at doses commonly used in the clinical practice. In this study, we described the oxidative-proliferative effect of AZT administered at a common clinical dose in rat liver submitted to 70% partial hepatectomy (PH). The results indicate that AZT significantly decreased DNA synthesis and the number of mitosis in liver subjected to PH in a synchronized way with the promotion of organelle-selective lipid peroxidation events (especially those observed in plasma membrane and cytosolic fractions) and with liver enzyme release to the bloodstream. Then at the dose used in clinical practice AZT decreased liver regeneration but stimulates oxidative events involved during the proliferation process in a way that each membrane system inside the cell preserves its integrity in order to maintain the cell proliferative process. Here, the induction of large amounts of free ammonia in the systemic circulation could become a factor capable of mediating the deleterious effects of AZT on PH-induced rat liver regeneration.
Collapse
|
23
|
Wang H, Zhou J, He Q, Dong Y, Liu Y. Azidothymidine inhibits cell growth and telomerase activity and induces DNA damage in human esophageal cancer. Mol Med Rep 2017; 15:4055-4060. [PMID: 28487971 PMCID: PMC5436214 DOI: 10.3892/mmr.2017.6549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
Esophageal cancer is one of the most common type of malignancies. Telomerase activity, which is absent or weakly detected in the majority of human somatic cells, is elevated in esophageal cancer. Although azidothymidine (AZT), a reverse transcriptase inhibitor, has been utilized as a treatment for tumors, its role in treating esophageal cancer has not been confirmed. The aim of the present study was to determine the effect of AZT on telomerase activity and the proliferation of the human esophageal cancer cell line TE-11. A telomeric repeat amplification assay was utilized to detect telomerase activity following treatment of TE-11 cells with AZT. The effect of AZT on TE-11 cell cycle distribution was determined by flow cytometry. Cellular DNA damage was evaluated by a comet assay and an MTT assay demonstrated that AZT significantly inhibited the viability of TE-11 cells, in a time-and dose-dependent manner. In addition, TE-11 cells treated with various concentrations of AZT exhibited a significant reduction in telomerase activity and percentage of cells in the G1/G0 phase, and an increase in the percentage of cells in the S phase. High doses of AZT caused DNA damage, and enhanced the expression levels of γ-H2A histone family member X and phosphorylated checkpoint kinase 2 in TE-11 cells. These results demonstrated that AZT effectively inhibits proliferation of the TE-11 human esophageal cancer cell line in vitro. The growth inhibitory effects were associated with a reduction in telomerase activity, S and G2/M phase cell cycle arrest, and enhanced DNA damage, suggesting that AZT may be utilized in the clinic for the treatment of esophageal cancer.
Collapse
Affiliation(s)
- Haoli Wang
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510080, P.R. China
| | - Jianwen Zhou
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qiong He
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yu Dong
- Department of Pathology, First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yanhui Liu
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
24
|
Ghare SS, Donde H, Chen WY, Barker DF, Gobejishvilli L, McClain CJ, Barve SS, Joshi-Barve S. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine. Toxicol In Vitro 2016; 35:66-76. [PMID: 27238871 PMCID: PMC4938746 DOI: 10.1016/j.tiv.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/16/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Hridgandh Donde
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Wei-Yang Chen
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Leila Gobejishvilli
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; University of Louisville, Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
25
|
Karamese M, Guvendi B, Karamese SA, Cinar I, Can S, Erol HS, Aydin H, Gelen V, Karakus E. The protective effects of epigallocatechin gallate on lipopolysa ccharide-induced hepatotoxicity: an in vitro study on Hep3B cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:483-9. [PMID: 27403254 PMCID: PMC4923468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES In the present study, our aim was to investigate the possible protective effects of epigallocatechin gallate (EGCG) on lipopolysaccharide (LPS)-induced hepatotoxicity by using Hep3B human hepatoma cells. Specifically, the study examines the role of some proinflammatory markers and oxidative damage as possible mechanisms of LPS-associated cytotoxicity. Consequently, the hepatocellular carcinoma cell line Hep3B was chosen as a model for investigation of LPS toxicity and the effect of EGCG on LPS-exposed cells. MATERIALS AND METHODS The Hep3B human hepatoma cells were used for this study. The cytotoxic effects of chemicals (EGCG and LPS), AST and ALT levels, SOD and CAT activities, GSH-Px level and TNF-alpha and IL-6 levels were detected by using different biochemical and molecular methods. LPS and EGCG were applied to cells at various times and doses. RESULTS The highest treatment dose of EGCG (400 µM) led to a dramatic decrease in SOD level and increase in CAT and GSH levels. Additionally, the highest dose of EGCG also led to a dramatic increase in TNF-alpha and IL-6 levels. On the other hand, effective doses of EGCG (200 and 100 µM) normalized all related parameters levels. CONCLUSION LPS caused hepatotoxicity, but interestingly, a high dose of EGCG was found to be a cytotoxic agent in this study. However, other two doses of EGCG led to a decrease in both inflammatory cytokine levels and antioxidant enzyme levels. Further studies should examine the effect of EGCG on secondary cellular signaling pathways.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Medical Microbiology, Medical Faculty, Kafkas University, Kars, Turkey,Corresponding author: Murat Karamese. Department of Microbiology, Medical Faculty, Kafkas University, Kars, Turkey; Tel: +905548638853;
| | - Bulent Guvendi
- Department of General Surgery, Medical Faculty, Kafkas University, Kars, Turkey
| | - Selina Aksak Karamese
- Department of Histology and Embryology, Medical Faculty, Kafkas University, Kars, Turkey
| | - Irfan Cinar
- Department of Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Serpil Can
- Department of Physiology, Medical Faculty, Kafkas University, Kars, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Hakan Aydin
- Department of Virology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Volkan Gelen
- Department of Physiology, Veterinary Faculty, Kafkas University, Kars, Turkey
| | - Emre Karakus
- Department of Pharmacology and Toxicology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Sahu SC. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver. Toxicol Rep 2016; 3:262-268. [PMID: 28959546 PMCID: PMC5615829 DOI: 10.1016/j.toxrep.2016.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 01/20/2023] Open
Abstract
Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm) nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm) one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver.
Collapse
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
27
|
Naringin Reverses Hepatocyte Apoptosis and Oxidative Stress Associated with HIV-1 Nucleotide Reverse Transcriptase Inhibitors-Induced Metabolic Complications. Nutrients 2015; 7:10352-68. [PMID: 26690471 PMCID: PMC4690092 DOI: 10.3390/nu7125540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/02/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
Nucleoside Reverse Transcriptase Inhibitors (NRTIs) have not only improved therapeutic outcomes in the treatment of HIV infection but have also led to an increase in associated metabolic complications of NRTIs. Naringin’s effects in mitigating NRTI-induced complications were investigated in this study. Wistar rats, randomly allotted into seven groups (n = 7) were orally treated daily for 56 days with 100 mg/kg zidovudine (AZT) (groups I, II III), 50 mg/kg stavudine (d4T) (groups IV, V, VI) and 3 mL/kg of distilled water (group VII). Additionally, rats in groups II and V were similarly treated with 50 mg/kg naringin, while groups III and VI were treated with 45 mg/kg vitamin E. AZT or d4T treatment significantly reduced body weight and plasma high density lipoprotein concentrations but increased liver weights, plasma triglycerides and total cholesterol compared to controls, respectively. Furthermore, AZT or d4T treatment significantly increased oxidative stress, adiposity index and expression of Bax protein, but reduced Bcl-2 protein expression compared to controls, respectively. However, either naringin or vitamin E significantly mitigated AZT- or d4T-induced weight loss, dyslipidemia, oxidative stress and hepatocyte apoptosis compared to AZT- or d4T-only treated rats. Our results suggest that naringin reverses metabolic complications associated with NRTIs by ameliorating oxidative stress and apoptosis. This implies that naringin supplements could mitigate lipodystrophy and dyslipidemia associated with NRTI therapy.
Collapse
|
28
|
Sahu SC, Zheng J, Yourick JJ, Sprando RL, Gao X. Toxicogenomic responses of human liver HepG2 cells to silver nanoparticles. J Appl Toxicol 2015; 35:1160-8. [PMID: 26014281 DOI: 10.1002/jat.3170] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/27/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
Abstract
The increased use of silver nanoparticles (AgNPs) in foods and cosmetics has raised public safety concerns. However, only limited knowledge exists on the effect of AgNPs on the cellular transcriptome. This study evaluated global gene expression profiles of human liver HepG2 cells exposed to 20 and 50 nm AgNPs for 4 and 24 h at 2.5 µg ml(-1) . Exposure to 20 nm AgNPs resulted in 811 altered genes after 4 h, but much less after 24 h. Exposure to 50 nm AgNPs showed minimal altered genes at both exposure times. The HepG2 cells responded to the toxic insult of AgNPs by transiently upregulating stress response genes such as metallothioneins and heat shock proteins. Functional analysis of the altered genes showed more than 20 major biological processes were affected, of which metabolism, development, cell differentiation and cell death were the most dominant categories. Several cellular pathways were also impacted by AgNP exposure, including the p53 signaling pathway and the NRF2-mediated oxidative stress response pathway, which may lead to increased oxidative stress and DNA damage in the cell and potentially result in genotoxicity and carcinogenicity. Together, these results indicate that HepG2 cells underwent a multitude of cellular processes in response to the toxic insult of AgNP exposure, and suggest that toxicogenomic characterization of human HepG2 cells could serve as an alternative model for assessing toxicities of NPs.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA
| | - Jiwen Zheng
- Division of Chemistry and Material Sciences, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA
| | - Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, Laurel, MD, USA
| |
Collapse
|
29
|
Wu Y, Beland FA, Chen S, Liu F, Guo L, Fang JL. Mechanisms of tolvaptan-induced toxicity in HepG2 cells. Biochem Pharmacol 2015; 95:324-36. [PMID: 25858412 DOI: 10.1016/j.bcp.2015.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/27/2015] [Indexed: 12/18/2022]
Abstract
Tolvaptan, a vasopressin receptor 2 antagonist used to treat hyponatremia, has recently been reported to be associated with an increased risk of liver injury. In this study, we explored the underlying mechanisms of hepatotoxicity of tolvaptan using human HepG2 cells. Tolvaptan inhibited cell growth and caused cell death in a concentration- and time-dependent manner. Tolvaptan treatment led to delayed cell cycle progression, accompanied by decreased levels of several cyclins and cyclin-dependent kinases. Tolvaptan was found to cause DNA damage, as assessed by alkaline comet assays; this was confirmed by increased levels of 8-oxoguanine and phosphorylation of histone H2AX. Exposure of HepG2 cells to tolvaptan enhanced cytochrome C release and triggered apoptosis by modulating Bcl-2 family members. The activation of p38 contributed to tolvaptan-mediated apoptosis via down-regulation of Bcl-2. Proteasome inhibition altered tolvaptan-induced cell cycle deregulation and enhanced tolvaptan-induced apoptosis and cytotoxicity. Moreover, tolvaptan treatment induced autophagy. Inhibition of autophagy by knocking-down an autophagy-related gene increased tolvaptan-induced apoptosis and cytotoxicity. Taken together, our findings suggest that the cytotoxicity of tolvaptan results from delayed cell cycle progression, the induction of DNA damage, and the execution of apoptosis. In addition, a number of signaling pathways were perturbed by tolvaptan and played an important role in its cytotoxicity.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
30
|
Aschacher T, Wolf B, Enzmann F, Kienzl P, Messner B, Sampl S, Svoboda M, Mechtcheriakova D, Holzmann K, Bergmann M. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines. Oncogene 2015; 35:94-104. [PMID: 25798839 DOI: 10.1038/onc.2015.65] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/17/2015] [Accepted: 01/30/2015] [Indexed: 12/28/2022]
Abstract
A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.
Collapse
Affiliation(s)
- T Aschacher
- Cardiac Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Wolf
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - F Enzmann
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - P Kienzl
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - B Messner
- Cardiac Surgical Research Laboratories, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - S Sampl
- Department of Medicine I, Institute of Cancer Research, Vienna, Austria
| | - M Svoboda
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria
| | - D Mechtcheriakova
- Department of Pathophysiology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center Vienna, Vienna, Austria
| | - K Holzmann
- Department of Medicine I, Institute of Cancer Research, Vienna, Austria.,Comprehensive Cancer Center Vienna, Vienna, Austria
| | - M Bergmann
- Surgery Research Laboratory, Department of Surgery, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center Vienna, Vienna, Austria
| |
Collapse
|
31
|
Matteucci C, Minutolo A, Marino-Merlo F, Grelli S, Frezza C, Mastino A, Macchi B. Characterization of the enhanced apoptotic response to azidothymidine by pharmacological inhibition of NF-kB. Life Sci 2015; 127:90-7. [PMID: 25744407 DOI: 10.1016/j.lfs.2015.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 01/28/2015] [Indexed: 12/26/2022]
Abstract
AIMS The present study addresses the issue of enhanced apoptotic response to AZT following co-treatment with an NF-kB inhibitor. MAIN METHODS To investigate this issue, different cell lines were assayed for susceptibility to AZT-mediated apoptosis without or with the addition of the NF-kB inhibitor Bay-11-7085. For further investigation, U937 cells were selected as good-responder cells to the combination treatment with 32 or 128 μM AZT, and 1 μM Bay-11-7085. Inhibition of NF-kB activation by Bay-11-7085 in cells treated with AZT was assayed through Western blot analysis of p65 expression and by EMSA. Involvement of the mitochondrial pathway of apoptosis in mechanisms underlying the improved effect of AZT following Bay-11-7085 co-treatment, was evaluated by assaying the cytochrome c release and the mitochondrial membrane potential (MMP) status using the JC-1 dye. Moreover, the transcriptional activity of both anti- and pro-apoptotic genes in U937 cells after combination treatment was quantitatively evaluated through real-time PCR. KEY FINDINGS We found that the combined treatment induced high levels of cytochrome c release and of MMP collapse in association with evident changes in the expression of both anti- and pro-apoptotic genes of the Bcl-2 family. Overexpression of Bcl-2 significantly suppressed the sensitization of U937 cells to an enhanced apoptotic response to AZT following co-treatment with the NF-kB inhibitor. SIGNIFICANCE The new findings suggest that a combination regimen based on AZT plus an NF-kB inhibitor could represent a new chemotherapeutic tool for retrovirus-related pathologies.
Collapse
Affiliation(s)
- Claudia Matteucci
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Minutolo
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Marino-Merlo
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sandro Grelli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Caterina Frezza
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Antonio Mastino
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy; The Institute of Translational Pharmacology, CNR, Rome, Italy.
| | - Beatrice Macchi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
32
|
Sahu SC, Njoroge J, Bryce SM, Yourick JJ, Sprando RL. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by a flow cytometricin vitromicronucleus assay. J Appl Toxicol 2014; 34:1226-34. [DOI: 10.1002/jat.3065] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/19/2014] [Accepted: 07/20/2014] [Indexed: 01/31/2023]
Affiliation(s)
- Saura C. Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| | - Joyce Njoroge
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| | | | - Jeffrey J. Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| | - Robert L. Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition; US Food and Drug Administration; Laurel MD 20708 USA
| |
Collapse
|
33
|
Wu Y, Wu Q, Beland FA, Ge P, Manjanatha MG, Fang JL. Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha. Toxicol Lett 2014; 231:17-28. [PMID: 25193434 DOI: 10.1016/j.toxlet.2014.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 12/23/2022]
Abstract
Triclosan is an anti-bacterial agent used in many personal care products, household items, medical devices, and clinical settings. Liver tumors occur in mice exposed to triclosan, a response attributed to peroxisome proliferator-activated receptor alpha (PPARα) activation; however, the effects of triclosan on mouse and human PPARα have not been fully evaluated. We compared the effects of triclosan on mouse and human PPARα using PPARα reporter assays and on downstream events of PPARα activation using mouse hepatoma Hepa1c1c7 cells and human hepatoma HepG2 cells. PPARα transcriptional activity was increased by triclosan in a mouse PPARα reporter assay and decreased in a human PPARα reporter assay. Concentrations of triclosan inhibiting 50% cell growth were similar in both human and mouse hepatoma cells. Western blotting analysis showed that triclosan increased acyl-coenzyme A oxidase (ACOX1), a PPARα target, in Hepa1c1c7 cells but decreased the level in HepG2 cells. Treatment of Hepa1c1c7 cells with triclosan enhanced DNA synthesis and suppressed transforming growth factor beta-mediated apoptosis. This did not occur in HepG2 cells. These data demonstrate that triclosan had similar cytotoxicity in Hepa1c1c7 and HepG2 cells, but differential effects on the activation of PPARα, the expression of ACOX1, and downstream events including DNA synthesis and apoptosis.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Peter Ge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, HFT-110, Jefferson, AR 72079, USA.
| |
Collapse
|
34
|
Wu Y, Beland FA, Chen S, Fang JL. Extracellular signal-regulated kinases 1/2 and Akt contribute to triclosan-stimulated proliferation of JB6 Cl 41-5a cells. Arch Toxicol 2014; 89:1297-311. [PMID: 25033989 DOI: 10.1007/s00204-014-1308-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 07/01/2014] [Indexed: 12/24/2022]
Abstract
Triclosan is a broad spectrum anti-bacterial agent widely used in many personal care products, household items, medical devices, and clinical settings. Human exposure to triclosan is mainly through oral and dermal routes. In previous studies, we found that sub-chronic dermal exposure of B6C3F1 mice to triclosan induced epidermal hyperplasia and focal necrosis; however, the mechanisms for these responses remain elusive. In this study, using mouse epidermis-derived JB6 Cl 41-5a cells, we found that triclosan stimulated cell growth in a concentration- and time-dependent manner. Enhanced cell proliferation was demonstrated by a substantial increase in the percentage of BrdU-positive cells, an elevation in the protein levels of cyclin D1 and cyclin A, and a reduction in the protein level of p27(Kip1). Western blotting analysis revealed that triclosan induced the activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinases (JNK), p38, and Akt. Pre-treatment of the cells with PD184352, an inhibitor of the upstream kinase MEK1/2, or with wortmannin, an inhibitor of phosphoinositide 3-kinase, blocked triclosan-mediated phosphorylation of ERK1/2 and Akt, respectively, and substantially suppressed triclosan-stimulated cell proliferation, whereas the JNK inhibitor SP600125 or the p38 inhibitor SB203580 had little to no effect on triclosan-stimulated cell proliferation. The phosphorylation activation of ERK1/2 and Akt was further confirmed on the skin of mice dermally administered triclosan. These data suggest that the activation of ERK1/2 and Akt is involved in triclosan-stimulated proliferation of JB6 Cl 41-5a cells.
Collapse
Affiliation(s)
- Yuanfeng Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | | | | |
Collapse
|
35
|
Sahu SC, Roy S, Zheng J, Yourick JJ, Sprando RL. Comparative genotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells evaluated by fluorescent microscopy of cytochalasin B-blocked micronucleus formation. J Appl Toxicol 2014; 34:1200-8. [PMID: 24909674 DOI: 10.1002/jat.3028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 04/15/2014] [Accepted: 04/15/2014] [Indexed: 02/05/2023]
Abstract
As a consequence of the increased use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics to prevent fungal and bacterial growth, there is a need for validated rapid screening methods to assess the safety of nanoparticle exposure. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential genotoxicity of 20-nm nanosilver. The average silver nanoparticle size as determined by transmission electron microscopy (TEM) was 20.4 nm. Dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The silver concentration in a 20-nm nanosilver solution determined by the inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Analysis by ICP-MS and TEM demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Genotoxicity was determined by the cytochalasin B-blocked micronucleus assay with acridine orange staining and fluorescence microscopy. Concentration- and time-dependent increases in the frequency of binucleated cells with micronuclei induced by the nanosilver was observed in the concentration range of 0.5 to 15 µg ml(-1) in both HepG2 and Caco2 cells compared with the control. Our results indicated that HepG2 cells were more sensitive than Caco2 cells in terms of micronuclei formation induced by nanosilver exposure. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, represent potential screening models for prediction of genotoxicity of silver nanoparticles by in vitro micronucleus assay.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, 20708, USA
| | | | | | | | | |
Collapse
|
36
|
Fang JL, Beland FA. Differential responses of human hepatocytes to the non-nucleoside HIV-1 reverse transcriptase inhibitor nevirapine. J Toxicol Sci 2014; 38:741-52. [PMID: 24067722 DOI: 10.2131/jts.38.741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nevirapine is a non-nucleoside reverse transcriptase (RT) inhibitor used for the treatment of AIDS and the prevention of mother-to-child transmission of HIV-1. Despite its therapeutic benefits, treatment with nevirapine has been associated with significant incidences of liver and dermal toxicity. The present study examined the effects of nevirapine on cell growth and death in human hepatocyte HepG2 cells and THLE2 cells and the possible pathways involved in these effects. The concentrations of nevirapine inhibiting 50% cell growth were similar for both cell lines. Nevirapine (0-250 µM) treatment caused a slight increase in the amount of lactate dehydrogenase released into the medium. Apoptotic cell death did not contribute to the decrease in viable cells. Exposing of HepG2 cells to nevirapine caused G2/M phase arrest, and the activity of senescence-associated β-galactosidase was not altered. In THLE2 cells, the percentage of cells in G1/G0 phase was increased and cellular senescence was induced in a concentration-dependent manner. Endogenous non-telomeric RT activity was not detected in either cell line. Western blot analysis indicated lower levels of p53 and phospho-p53 (ser15) in HepG2 cells as compared to THLE2 cells; no significant changes in p53 or phospho-p53 (ser15) were noted with nevirapine treatment. These data demonstrate that nevirapine inhibits cell growth, induces cell cycle arrest at different phases, and has different effects on cellular senescence in HepG2 cells and THLE2 cells. The differential responses appear to be related to differences in the basal levels of p53 in the HepG2 cells and THLE2 cells.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, USA
| | | |
Collapse
|
37
|
Fang JL, Han T, Wu Q, Beland FA, Chang CW, Guo L, Fuscoe JC. Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine. Arch Toxicol 2014; 88:609-23. [PMID: 24292225 PMCID: PMC5901687 DOI: 10.1007/s00204-013-1169-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 11/13/2013] [Indexed: 01/27/2023]
Abstract
Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the most widely used nucleoside reverse transcriptase inhibitor for the treatment of AIDS patients and prevention of mother-to-child transmission of HIV-1. Previously, we demonstrated that AZT had significantly greater growth inhibitory effects upon the human liver carcinoma cell line HepG2 as compared to the immortalized human liver cell line THLE2. We have now used gene expression profiling to determine the molecular pathways associated with toxicity in both cell lines. HepG2 cells were incubated with 0, 2, 20, or 100 μM AZT for 2 weeks; THLE2 cells were treated with 0, 50, 500, or 2,500 μM AZT, concentrations that were equi-toxic to those used in the HepG2 cells. After the treatment, total RNA was isolated and subjected to microarray analysis. Global analysis of gene expression, with a false discovery rate ≤0.01 and a fold change ≥1.5, indicated that 6- to 70-fold more genes were differentially expressed in a significant concentration-dependent manner in HepG2 cells when compared to THLE2 cells. Comparative analysis indicated that 7 % of these genes were common to both cell lines. Among the common differentially expressed genes, 70 % changed in the same direction, most of which were associated with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair. As determined by the uptake of [methyl-(3)H]AZT, the intracellular levels of total AZT were approximately twofold higher in THLE2 cells than in HepG2 cells. The expression of thymidine kinase 1 (TK1) and UDP-glucuronosyltransferase 2B7 (UGT2B7) genes that regulate the metabolic activation and deactivation of AZT, respectively, was increased in HepG2 cells but decreased in THLE2 cells after treatment with AZT. This differential response in AZT metabolism was confirmed by real-time PCR, western blotting, and/or enzymatic assays. These data indicate that molecular pathways involved with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair are involved in the toxicities associated with AZT in both human cell lines, and that the difference in expression of TK1 and UGT2B7 in response to AZT treatment in HepG2 cells and THLE2 cells might explain why HepG2 cells are more sensitive than THLE2 cells to the toxicity of AZT.
Collapse
Affiliation(s)
- Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, 72079, USA,
| | | | | | | | | | | | | |
Collapse
|
38
|
Sahu SC, Zheng J, Graham L, Chen L, Ihrie J, Yourick JJ, Sprando RL. Comparative cytotoxicity of nanosilver in human liver HepG2 and colon Caco2 cells in culture. J Appl Toxicol 2014; 34:1155-66. [PMID: 24522958 DOI: 10.1002/jat.2994] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 02/06/2023]
Abstract
The use of silver nanoparticles in food, food contact materials, dietary supplements and cosmetics has increased significantly owing to their antibacterial and antifungal properties. As a consequence, the need for validated rapid screening methods to assess their toxicity is necessary to ensure consumer safety. This study evaluated two widely used in vitro cell culture models, human liver HepG2 cells and human colon Caco2 cells, as tools for assessing the potential cytotoxicity of food- and cosmetic-related nanoparticles. The two cell culture models were utilized to compare the potential cytotoxicity of 20-nm silver. The average size of the silver nanoparticle determined by our transmission electron microscopy (TEM) analysis was 20.4 nm. The dynamic light scattering (DLS) analysis showed no large agglomeration of the silver nanoparticles. The concentration of the 20-nm silver solution determined by our inductively coupled plasma-mass spectrometry (ICP-MS) analysis was 0.962 mg ml(-1) . Our ICP-MS and TEM analysis demonstrated the uptake of 20-nm silver by both HepG2 and Caco2 cells. Cytotoxicity, determined by the Alamar Blue reduction assay, was evaluated in the nanosilver concentration range of 0.1 to 20 µg ml(-1) . Significant concentration-dependent cytotoxicity of the nanosilver in HepG2 cells was observed in the concentration range of 1 to 20 µg ml(-1) and at a higher concentration range of 10 to 20 µg ml(-1) in Caco2 cells compared with the vehicle control. A concentration-dependent decrease in dsDNA content was observed in both cell types exposed to nanosilver but not controls, suggesting an increase in DNA damage. The DNA damage was observed in the concentration range of 1 to 20 µg ml(-1) . Nanosilver-exposed HepG2 and Caco2 cells showed no cellular oxidative stress, determined by the dichlorofluorescein assay, compared with the vehicle control in the concentration range used in this study. A concentration-dependent decrease in mitochondria membrane potential in both nanosilver exposed cell types suggested increased mitochondria injury compared with the vehicle control. The mitochondrial injury in HepG2 cells was significant in the concentration range of 1 to 20 µg ml(-1) , but in Caco2 cells it was significant at a higher concentration range of 10 to 20 µg ml(-1) . These results indicated that HepG2 cells were more sensitive to nanosilver exposure than Caco2 cells. It is generally believed that cellular oxidative stress induces cytotoxicity of nanoparticles. However, in this study we did not detect any nanosilver-induced oxidative stress in either cell type at the concentration range used in this study. Our results suggest that cellular oxidative stress did not play a major role in the observed cytotoxicity of nanosilver in HepG2 and Caco2 cells and that a different mechanism of nanosilver-induced mitochondrial injury leads to the cytotoxicity. The HepG2 and Caco2 cells used this study appear to be targets for silver nanoparticles. The results of this study suggest that the differences in the mechanisms of toxicity induced by nanosilver may be largely as a consequence of the type of cells used. This differential rather than universal response of different cell types exposed to nanoparticles may play an important role in the mechanism of their toxicity. In summary, the results of this study indicate that the widely used in vitro models, HepG2 and Caco2 cells in culture, are excellent systems for screening cytotoxicity of silver nanoparticles. These long established cell culture models and simple assays used in this study can provide useful toxicity and mechanistic information that can help to better inform safety assessments of food- and cosmetic-related silver nanoparticles.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD, 20708, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Bollmann FM. Telomerase inhibition may contribute to accelerated mitochondrial aging induced by anti-retroviral HIV treatment. Med Hypotheses 2013; 81:285-7. [PMID: 23679995 DOI: 10.1016/j.mehy.2013.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 04/08/2013] [Accepted: 04/16/2013] [Indexed: 01/27/2023]
Abstract
HIV-infected individuals undergoing long-term anti-retroviral treatment tend to show premature senescence. Accelerated mitochondrial aging induced by nucleoside reverse transcriptase inhibitors (NRTIs) has been implicated as a part of this phenomenon. Traditionally, this has been attributed to inhibition of mtDNA polymerase γ by these drugs, but alternative explanations have been proposed. It is known that NRTIs can not only inhibit viral reverse transcriptase, but also human telomerase. A number of extratelomeric roles of telomerase, including protection of mitochondrial DNA and function, have emerged recently. In this paper, I propose that inhibition of mitochondrial telomerase activity by NRTI drugs contributes to the mitochondrial toxicity and premature aging seen in treated HIV patients, and discuss objections and experimental testing of the hypothesis.
Collapse
Affiliation(s)
- F M Bollmann
- University Medical Center Tübingen, Wilhelmstr 27, 72016 Tübingen, Germany.
| |
Collapse
|
40
|
Azidothymidine hinders arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells by induction of p21 and attenuation of G2/M arrest. Ann Hematol 2013; 92:1207-20. [DOI: 10.1007/s00277-013-1763-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/12/2013] [Indexed: 12/12/2022]
|
41
|
Walker DM, Patrick O'Neill J, Tyson FL, Walker VE. The stress response resolution assay. I. Quantitative assessment of environmental agent/condition effects on cellular stress resolution outcomes in epithelium. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:268-280. [PMID: 23554083 DOI: 10.1002/em.21772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
The events or factors that lead from normal cell function to conditions and diseases such as aging or cancer reflect complex interactions between cells and their environment. Cellular stress responses, a group of processes involved in homeostasis and adaptation to environmental change, contribute to cell survival under stress and can be resolved with damage avoidance or damage tolerance outcomes. To investigate the impact of environmental agents/conditions upon cellular stress response outcomes in epithelium, a novel quantitative assay, the "stress response resolution" (SRR) assay, was developed. The SRR assay consists of pretreatment with a test agent or vehicle followed later by a calibrated stress conditions exposure step (here, using 6-thioguanine). Pilot studies conducted with a spontaneously-immortalized murine mammary epithelial cell line pretreated with vehicle or 20 µg N-ethyl-N-nitrososurea/ml medium for 1 hr, or two hTERT-immortalized human bronchial epithelial cell lines pretreated with vehicle or 100 µM zidovudine/lamivudine for 12 days, found minimal alterations in cell morphology, survival, or cell function through 2 weeks post-exposure. However, when these pretreatments were followed 2 weeks later by exposure to calibrated stress conditions of limited duration (for 4 days), significant alterations in stress resolution were observed in pretreated cells compared with vehicle-treated control cells, with decreased damage avoidance survival outcomes in all cell lines and increased damage tolerance outcomes in two of three cell lines. These pilot study results suggest that sub-cytotoxic pretreatments with chemical mutagens have long-term adverse impact upon the ability of cells to resolve subsequent exposure to environmental stressors.
Collapse
Affiliation(s)
- Dale M Walker
- Experimental Pathology Laboratories, Inc., Herndon, VA, USA
| | | | | | | |
Collapse
|
42
|
Wu Q, Beland FA, Chang CW, Fang JL. Role of DNA Repair Pathways in Response to Zidovudine-induced DNA Damage in Immortalized Human Liver THLE2 Cells. INTERNATIONAL JOURNAL OF BIOMEDICAL SCIENCE : IJBS 2013; 9:18-25. [PMID: 23675285 PMCID: PMC3644411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/09/2013] [Indexed: 11/03/2022]
Abstract
The nucleoside reverse transcriptase inhibitor zidovudine (3'-azido-3'-dexoythymidine, AZT) can be incorporated into DNA and cause DNA damage. Previously, we determined that the human hepatocellular carcinoma HepG2 cells are more susceptible to AZT-induced toxicities than the immortalized normal human liver THLE2 cells and the nucleotide excision repair (NER) pathway plays an essential role in the response to AZT-induced DNA damage. We have now investigated if the effects of AZT treatment on the expression levels of genes related to DNA damage and repair pathways contribute to the differences in sensitivity to AZT treatment between HepG2 cells and THLE2 cells. Of total 84 genes related to DNA damage and repair, two, five, and six genes were up-regulated more than 1.5-fold at 50, 500, and 2,500 µM AZT groups compared with that of control THLE2 cells. Seven genes showed a decreased expression of more than 1.5-fold following the 2,500 µM AZT treatment. Two-sided multivariate analysis of variance indicated that the change in expression of genes involved in apoptosis, cell cycle, and DNA repair pathways was significant only at 2,500 µM AZT. Statistically significant dose-related increases were identified in XPC gene expression and GTF2H1 protein level after the AZT treatments, which implicated the NER pathway in response to the DNA damage induced by AZT. In contrast, AZT treatment did not alter significantly the expression of the APE1 gene or the levels of APE1 protein. These results indicate that the NER repair pathway is involved in AZT-induced DNA damage response in immortalized human hepatic THLE2 cells.
Collapse
Affiliation(s)
- Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
- Department of Environmental Health, Indiana University, Bloomington, IN 47405, USA
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Jia-Long Fang
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA;
| |
Collapse
|
43
|
Tian T, Peng S, Xiao H, Zhang X, Guo S, Wang S, Zhou X, Liu S, Zhou X. Highly sensitive detection of telomerase based on a DNAzyme strategy. Chem Commun (Camb) 2013; 49:2652-4. [DOI: 10.1039/c3cc38818b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Souza Sobrinho CPD, Gragnani A, Santos IDAO, Oliveira AF, Lipay MVN, Ferreira LM. AZT on telomerase activity and cell proliferation in HS 839.T melanoma cells. Acta Cir Bras 2012. [PMID: 23207751 DOI: 10.1590/s0102-86502012001200005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To evaluate telomerase activity and proliferation of HS839.T melanoma cells, subjected to the action of AZT. METHODS Cells were grown in triplicate, AZT at different concentrations: 50, 100 and 200 μM, was added and left for 24 and 48 hours, and its effects were compared with the control group. Telomerase activity was detected by PCR and cell proliferation was evaluated by MTT. RESULTS After 24 hours, there was no inhibition of cell proliferation or telomerase activity when compared to the control group. After 48 hours, there was a momentary decrease, suggesting that the cell lines used in this study are sensitive to AZT, but quickly recover both the enzyme activity and cell proliferation. CONCLUSION The action of AZT on the melanoma cells studied, at the concentrations and times tested, did not inhibit telomerase activity nor affect cell proliferation.
Collapse
|
45
|
Hukezalie KR, Thumati NR, Côté HCF, Wong JMY. In vitro and ex vivo inhibition of human telomerase by anti-HIV nucleoside reverse transcriptase inhibitors (NRTIs) but not by non-NRTIs. PLoS One 2012; 7:e47505. [PMID: 23166583 PMCID: PMC3499584 DOI: 10.1371/journal.pone.0047505] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 09/14/2012] [Indexed: 02/03/2023] Open
Abstract
Telomerase is a specialized reverse transcriptase responsible for the de novo synthesis of telomeric DNA repeats. In addition to its established reverse transcriptase and terminal transferase activities, recent reports have revealed unexpected cellular activities of telomerase, including RNA-dependent RNA polymerization. This telomerase characteristic, distinct from other reverse transcriptases, indicates that clinically relevant reverse transcriptase inhibitors might have unexpected telomerase inhibition profiles. This is particularly important for the newer generation of RT inhibitors designed for anti-HIV therapy, which have reported higher safety margins than older agents. Using an in vitro primer extension assay, we tested the effects of clinically relevant HIV reverse transcriptase inhibitors on cellular telomerase activity. We observed that all commonly used nucleoside reverse transcriptase inhibitors (NRTIs), including zidovudine, stavudine, tenofovir, didanosine and abacavir, inhibit telomerase effectively in vitro. Truncated telomere synthesis was consistent with the expected mode of inhibition by all tested NRTIs. Through dose-response experiments, we established relative inhibitory potencies of NRTIs on in vitro telomerase activity as compared to the inhibitory potencies of the corresponding dideoxynucleotide triphosphates. In contrast to NRTIs, the non-nucleoside reverse transcriptase inhibitors (NNRTIs) nevirapine and efavirenz did not inhibit the primer extension activity of telomerase, even at millimolar concentrations. Long-term, continuous treatment of human HT29 cells with select NRTIs resulted in an accelerated loss of telomere repeats. All tested NRTIs exhibited the same rank order of inhibitory potencies on telomerase and HIV RT, which, according to published data, were orders-of-magnitude more sensitive than other DNA polymerases, including the susceptible mitochondria-specific DNA polymerase gamma. We concluded that telomerase activity could be inhibited by common NRTIs, including currently recommended RTI agents tenofovir and abacavir, which warrants large-scale clinical and epidemiological investigation of the off-target effects of long-term highly active antiretroviral therapy (HAART) with these agents.
Collapse
Affiliation(s)
- Kyle R. Hukezalie
- Genetics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Naresh R. Thumati
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hélène C. F. Côté
- Genetics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine (HCFC), The University of British Columbia, Vancouver, British Columbia, Canada
| | - Judy M. Y. Wong
- Genetics Graduate Program, The University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
46
|
Gomez DE, Armando RG, Alonso DF. AZT as a telomerase inhibitor. Front Oncol 2012; 2:113. [PMID: 22973556 PMCID: PMC3434370 DOI: 10.3389/fonc.2012.00113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/17/2012] [Indexed: 01/23/2023] Open
Abstract
Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.
Collapse
Affiliation(s)
- Daniel E Gomez
- Laboratory of Molecular Oncology, Department of Science and Technology, Quilmes National University, Bernal Buenos Aires, Argentina
| | | | | |
Collapse
|
47
|
Sahu SC, O'Donnell MW, Sprando RL. Interactive toxicity of usnic acid and lipopolysaccharides in human liver HepG2 cells. J Appl Toxicol 2012; 32:739-49. [PMID: 22777745 DOI: 10.1002/jat.2768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/09/2022]
Abstract
Usnic acid (UA), a natural botanical product, is a constituent of some dietary supplements used for weight loss. It has been associated with clinical hepatotoxicity leading to liver failure in humans. The present study was undertaken to evaluate the interactive toxicity, if any, of UA with lipopolysaccarides (LPS), a potential contaminant of food, at low non-toxic concentrations. The human hepatoblastoma HepG2 cells were treated with the vehicle control and test agents, separately and in a binary mixture, for 24 h at 37°C in 5% CO2. After the treatment period, the cells were evaluated by the traditional biochemical endpoints of toxicity in combination with the toxicogenomic endpoints that included cytotoxicity, oxidative stress, mitochondrial injury and changes in pathway-focused gene expression profiles. Compared with the controls, low non-toxic concentrations of UA and LPS separately showed no effect on the cells as determined by the biochemical endpoints. However, the simultaneous mixed exposure of the cells to their binary mixture resulted in increased cytotoxicity, oxidative stress and mitochondrial injury. The pathway-focused gene expression analysis resulted in the altered expression of several genes out of 84 genes examined. Most altered gene expressions induced by the binary mixture of UA and LPS were different from those induced by the individual constituents. The genes affected by the mixture were not modulated by either UA or LPS. The results of the present study suggest that the interactions of low nontoxic concentrations of UA and LPS produce toxicity in HepG2 cells.
Collapse
Affiliation(s)
- Saura C Sahu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, Laurel, MD 20708, USA.
| | | | | |
Collapse
|
48
|
Freese C, Uboldi C, Gibson MI, Unger RE, Weksler BB, Romero IA, Couraud PO, Kirkpatrick CJ. Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells. Part Fibre Toxicol 2012; 9:23. [PMID: 22759355 PMCID: PMC3407003 DOI: 10.1186/1743-8977-9-23] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/03/2012] [Indexed: 12/31/2022] Open
Abstract
Background The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm), to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier. Results Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentration-dependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm), the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the nanoparticles’ surface. Conclusions In conclusion the higher amount of citrate on the particle surface resulted in a higher impairment of cell viability, but did not enhance or reduce the uptake behavior in endothelial or epithelial cells. In addition, epithelial and endothelial cells exhibited different uptake behaviors for citrate-stabilized gold nanoparticles, which might be related to different interactions occurring at the nanoparticle-cell-surface interface. The different uptake in epithelial cells might explain the higher reduction of proliferation of these cells after exposure to AuNPs treatment although more detailed investigations are necessary to determine subcellular events. Nevertheless an extrinsic effect of sodium-citrate stabilized particles could not be excluded. Thus, the amount of sodium citrate should be reduced to a level on which the stability of the particles and the safety for biomedical applications are guaranteed.
Collapse
Affiliation(s)
- Christian Freese
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, Langenbeckstraße 1, Mainz, 55101, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
The combined use of known antiviral reverse transcriptase inhibitors AZT and DDI induce anticancer effects at low concentrations. Neoplasia 2012; 14:44-53. [PMID: 22355273 DOI: 10.1593/neo.11426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 03/20/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022] Open
Abstract
A hallmark of tumor cell survival is the maintenance of elongated telomeres. It is known that antiviral reverse transcriptase inhibitors (RTIs) such as azidothymidine (AZT) and didanosine (ddI) lead to telomere shortening at high, potentially toxic concentrations. We hypothesized that those drugs might have synergistic effects enabling successful therapy with low, nontoxic concentrations. Biologic effects of AZT and ddI were analyzed at concentrations that correspond to minimal plasma levels achieved during human immunodeficiency virus therapy. Long-term coapplication of low-dose AZT and ddI induced a significant shortening of telomeres in the tumor cell lines HCT-116, SkMel-28, MelJuso, and Jurkat. Treatment of cells with both RTI, but not with single RTI, led to a significant accumulation of γH2AX, to p53 phosphorylation, and to cell apoptosis in all cell lines. Oral low-dose dual RTI application but not low-dose single RTI application was associated with a significantly reduced tumor growth of HCT-116 cells in mice. This antiproliferative activity of the combined use of AZT and ddI at low, clinically applicable concentrations warrants clinical testing in human solid cancer.
Collapse
|
50
|
Evaluation of Hepatic Mitochondria and Hematological Parameters in Zidovudine-Treated B6C3F(1) Mice. AIDS Res Treat 2012; 2012:317695. [PMID: 22545210 PMCID: PMC3321529 DOI: 10.1155/2012/317695] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/12/2012] [Indexed: 11/25/2022] Open
Abstract
The effects of 12-week exposure to zidovudine (AZT) at 400, 500, and 600 mg/kg/d were examined on expression of 542 mitochondria-related genes and mitochondrial DNA (mtDNA) copy number in the liver of male and female B6C3F1 mice to understand mitochondrial role in sex-related differences in development of lactic acidosis. Plasma lactate levels and hematologic parameters were also examined. Results indicated increased red blood cell (RBC) count in vehicle-treated controls, whereas a dose-related decline in the RBC count was noted in AZT-treated mice compared to the basal levels before treatments began. These decreases were associated with significant dose-related increases in mean corpuscular volume and mean corpuscular hemoglobin levels. This effect was greater in AZT-treated females compared to males. In both sexes, 12-week AZT or vehicle exposure significantly reduced plasma lactate levels compared to the basal levels. Results also showed modest, but significant, changes in the expression of genes associated with apoptosis and lipid metabolism at 600 mg/kg/d AZT. Neither drug nor sex influenced hepatic mtDNA copy number. Altogether, 12-week AZT exposure as high as 600 mg/kg/d did not impair hepatic mitochondria or induce lactic acidosis in B6C3F1 mice. However, AZT-mediated hematologic toxicity appeared to be greater in females compared to males.
Collapse
|