1
|
Wu Q, Jin C, Liu X, Zhang Q, Jiao B, Yu H. 1-Bromopropane induces mitochondrial damage and lipid metabolism imbalance in respiratory epithelial cells through the PGC-1α/PPARα pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117492. [PMID: 39644563 DOI: 10.1016/j.ecoenv.2024.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
1-Bromopropane (1-BP) has become a new air pollutant in occupational and living environments due to its advantages in industrial applications and as a representative compound of volatile organic compounds (VOCs). As an irritant, its damaging effects on respiratory epithelium are worthy of further study. This study aimed to explore the damage effects of 1-BP on respiratory epithelial cells and reveal its underlying mechanisms. We found that exposure to 1-BP markedly reduced the viability of respiratory epithelial cells in a dose-dependent manner, and induced oxidative stress and vacuolation changes in respiratory epithelial cells. Subsequently, through RNA-seq analysis, we identified that the 1-BP-induced damage of respiratory epithelial cells was related to the mitochondrial function pathway and further verified that 1-BP caused mitochondrial damage of respiratory epithelial cells, which was manifested as ultrastructural damage, decreased membrane potential, ATP, and MFN2 levels. These damages were associated with cellular oxidative stress responses. Pretreating cells with the agonists of PGC-1α and PPARα, we revealed that 1-BP affected the expression of PGC-1α and interfered with its coactivator PPARα levels, causing an increase in the expression of lipid-producing genes and a decrease in the expression of lipid-decomposing genes, thus leading to a lipid accumulation in respiratory epithelial cells. Meanwhile, the imbalance of lipid metabolism in respiratory epithelial cells induced by 1-BP further caused mitochondrial damage, and the effect was bidirectional. These findings suggested that 1-BP has a potential role in inducing respiratory epithelial cell damage and is associated with the PGC-1α/PPARα signaling pathway.
Collapse
Affiliation(s)
- Qiuyun Wu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou 221004, China.
| | - Chunmeng Jin
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Xue Liu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Qianyi Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Biyang Jiao
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongmin Yu
- School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
2
|
Yang G, Zhou W, Zhang M, Zhong X, Qiu H, Xiang Y, Zhang Z, Li P, Wang D. Induced oxidative stress and apoptosis by 1-bromopropane in SH-SY5Y cells correlates with inhibition of Nrf2 function. Drug Chem Toxicol 2024; 47:756-766. [PMID: 38047545 DOI: 10.1080/01480545.2023.2288795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023]
Abstract
In this study, we established SH-SY5Y human neuroblastoma cells as an in vitro model to investigate whether oxidative stress and the nuclear erythroid-2 related factor 2 (Nrf2) signaling pathway are associated with 1-bromopropane (1-BP) -induced nerve cell injury. We identified that 1-BP exhibited neurotoxicity mainly through oxidant-based processes in SH-SY5Y cells, as reactive oxygen species, malondialdehyde levels, and 8-hydroxy-2' -deoxyguanosine significantly increased, while superoxide dismutase activity decreased. Furthermore, Nrf2 translocation from the cytosol to the nucleus was inhibited, as was downstream protein expression of the Nrf2-regulated genes HO-1 and Bcl-2. Activation of caspase-9 and -3 increased, and apoptosis was observed. Vitamin C alleviated 1-BP-induced apoptosis by decreasing oxidative stress and activating the Nrf2 signaling pathway. Knockdown of Nrf2 in SH-SY5Y cells increased 1-BP-induced reactive oxygen species production and cell apoptosis, and inhibited HO-1 and Bcl-2 protein expression, while overexpression of Nrf2 alleviated these processes. These findings suggest that 1-BP-induced oxidative stress and apoptosis in SH-SY5Y cells are associated with Nrf2 function inhibition.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Wei Zhou
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Minhong Zhang
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Xiaohuan Zhong
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Haili Qiu
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Yingping Xiang
- Institute of Occupational Hazard Assessment, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Zhimin Zhang
- Department of Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Peimao Li
- Department of Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Dianpeng Wang
- Department of Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Longobardi C, Damiano S, Fabroni S, Montagnaro S, Russo V, Vaccaro E, Giordano A, Florio S, Ciarcia R. Red Orange and Lemon Extract Ameliorates the Renal Oxidative Stress and Inflammation Induced by Ochratoxin A through the Modulation of Nrf2. Toxins (Basel) 2024; 16:151. [PMID: 38535817 PMCID: PMC10975592 DOI: 10.3390/toxins16030151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The presence of ochratoxin A (OTA) in food and feed is a public health concern. OTA intoxication is caused by several mechanisms, one of which consists of the alteration of the antioxidant activity of the cell due to the oxidative stress (OS). In this context, the use of natural antioxidant substances could be a potential biological decontamination method of mitigating the negative outcomes induced by OTA. METHODS we aimed to investigate how a red orange and lemon extract (RLE), rich in anthocyanins, would affect OTA-treated rats. The current work sought to clarify the renal protective efficacy of RLE in an OTA-treated rat model (RLE (90 mg/kg b.w.); OTA (0.5 mg/kg b.w.)) by investigating, thorough Western blot analysis, the involvement of the Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. The OS parameters and inflammatory status were evaluated by spectrophotometry. The inflammatory infiltrates in the kidney were evaluated by immunohistochemical assays. RESULTS AND CONCLUSION Our findings showed a significant increase in oxidative and inflammatory parameters after OTA exposure, while the OTA + RLE co-treatment counteracted both the inflammatory and OS damage through the modulation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| | - Simona Fabroni
- Council for Agricultural Research and Economics (CREA), Research Centre for Olive, Fruit and Citrus Crops, C.so Savoia n.190, 95024 Acireale, Italy;
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| | - Emanuela Vaccaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino n.1, 80137 Naples, Italy; (C.L.); (S.M.); (V.R.); (E.V.); (S.F.)
| |
Collapse
|
4
|
Dai G, Li M, Xu H, Quan N. Status of Research on Sestrin2 and Prospects for its Application in Therapeutic Strategies Targeting Myocardial Aging. Curr Probl Cardiol 2023; 48:101910. [PMID: 37422038 DOI: 10.1016/j.cpcardiol.2023.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Cardiac aging is accompanied by changes in the heart at the cellular and molecular levels, leading to alterations in cardiac structure and function. Given today's increasingly aging population, the decline in cardiac function caused by cardiac aging has a significant impact on quality of life. Antiaging therapies to slow the aging process and attenuate changes in cardiac structure and function have become an important research topic. Treatment with drugs, including metformin, spermidine, rapamycin, resveratrol, astaxanthin, Huolisu oral liquid, and sulforaphane, has been demonstrated be effective in delaying cardiac aging by stimulating autophagy, delaying ventricular remodeling, and reducing oxidative stress and the inflammatory response. Furthermore, caloric restriction has been shown to play an important role in delaying aging of the heart. Many studies in cardiac aging and cardiac aging-related models have demonstrated that Sestrin2 has antioxidant and anti-inflammatory effects, stimulates autophagy, delays aging, regulates mitochondrial function, and inhibits myocardial remodeling by regulation of relevant signaling pathways. Therefore, Sestrin2 is likely to become an important target for antimyocardial aging therapy.
Collapse
Affiliation(s)
- Gaoying Dai
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - Meina Li
- Department of Infection Control, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Nanhu Quan
- Department of Cardiovascular Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Kim JS, Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. A Mixture of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Synergistically Protects against Oxidative Stress-Mediated Liver Injury. Antioxidants (Basel) 2023; 12:1556. [PMID: 37627551 PMCID: PMC10451536 DOI: 10.3390/antiox12081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50-200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jang-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| | - Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| |
Collapse
|
6
|
Huang W, Liu WY, Chen LY, Ni L, Zou XX, Ye M, Zhang ZY, Zou SQ. Flavonoid and chromone-rich extract from Euscaphis Konishii Hayata leaf attenuated alcoholic liver injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115455. [PMID: 35697192 DOI: 10.1016/j.jep.2022.115455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Euscaphis konishii Hayata is a traditional medicinal plant in China, and its leaves are usually used to make dishes for hepatic or gastrointestinal issues by Chinese She nationality. Pharmacological analysis showed that E. konishii leaves contain high levels of flavonoids and chromones with favorable anti-hepatoma effect. AIM OF THE STUDY The extract from E. konishii leaves was detected to evaluate its chemical composition, and the alcoholic liver injury mice model was adopted to elucidate its hepatoprotective effects. MATERIALS AND METHODS The total leaf extract from E. konishii was separated by polyamide column to get the flavonoid and chromone-rich extract (FCE). Single compounds from FCE was purified by gel and Sephadex LH-20 chromatography and analyzed by nuclear magnetic resonance (NMR). The chemical component of FCE was confirmed and quantified by HPLC-MS. The OH·, O2-, DPPH and ABTS + free radical assays were adopted to estimate the antioxidant activity of FCE in vitro. The alcohol-fed model mice were established to assess the hepatoprotective capacity of FCE in vivo, through biochemical determination, histopathological analysis, mitochondrial function measurement, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) detection and Western blot determination. RESULTS 8 flavonoids and 2 chromones were recognized in the FCEextract by both NMR and HPLC-MS. FCE represented strong free radicals scavenging activity in vitro. With oral administration, FCE (50, 100 and 200 mg/kg) dose-dependently decreased the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in alcohol-fed mice. FCE gradually reduced the malondialdehyde (MDA) content, increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the alcohol-treated liver tissues. FCE also alleviated the hepatic inflammation, inhibited the hepatocyte apoptosis and lessened the alcohol-induced histological alteration and lipid accumulation in the liver tissues. FCE administration inhibited the overexpression of endoplasmic reticulum (ER) chaperones signaling and unfolded protein response (UPR) pathways to defense the ER-induced apoptosis. Pretreatment with FCE also restored the mitochondrial membrane potentials andadenosine triphosphate (ATP) levels, which in turn suppressed the Cytochrome C release and mitochondria-induced apoptosis. CONCLUSIONS FCE conferred great protection against alcoholic liver injury, which might be associated with its viability through suppressing reactive oxygen species (ROS) stress and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Wei Huang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wan-Yi Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lu-Yao Chen
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Ni
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao-Xing Zou
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Ye
- Fujian Key Laboratory of Natural Medicine Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, 350004, China
| | - Zhong-Yi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Shuang-Quan Zou
- Engineering Research Institute of Conservation, Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Protective Effect of SeMet on Liver Injury Induced by Ochratoxin A in Rabbits. Toxins (Basel) 2022; 14:toxins14090628. [PMID: 36136566 PMCID: PMC9504919 DOI: 10.3390/toxins14090628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is second only to aflatoxin in toxicity among mycotoxins. Recent studies have shown that selenomethionine (SeMet) has a protective effect on mycotoxin-induced toxicity. The purpose of this study was to investigate the protective effect and mechanism of SeMet on OTA-induced liver injury in rabbits. Sixty 35-day-old rabbits with similar body weight were randomly divided into five groups: control group, OTA group (0.2 mg/kg OTA), OTA + 0.2 mg/kg SeMet group, OTA + 0.4 mg/kg SeMet group and OTA + 0.6 mg/kg SeMet group. Rabbits were fed different doses of the SeMet diet for 21 d, and OTA was administered for one week from day 15 (the control group was provided the same dose of NaHCO3 solution). The results showed that 0.4 mg/kg SeMet could significantly improve the liver injury induced by OTA poisoning. SeMet supplementation can improve the changes in physiological blood indexes caused by OTA poisoning in rabbits and alleviate pathological damage to the rabbit liver. SeMet also increased the activities of SOD, GSH-Px and T-AOC and significantly decreased the contents of ROS, MDA, IL-1β, IL-6 and TNF-α, effectively alleviating the oxidative stress and inflammatory response caused by OTA poisoning. In addition, OTA poisoning inhibits Nrf2 and HO-1 levels, ultimately leading to peroxide reaction, while SeMet activates the Nrf2 signaling pathway and enhances the expression of the HO-1 downstream Nrf2 gene. These results suggest that Se protects the liver from OTA-induced hepatotoxicity by regulating Nrf2/HO-1 expression.
Collapse
|
8
|
Roth RA, Kana O, Filipovic D, Ganey PE. Pharmacokinetic and toxicodynamic concepts in idiosyncratic, drug-induced liver injury. Expert Opin Drug Metab Toxicol 2022; 18:469-481. [PMID: 36003040 PMCID: PMC9484408 DOI: 10.1080/17425255.2022.2113379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Idiosyncratic drug-induced liver injury (IDILI) causes morbidity and mortality in patients and leads to curtailed use of efficacious pharmaceuticals. Unlike intrinsically toxic reactions, which depend on dose, IDILI occurs in a minority of patients at therapeutic doses. Much remains unknown about causal links among drug exposure, a mode of action, and liver injury. Consequently, numerous hypotheses about IDILI pathogenesis have arisen. AREAS COVERED Pharmacokinetic and toxicodynamic characteristics underlying current hypotheses of IDILI etiology are discussed and illustrated graphically. EXPERT OPINION Hypotheses to explain IDILI etiology all involve alterations in pharmacokinetics, which lead to plasma drug concentrations that rise above a threshold for toxicity, or in toxicodynamics, which result in a lowering of the toxicity threshold. Altered pharmacokinetics arise, for example, from changes in drug metabolism or from transporter polymorphisms. A lowered toxicity threshold can arise from drug-induced mitochondrial injury, accumulation of toxic endogenous factors or harmful immune responses. Newly developed, interactive freeware (DemoTox-PK; https://bit.ly/DemoTox-PK) allows the user to visualize how such alterations might lead to a toxic reaction. The illustrations presented provide a framework for conceptualizing idiosyncratic reactions and could serve as a stimulus for future discussion, education, and research into modes of action of IDILI.
Collapse
Affiliation(s)
- Robert A. Roth
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- ProbiTox LLC, Chapel Hill, NC 27514
| | - Omar Kana
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824
| | - David Filipovic
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI 48824
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI 48824
| | - Patricia E. Ganey
- Department of Pharmacology and Toxicology and Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 49924
- ProbiTox LLC, Chapel Hill, NC 27514
| |
Collapse
|
9
|
A new strategy for the rapid identification and validation of direct toxicity targets of psoralen-induced hepatotoxicity. Toxicol Lett 2022; 363:11-26. [PMID: 35597499 DOI: 10.1016/j.toxlet.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
The interaction between small-molecule compounds of traditional Chinese medicine and their direct targets is the molecular initiation event, which is the key factor for toxicity efficacy. Psoralen, an active component of Fructus Psoraleae, is toxic to the liver and has various pharmacological properties. Although the mechanism of psoralen-induced hepatotoxicity has been studied, the direct target of psoralen remains unclear. Thus, the aim of this study was to discover direct targets of psoralen. To this end, we initially used proteomics based on drug affinity responsive target stability (DARTS) technology to identify the direct targets of psoralen. Next, we used surface plasmon resonance (SPR) analysis and verified the affinity effect of the 'component-target protein'. This method combines molecular docking technology to explore binding sites between small molecules and proteins. SPR and molecular docking confirmed that psoralen and tyrosine-protein kinase ABL1 could be stably combined. Based on the above experimental results, ABL1 is a potential direct target of psoralen-induced hepatotoxicity. Finally, the targets Nrf2 and mTOR, which are closely related to the hepatotoxicity caused by psoralen, were predicted by integrating proteomics and network pharmacology. The direct target ABL1 is located upstream of Nrf2 and mTOR, Nrf2 can influence the expression of mTOR by affecting the level of reactive oxygen species. Immunofluorescence experiments and western blot results showed that psoralen could affect ROS levels and downstream Nrf2 and mTOR protein changes, whereas the ABL1 inhibitor imatinib and ABL1 agonist DPH could enhance or inhibit this effect. In summary, we speculated that when psoralen causes hepatotoxicity, it acts on the direct target ABL1, resulting in a decrease in Nrf2 expression, an increase in ROS levels and a reduction in mTOR expression, which may cause cell death. We developed a new strategy for predicting and validating the direct targets of psoralen. This strategy identified the toxic target, ABL1, and the potential toxic mechanism of psoralen.
Collapse
|
10
|
Abstract
The gene expression program induced by NRF2 transcription factor plays a critical role in cell defense responses against a broad variety of cellular stresses, most importantly oxidative stress. NRF2 stability is fine-tuned regulated by KEAP1, which drives its degradation in the absence of oxidative stress. In the context of cancer, NRF2 cytoprotective functions were initially linked to anti-oncogenic properties. However, in the last few decades, growing evidence indicates that NRF2 acts as a tumor driver, inducing metastasis and resistance to chemotherapy. Constitutive activation of NRF2 has been found to be frequent in several tumors, including some lung cancer sub-types and it has been associated to the maintenance of a malignant cell phenotype. This apparently contradictory effect of the NRF2/KEAP1 signaling pathway in cancer (cell protection against cancer versus pro-tumoral properties) has generated a great controversy about its functions in this disease. In this review, we will describe the molecular mechanism regulating this signaling pathway in physiological conditions and summarize the most important findings related to the role of NRF2/KEAP1 in lung cancer. The focus will be placed on NRF2 activation mechanisms, the implication of those in lung cancer progression and current therapeutic strategies directed at blocking NRF2 action.
Collapse
|
11
|
Nrf2 Activation Attenuates Acrylamide-Induced Neuropathy in Mice. Int J Mol Sci 2021; 22:ijms22115995. [PMID: 34206048 PMCID: PMC8199319 DOI: 10.3390/ijms22115995] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023] Open
Abstract
Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.
Collapse
|
12
|
Ekuban FA, Zong C, Takikawa M, Morikawa K, Sakurai T, Ichihara S, Itoh K, Yamamoto M, Ohsako S, Ichihara G. Genetic ablation of Nrf2 exacerbates neurotoxic effects of acrylamide in mice. Toxicology 2021; 456:152785. [PMID: 33872730 DOI: 10.1016/j.tox.2021.152785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/20/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Acrylamide (ACR), a recognized neurotoxicant in humans and experimental animals, is widely used in industry and in food generated through Maillard reaction. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of the cellular defense system and activates antioxidants and cytoprotective genes. The exact roles of Nrf2 in environmental electrophile-induced neurotoxicity is poorly understood. The aim of this study was to determine the roles of Nrf2 in ACR-induced neurotoxicity including degeneration of monoaminergic axons and sensorimotor dysfunction. Male 10-week-old C57BL/6JJcl Nrf2-knockout mice and wild type (WT) counterparts were each divided into four groups of 12 and provided with drinking water containing acrylamide at 0, 67, 110 or 200 ppm for four weeks. The effects of acrylamide were examined by landing foot spread test, immunohistochemistry for noradrenaline (NA) and serotonin (5-HT)-containing axons and Iba1-positive microglia in the prefrontal cortex as well as quantitative real-time polymerase chain reaction (qRT-PCR) on antioxidant, proinflammatory and anti-inflammatory genes in the prefrontal cortex. Relative to the wild type, exposure of Nrf2-knockout mice to acrylamide increased hindlimb splay length, microglial area and process length as well as decreasing the density of NA and 5-HT-immunoreactive axons to a greater extent. Moreover, deletion of Nrf2 gene suppressed acrylamide-induced mRNA upregulation of Nrf2-antioxidants, NAD(P): quinone oxidoreductase 1 (NQO1), superoxide dismutase-1 (SOD-1) and heme oxygenase-1 (HO-1) as well as anti-inflammatory markers such as, arginase-1 (Arg1), found in the inflammatory zone-1 (Fizz1), chitinase-like 3 (Chi3l3), interleukin-4 receptor alpha (IL-4Rα), cluster of differentiation 206 (CD206) and transforming growth factor beta-1 (TGFβ1) while enhancing acrylamide-induced upregulation of pro-inflammatory cytokines, interleukin-1 beta (IL-1β), tumor necrosis-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the prefrontal cortex. The results demonstrate susceptibility of mice lacking the Nrf2 gene to acrylamide-induced neurotoxicity and neuroinflammation with the activation of microglia. Moreover, the results suggest the role of Nrf2 not only in induction of antioxidant gene expression, but also in suppression of proinflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Madoka Takikawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Ken Itoh
- Department of Stress Response Hirosaki University, Hirosaki, Japan
| | - Masayuki Yamamoto
- Department of Molecular Biochemistry Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
13
|
Kodavanti PRS, Valdez M, Richards JE, Agina-Obu DI, Phillips PM, Jarema KA, Kodavanti UP. Ozone-induced changes in oxidative stress parameters in brain regions of adult, middle-age, and senescent Brown Norway rats. Toxicol Appl Pharmacol 2021; 410:115351. [PMID: 33249117 PMCID: PMC7775355 DOI: 10.1016/j.taap.2020.115351] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022]
Abstract
A critical part of community based human health risk assessment following chemical exposure is identifying sources of susceptibility. Life stage is one such susceptibility. A prototypic air pollutant, ozone (O3) induces dysfunction of the pulmonary, cardiac, and nervous systems. Long-term exposure may cause oxidative stress (OS). The current study explored age-related and subchronic O3-induced changes in OS in brain regions of rats. To build a comprehensive assessment of OS-related effects of O3, a tripartite approach was implemented focusing on 1) the production of reactive oxygen species (ROS) [NADPH Quinone oxidoreductase 1, NADH Ubiquinone reductase] 2) antioxidant homeostasis [total antioxidant substances, superoxide dismutase, γ-glutamylcysteine synthetase] and 3) an assessment of oxidative damage [total aconitase and protein carbonyls]. Additionally, a neurobehavioral evaluation of motor activity was compared to these OS measures. Male Brown Norway rats (4, 12, and 24 months of age) were exposed to air or O3 (0.25 or 1 ppm) via inhalation for 6 h/day, 2 days per week for 13 weeks. A significant decrease in horizontal motor activity was noted only in 4-month old rats. Results on OS measures in frontal cortex (FC), cerebellum (CB), striatum (STR), and hippocampus (HIP) indicated life stage-related increases in ROS production, small decreases in antioxidant homeostatic mechanisms, a decrease in aconitase activity, and an increase in protein carbonyls. The effects of O3 exposure were brain area-specific, with the STR being more sensitive. Regarding life stage, the effects of O3 were greater in 4-month-old rats, which correlated with horizontal motor activity. These results indicate that OS may be increased in specific brain regions after subchronic O3 exposure, but the interactions between age and exposure along with their consequences on the brain require further investigation.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Matthew Valdez
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Judy E Richards
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Datonye I Agina-Obu
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Pamela M Phillips
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Kimberly A Jarema
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, CPHEA, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| |
Collapse
|
14
|
Yang G, Xiang Y, Zhou W, Zhong X, Zhang Y, Lin D, Huang X. 1-Bromopropane-induced apoptosis in OVCAR-3 cells via oxidative stress and inactivation of Nrf2. Toxicol Ind Health 2020; 37:59-67. [PMID: 33305700 DOI: 10.1177/0748233720979427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The bromoalkane, 1-bromopropane (1-BP), may damage the reproductive system though oxidative stress, while the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in regulating intracellular antioxidant levels against oxidative stress. This study explored the role of oxidative stress and the Nrf2 signaling pathway in mediating the reproductive toxicity of 1-BP using the ovarian carcinoma cell line OVCAR-3 as an in vitro model of the human ovary. OVCAR-3 cells were treated with 1, 5, 10 and 15 mM 1-BP. After 24 h, the cellular reactive oxygen species and malondialdehyde concentrations significantly increased, while the superoxide dismutase activity decreased; translocation of Nrf2 from the cytosol to the nucleus as well as downstream protein expression of Nrf2-regulated genes heme oxygenase-1 and Bcl-2 was inhibited. Apoptosis was also observed, accompanied by increased caspase-3 and caspase-9 activity. The antioxidant vitamin C alleviated 1-BP-induced apoptosis by inhibiting caspase activity activating the Nrf2 signaling pathway. These findings suggested that 1-BP induced oxidative stress and apoptosis in OVCAR-3 cells through inactivation of Nrf2 signaling.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Yingping Xiang
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Wei Zhou
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Xiaohuan Zhong
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Yanfang Zhang
- Department of Medical Laboratory, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Dafeng Lin
- Department of Medical Laboratory, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| | - Xianqing Huang
- Institute of Occupational Hazard Assessment, 200636Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Yang S, Zhou M, Wang B, Mu G, Wang X, Yuan J, Chen W. Lipid peroxidation mediated the association of urinary 1-bromopropane metabolites with plasma glucose and the risk of diabetes: A cross-sectional study of urban adults in China. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121889. [PMID: 31859167 DOI: 10.1016/j.jhazmat.2019.121889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 05/15/2023]
Abstract
Exposure to 1-bromopropane (1-BP) has been reported to cause glutathione depletion and increase the level of oxidative damage, which play critical roles in diabetes. However, the possible associations or mechanisms of the exposure of 1-BP with the plasma glucose level and the risk of diabetes are unclear. In this study, we explored the relationships of the urinary 1-BP metabolite N-Acetyl-S-(n-propyl)-l-cysteine (BPMA) with fasting plasma glucose (FPG) levels and the risk of diabetes, and the mediating role of oxidative damage in the above relationships in 3678 urban adults from the Wuhan-Zhuhai cohort in China. We found a significant dose-response relationship between BPMA and FPG levels with a β of 0.09 (95 % CI: 0.04, 0.14). In addition, mediating effect of urinary BPMA on FPG levels was observed depending on elevated 8-isoprostane level, with a median proportion of 32.06 %. Furthermore, we observed a significant association between urinary BPMA and the risk of diabetes, with an adjusted odds ratio of 1.34 (1.18, 1.52) for all participants. These results indicated that urinary 1-BP metabolites were positively associated with FPG levels and the risk of diabetes among urban adults in this cross-sectional study. Lipid peroxidation partially mediated the association between urinary 1-BP metabolites and FPG levels.
Collapse
Affiliation(s)
- Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Yuan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhoang University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
16
|
Stelljes M, Young R, Weinberg J. 28-Day somatic gene mutation study of 1-bromopropane in female Big Blue ® B6C3F1 mice via whole-body inhalation: Support for a carcinogenic threshold. Regul Toxicol Pharmacol 2019; 104:1-7. [PMID: 30779931 DOI: 10.1016/j.yrtph.2019.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 10/27/2022]
Abstract
A 2-year inhalation rat and mouse cancer study by the National Toxicology Program (NTP) on 1-bromopropane, a brominated solvent most commonly used as a vapor degreaser, showed significant increase in tumors in the lung of female mice and in the large intestine of male and female rats. The most sensitive endpoint was lung tumors in female mice. Mice of both sexes had hyperplasia and inflammation of the nose and showed regeneration of lung tissue. The NTP assumed that these tumors were due to genotoxic effects and that a linear dose-response relationship was appropriate. It is plausible that, similar to chloroform, hyperplasia and inflammation are required as initial events for tumor development. If true, then a threshold-based model may be more appropriate for 1-bromopropane. To test this hypothesis, a 28-day repeat dose inhalation Big Blue® Assay was conducted using female transgenic B6C3F1 mice. The target exposure concentrations and the exposure regimen were identical to those used by the NTP. Results demonstrated no elevation in mutant frequency of the cII transgene in lung, colon, or liver. Positive controls produced statistically significant increases in mutant frequencies across all tested tissues. These results demonstrate that 1-bromopropane does not induce cII mutants in lungs, colon, or liver under the testing conditions. These data have important ramifications in the quantitative evaluation of tumor results for this chemical and support a mechanism of action where a threshold for carcinogenicity is plausible.
Collapse
Affiliation(s)
| | - Robert Young
- MilliporeSigma, BioReliance(®) Testing Services, Rockville, MD, USA
| | | |
Collapse
|
17
|
Bae UJ, Park EO, Park J, Jung SJ, Ham H, Yu KW, Park YJ, Chae SW, Park BH. Gypenoside UL4-RichGynostemma pentaphyllumExtract Exerts a Hepatoprotective Effect on Diet-Induced Nonalcoholic Fatty Liver Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1315-1332. [DOI: 10.1142/s0192415x18500696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) arises from nonalcoholic fatty liver disease (NAFLD) as a consequence of oxidative stress. Gynostemma pentaphyllum extract (GPE) is proven to be beneficial for patients suffering from NAFLD. However, the precise mechanism by which GPE confers these benefits remains largely unknown. The purpose of this study was to investigate the underlying mechanism and to determine whether supplementation with the newly discovered GPE gypenoside UL4 mitigates NASH progression. Male c57BL/6 mice were fed a normal chow diet, a methionine choline-deficient (MCD) diet, or an MCD diet supplemented with various doses of UL4-rich GPE for eight weeks. GPE supplementation suppressed oxidative stress induced by the MCD diet by increasing levels of sirtuin 6 and phase 2 anti-oxidant enzymes in mouse liver and HepG2 cells. Additionally, GPE supplementation prevented diet-induced hepatic fat accumulation, hepatocellular injury, inflammation, and fibrosis in mice fed the MCD diet. These results indicate the possible therapeutic potential of dietary supplementation of UL4-rich GPE in preventing the development of fatty liver and its progression to NASH.
Collapse
Affiliation(s)
- Ui-Jin Bae
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Eun-Ock Park
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - John Park
- Department of Chemistry, Chonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Hyeonmi Ham
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Kee-Won Yu
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Young-Jun Park
- Celltrion Chemical Research Institute, Yongin, Gyeonggi 17015, Republic of Korea
| | - Soo-Wan Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
18
|
Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: A review. Food Chem Toxicol 2018; 120:261-276. [DOI: 10.1016/j.fct.2018.07.024] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
|
19
|
Ka SO, Bang IH, Bae EJ, Park BH. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor. FASEB J 2017; 31:3999-4010. [PMID: 28536120 DOI: 10.1096/fj.201700098rr] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
Abstract
Sirtuin (Sirt)6 has been implicated in negative regulation of inflammation and lipid metabolism, although its function in the progression from simple steatosis to nonalcoholic steatohepatitis (NASH) remains to be defined. To explore the role of hepatocyte Sirt6 in NASH development, we generated hepatocyte-specific Sirt6-knockout (KO) mice that were fed a high-fat and high-fructose (HFHF) diet for 16 wk. HFHF-fed KO mice had increased hepatic steatosis and inflammation and aggravated glucose intolerance and insulin resistance compared with wild-type mice. HFHF-induced liver fibrosis and oxidative stress and related gene expression were significantly elevated in KO mice. In the livers of KO mice, nuclear factor erythroid 2-related factor 2 (Nrf2) was down-regulated; conversely, BTB domain and CNC homolog 1 (Bach1), a nuclear repressor of Nrf2, were up-regulated. We discovered that Sirt6, which interacts with Bach1 under basal condition, induces its detachment from the antioxidant response element (ARE) region of heme oxygenase 1 promoter. Furthermore, we found that Sirt6 promotes Nrf2 binding to ARE in response to oxidative stimuli, which leads to the expression of phase II/antioxidant enzymes. Finally, we showed that HFHF-induced steatosis, inflammation, and fibrosis were ameliorated by adenoviral Sirt6 overexpression. Sirt6 may be a useful therapeutic target for amelioration of NASH by curbing inflammation and oxidative stress.-Ka, S.-O, Bang, I. H., Bae, E. J., Park, B.-H. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor.
Collapse
Affiliation(s)
- Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | - In Hyuk Bang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, South Korea;
| |
Collapse
|
20
|
Miao R, Ding B, Zhang Y, Zhao R, Li Y, Zhu B. Large-scale label-free proteomics analysis of occupational poisoned patients of 1-bromopropane, workers exposed to 1-bromopropane and healthy individuals. Hum Exp Toxicol 2017; 37:3-12. [PMID: 28120620 DOI: 10.1177/0960327117689911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- R Miao
- The 8th People’s Hospital of Wuxi, Wuxi, China
| | - B Ding
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Y Zhang
- The 8th People’s Hospital of Wuxi, Wuxi, China
| | - R Zhao
- The 8th People’s Hospital of Wuxi, Wuxi, China
| | - Y Li
- The 8th People’s Hospital of Wuxi, Wuxi, China
| | - B Zhu
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| |
Collapse
|
21
|
Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453926. [PMID: 28101296 PMCID: PMC5215260 DOI: 10.1155/2016/3453926] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.
Collapse
|
22
|
Clarke JL, Murray JB, Park BK, Copple IM. Roles of Nrf2 in drug and chemical toxicity. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Protective Potential of the Glutathione Peroxidase-1 Gene in Abnormal Behaviors Induced by Phencyclidine in Mice. Mol Neurobiol 2016; 54:7042-7062. [DOI: 10.1007/s12035-016-0239-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/17/2016] [Indexed: 12/30/2022]
|
24
|
Zong C, Garner CE, Huang C, Zhang X, Zhang L, Chang J, Toyokuni S, Ito H, Kato M, Sakurai T, Ichihara S, Ichihara G. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450. Toxicol Lett 2016; 258:249-258. [DOI: 10.1016/j.toxlet.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
|
25
|
Huang F, Ichihara S, Yamada Y, Banu S, Ichihara G. Effect of 4-week inhalation exposure to 1-bromopropane on blood pressure in rats. J Appl Toxicol 2016; 37:331-338. [PMID: 27452781 DOI: 10.1002/jat.3364] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/18/2016] [Accepted: 06/18/2016] [Indexed: 01/12/2023]
Abstract
The pathophysiology of hypertension is complex and multifactorial, and includes exposure to various chemical substances. Several recent studies have documented the reproductive and neurological toxicities of 1-bromopropane (1-BP). Given that 1-BP increased reactive oxygen species in the brain of rats, we hypothesized that 1-BP also has cardiovascular toxicity through increased oxidative stress. To test this hypothesis, male F344 and Wistar Nagoya rats (n = 7-8 per group per test) were exposed to 0 or 1000 ppm of 1-BP via inhalation for 4 weeks (8 h per day, 7 days per week). The exposure to 1-BP increased systolic blood pressure. This effect was associated with a significant decrease in the reduced/oxidized glutathione ratio. A significant increase in nitrotyrosine levels, activation of the NADPH oxidase pathway, which was evidenced by upregulation of gp91phox, a NADPH oxidase subunit, and significant decreases in the expressions of antioxidant molecules such as Cu/Zn- and Mn-superoxide dismutase catalase, and nuclear factor erythroid 2-related factor 2, were observed in the aortas of Wistar Nagoya rats exposed to 1-BP. Our results indicate that subacute (4-week) inhalation exposure to 1-BP increases blood pressure and suggest that this cardiovascular toxic effect is due, at least in part, to increased oxidative stress mediated through activation of the NADPH oxidase pathway. Further study is needed to assess whether NADPH oxidase activation causes the increase in blood pressure in the rats exposed to 1-BP. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Fen Huang
- Department of Environmental and Occupational Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,School of Public Health, Anhui Medical University, Anhui, China
| | - Sahoko Ichihara
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan
| | - Yuki Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Japan.,Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Shameema Banu
- Department of Environmental and Occupational Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Obstetrics and Gynecology, Shri Sathya Sai Medical College Hospital and Research Center, Tamil Nadu, India
| | - Gaku Ichihara
- Department of Environmental and Occupational Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| |
Collapse
|
26
|
Wu W, Zhao L, Yang P, Zhou W, Li B, Moorhead JF, Varghese Z, Ruan XZ, Chen Y. Inflammatory Stress Sensitizes the Liver to Atorvastatin-Induced Injury in ApoE-/- Mice. PLoS One 2016; 11:e0159512. [PMID: 27428373 PMCID: PMC4948878 DOI: 10.1371/journal.pone.0159512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023] Open
Abstract
Statins, which are revolutionized cholesterol-lowing agents, have been reported to have unfavorable effects on the liver. Inflammatory stress is a susceptibility factor for drug-induced liver injury. This study investigated whether inflammatory stress sensitized the liver to statin-induced toxicity in mice and explored the underlying mechanisms. We used casein injection in ApoE-/- mice to induce inflammatory stress. Half of the mice were orally administered atorvastatin (10mg/kg/d) for 8 weeks. The results showed that casein injection increased the levels of serum pro-inflammatory cytokines (IL-6 and TNFα). Atorvastatin treatment increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in casein injection mice. Moreover, atorvastatin treatment exacerbated hepatic steatosis, inflammation and fibrosis, as well as increased hepatic reactive oxygen species (ROS) and malondialdehyde in casein injection mice. However, above changes were not observed in atorvastatin treated alone mice. The protein expression of liver nuclear factor erythroid 2-related factor 2 (Nrf2) and the mRNA expressions of Nrf2 target genes were increased, together with the enhancement of activities of hepatic catalase and superoxide dismutase in atorvastatin treated alone mice, but these antioxidant responses were lost in mice treated with atorvastatin under inflammatory stress. This study demonstrates that atorvastatin exacerbates the liver injury under inflammatory stress, which may be associated with the loss of adaptive antioxidant response mediated by Nrf2.
Collapse
Affiliation(s)
- Wei Wu
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Zhou
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Beibei Li
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - John F. Moorhead
- John Moorhead Research Laboratory, Center for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Zac Varghese
- John Moorhead Research Laboratory, Center for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Xiong Z. Ruan
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (CCID), Zhejiang University, Hangzhou, China
- John Moorhead Research Laboratory, Center for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
- * E-mail: (YC); (XZR)
| | - Yaxi Chen
- Center for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- * E-mail: (YC); (XZR)
| |
Collapse
|
27
|
Xiong ZE, Dong WG, Wang BY, Tong QY, Li ZY. Curcumin attenuates chronic ethanol-induced liver injury by inhibition of oxidative stress via mitogen-activated protein kinase/nuclear factor E2-related factor 2 pathway in mice. Pharmacogn Mag 2015; 11:707-15. [PMID: 26600714 PMCID: PMC4621638 DOI: 10.4103/0973-1296.165556] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the protective effect of curcumin on chronic ethanol-induced liver injury in mice and to explore its underlying mechanisms. MATERIALS AND METHODS Ethanol-exposed Balb/c mice were simultaneously treated with curcumin for 6 weeks. Liver injury was evaluated by biochemical and histopathological examination. Lipid peroxidation and anti-oxidant activities were measured by spectrophotometric method. Anti-oxidative genes expression such as NAD(P)H quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD) were determined by real-time polymerase chain reaction. The nuclear factor E2-related factor 2 (Nrf2) and the phosphorylation states of specific proteins central to intracellular signaling cascades were measured by western blotting. RESULTS Curcumin treatment protected liver from chronic ethanol-induced injury through reducing serum alanine aminotransferase and aspartate aminotransferase activities, improving liver histological architecture, and reversing lipid disorders indicated by decrease of triglyceride, total cholesterol and low-density lipoprotein-cholesterol levels and increase of High-density lipoprotein-cholesterol levels. Meanwhile, curcumin administration attenuated oxidative stress via up-regulating SOD and glutathione peroxidase activities, leading to a reduction of lipid hydroperoxide production. In addition, curcumin increased Nrf2 activation and anti-oxidative genes expressions such as NQO1, HO-1, and SOD through inducing extracellular signal-regulated kinase (ERK) and p38 phosphorylation. CONCLUSION Our data suggested that curcumin protected the liver from chronic-ethanol induced injury through attenuating oxidative stress, at least partially, through ERK/p38/Nrf2-mediated anti-oxidant signaling pathways.
Collapse
Affiliation(s)
- Zhang E Xiong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wei Guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bao Ying Wang
- Department of Pharmacology, Henan College of Chinese Traditional Medicine, Zhengzhou 450008, Henan Province, China
| | - Qiao Yun Tong
- Department of Gastroenterology, Institute of Digestive Disease, China Three Gorges University, Yichang 443003, Hubei Province, China
| | - Zhong Yan Li
- Department of Gastroenterology, Institute of Digestive Disease, China Three Gorges University, Yichang 443003, Hubei Province, China
| |
Collapse
|
28
|
Abstract
BACKGROUND The KEAP1-Nrf2 antioxidant signaling pathway is important in protecting liver from various insults. However, little is known about the expression of Nrf2-related genes in human liver in different diseases. METHODS This study utilized normal donor liver tissues (n=35), samples from patients with hepatocellular carcinoma (HCC, n=24), HBV-related cirrhosis (n=27), alcoholic cirrhosis (n=5) and end-stage liver disease (n=13). All of the liver tissues were from the Oriental Liver Transplant Center, Beijing, China. The expressions of Nrf2 and Nrf2-related genes, including its negative regulator Kelch-like ECH-associated protein 1 (KEAP1), its targeted gene NAD(P)H-quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase catalytic subunit (GCLC) and modified subunit (GCLM), heme oxygenase 1 (HO-1) and peroxiredoxin-1 (PRDX1) were evaluated. RESULTS The expression of Nrf2 was decreased in HCC, increased in alcoholic cirrhosis and end-stage liver disease. The expression of KEAP1 was increased in all of the liver samples. The most notable finding was the increased expression of NQO1 in HCC (18-fold), alcoholic cirrhosis (6-fold), end-stage liver disease (5-fold) and HBV-related cirrhosis (3-fold). Peri-HCC also had 4-fold higher NQO1 mRNA as compared to the normal livers. GCLC mRNA levels were lower only in HCC, as compared to the normal livers and peri-HCC tissues. GCLM mRNA levels were higher in HBV-related cirrhosis and end-stage liver disease. HO-1 mRNA levels were increased in all liver tissues except for HCC. Peri-HCC had higher PRDX1 mRNA levels compared with HCC and normal livers. CONCLUSION Nrf2 and Nrf2-related genes are aberrantly expressed in the liver in different diseases and the increase of NQO1 was the most notable finding, especially in HCC.
Collapse
|
29
|
Herpers B, Wink S, Fredriksson L, Di Z, Hendriks G, Vrieling H, de Bont H, van de Water B. Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity. Arch Toxicol 2015; 90:1163-79. [PMID: 26026609 PMCID: PMC4830895 DOI: 10.1007/s00204-015-1536-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
Drug-induced liver injury (DILI) is an important problem both in the clinic and in the development of new safer medicines. Two pivotal adaptation and survival responses to adverse drug reactions are oxidative stress and cytokine signaling based on the activation of the transcription factors Nrf2 and NF-κB, respectively. Here, we systematically investigated Nrf2 and NF-κB signaling upon DILI-related drug exposure. Transcriptomics analyses of 90 DILI compounds in primary human hepatocytes revealed that a strong Nrf2 activation is associated with a suppression of endogenous NF-κB activity. These responses were translated into quantitative high-content live-cell imaging of induction of a selective Nrf2 target, GFP-tagged Srxn1, and the altered nuclear translocation dynamics of a subunit of NF-κB, GFP-tagged p65, upon TNFR signaling induced by TNFα using HepG2 cells. Strong activation of GFP-Srxn1 expression by DILI compounds typically correlated with suppression of NF-κB nuclear translocation, yet reversely, activation of NF-κB by TNFα did not affect the Nrf2 response. DILI compounds that provided strong Nrf2 activation, including diclofenac, carbamazepine and ketoconazole, sensitized toward TNFα-mediated cytotoxicity. This was related to an adaptive primary protective response of Nrf2, since loss of Nrf2 enhanced this cytotoxic synergy with TNFα, while KEAP1 downregulation was cytoprotective. These data indicate that both Nrf2 and NF-κB signaling may be pivotal in the regulation of DILI. We propose that the NF-κB-inhibiting effects that coincide with a strong Nrf2 stress response likely sensitize liver cells to pro-apoptotic signaling cascades induced by intrinsic cytotoxic pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Bram Herpers
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Steven Wink
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Lisa Fredriksson
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Zi Di
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Giel Hendriks
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Harry Vrieling
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans de Bont
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bob van de Water
- Division of Toxicology, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
30
|
Tomechko SE, Liu G, Tao M, Schlatzer D, Powell CT, Gupta S, Chance MR, Daneshgari F. Tissue specific dysregulated protein subnetworks in type 2 diabetic bladder urothelium and detrusor muscle. Mol Cell Proteomics 2015; 14:635-45. [PMID: 25573746 DOI: 10.1074/mcp.m114.041863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is well known to cause bladder dysfunction; however, the molecular mechanisms governing this process and the effects on individual tissue elements within the bladder are poorly understood, particularly in type 2 diabetes. A shotgun proteomics approach was applied to identify proteins differentially expressed between type 2 diabetic (TallyHo) and control (SWR/J) mice in the bladder smooth muscle and urothelium, separately. We were able to identify 1760 nonredundant proteins from the detrusor smooth muscle and 3169 nonredundant proteins from urothelium. Pathway and network analysis of significantly dysregulated proteins was conducted to investigate the molecular processes associated with diabetes. This pinpointed ERK1/2 signaling as a key regulatory node in the diabetes-induced pathophysiology for both tissue types. The detrusor muscle samples showed diabetes-induced increased tissue remodeling-type events such as Actin Cytoskeleton Signaling and Signaling by Rho Family GTPases. The diabetic urothelium samples exhibited oxidative stress responses, as seen in the suppression of protein expression for key players in the NRF2-Mediated Oxidative Stress Response pathway. These results suggest that diabetes induced elevated inflammatory responses, oxidative stress, and tissue remodeling are involved in the development of tissue specific diabetic bladder dysfunctions. Validation of signaling dysregulation as a function of diabetes was performed using Western blotting. These data illustrated changes in ERK1/2 phosphorylation as a function of diabetes, with significant decreases in diabetes-associated phosphorylation in urothelium, but the opposite effect in detrusor muscle. These data highlight the importance of understanding tissue specific effects of disease process in understanding pathophysiology in complex disease and pave the way for future studies to better understand important molecular targets in reversing bladder dysfunction.
Collapse
Affiliation(s)
| | - Guiming Liu
- §Urology Institute, University Hospitals Case Medical Center and Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Mingfang Tao
- §Urology Institute, University Hospitals Case Medical Center and Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | | | - C Thomas Powell
- §Urology Institute, University Hospitals Case Medical Center and Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | - Sanjay Gupta
- §Urology Institute, University Hospitals Case Medical Center and Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| | | | - Firouz Daneshgari
- §Urology Institute, University Hospitals Case Medical Center and Department of Urology, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106
| |
Collapse
|
31
|
Furnari MA, Saw CLL, Kong AN, Wagner GC. Altered behavioral development in Nrf2 knockout mice following early postnatal exposure to valproic acid. Brain Res Bull 2014; 109:132-42. [PMID: 25454122 DOI: 10.1016/j.brainresbull.2014.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
Abstract
Early exposure to valproic acid results in autism-like neural and behavioral deficits in humans and other animals through oxidative stress-induced neural damage. In the present study, valproic acid was administered to genetically altered mice lacking the Nrf2 (nuclear factor-erythroid 2 related factor 2) gene on postnatal day 14 (P14). Nrf2 is a transcription factor that induces genes that protect against oxidative stress. It was found that valproic acid-treated Nrf2 knockout mice were less active in open field activity chambers, less successful on the rotorod, and had deficits in learning and memory in the Morris water maze compared to the valproic acid-treated wild type mice. Given these results, it appears that Nrf2 knockout mice were more sensitive to the neural damage caused by valproic acid administered during early development.
Collapse
Affiliation(s)
- Melody A Furnari
- Joint Program in Toxicology, Rutgers, The State University of New Jersey, 152 Frelinghyusen Road, Piscataway, NJ 08854, USA
| | - Constance Lay-Lay Saw
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghyusen Road, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghyusen Road, Piscataway, NJ 08854, USA
| | - George C Wagner
- Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Road, New Brunswick, NJ 08854, USA.
| |
Collapse
|
32
|
Han F, Guo PR, Wang F, Hou DJ, Sun YF. Nrf2 and Nrf2 activators in hepatic diseases. Shijie Huaren Xiaohua Zazhi 2014; 22:1651-1657. [DOI: 10.11569/wcjd.v22.i12.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is evidently related to hepatic diseases. Nuclear erythroid-2 related factor 2 (Nrf2) is one of the most important regulators of cells' protection against oxidative stress. Nrf2 induces the transcription of a wide array of genes encoding antioxidant enzymes and detoxification enzymes, cleans reactive oxygen species and relieves apoptosis. This review aims to illustrate the Nrf2/Keap1-ARE antioxidant pathway, investigate its relation with hepatic diseases and discuss the potential therapeutic effect of Nrf2 activators.
Collapse
|
33
|
Remy S, Verstraelen S, Van Den Heuvel R, Nelissen I, Lambrechts N, Hooyberghs J, Schoeters G. Gene expressions changes in bronchial epithelial cells: Markers for respiratory sensitizers and exploration of the NRF2 pathway. Toxicol In Vitro 2014; 28:209-17. [DOI: 10.1016/j.tiv.2013.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 10/02/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
|
34
|
Limonciel A, Jennings P. A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins (Basel) 2014; 6:371-9. [PMID: 24448208 PMCID: PMC3920267 DOI: 10.3390/toxins6010371] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/14/2023] Open
Abstract
Several studies have demonstrated that ochratoxin A (OTA) inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. At the cellular level this would attenuate (i) glutathione synthesis; (ii) recycling of oxidised glutathione; (iii) activity of oxidoreductases; and (iv) phase II metabolism inducibility. The effects combined would render the cell and tissue more vulnerable to oxidative stress. Indeed, Nrf2 knock out animals exhibit increased susceptibility to various types of chemical-induced injury. Several studies have shown that OTA exposure can inhibit Nrf2 responses. Such an action would initially lead to increased susceptibility to both physiological and chemical-induced cell stress. However, chronic exposure to OTA may also act as a selective pressure for somatic mutations in Nrf2 or its inhibitor Keap-1, leading to constitutive Nrf2 activation. Nrf2 overexpression confers a survival advantage and is often associated with cancer cell survival. Here we review the evidence for OTA’s role as an Nrf2 inhibitor and discuss the implications of this mechanism in nephrotoxicity and carcinogenicity.
Collapse
Affiliation(s)
- Alice Limonciel
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| | - Paul Jennings
- Division of Physiology, Department of Physiology and Medical Physics, Innsbruck Medical University, Innsbruck A6020, Austria.
| |
Collapse
|
35
|
Garner CE, Yu X. Species and sex-dependent toxicokinetics of 1-bromopropane: the role of hepatic cytochrome P450 oxidation and glutathione (GSH). Xenobiotica 2014; 44:644-56. [PMID: 24438363 DOI: 10.3109/00498254.2013.879624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The objectives of the current studies were to evaluate the factors influencing the toxicokinetics of 1-bromopropane (1-BP) in rodents after intravenous (IV) and inhalation exposure. 2. F-344 rats were administered 1-BP via IV bolus injection at 5 and 20 mg/kg and blood concentration determined versus time. F-344 rats and B6C3F1 mice were also exposed to starting inhalation concentrations 70, 240, 800 and 2700 ppm 1-BP in a closed gas uptake system and chamber 1-BP levels were monitored for 6 h. Plasma bromide concentrations were determined to estimate total metabolized dose. Rats were pretreated with chemical inhibitors of cytochrome P450 and glutathione (GSH) synthesis, prior to exposure to 1-BP at 800 ppm within inhalation chambers. 3. Systemic clearance of 1-BP in rat was rapid and decreased with increasing dose. As inhalation chamber concentration of 1-BP increased, the terminal elimination rates decreased. Half-life of 1-BP in rats following inhibition of P450 (9.6 h) or depletion of GSH (4.1 h) increased relative to controls (2.0 h) at 800 ppm. The percentage of 1-BP metabolized decreased with increasing inhalation exposure. Hepatic levels of GSH were significantly lowered regardless of the exposure level in both rats and mice. Chamber concentration-time curves were fit to a two compartment model which was used to estimate metabolic rate constants. 4. These data suggest that in rat, 1-BP clearance is saturable and that elimination is highly dependent on both P450 and GSH-dependent metabolism. This investigation in rodents may provide an understanding of interspecies differences in toxicokinetics and eventually aid translation of animal studies to human risk assessment.
Collapse
Affiliation(s)
- C Edwin Garner
- RTI International, Research Triangle Park , NC , USA and
| | | |
Collapse
|
36
|
Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep 2014; 31:109-39. [DOI: 10.1039/c3np70065h] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Yang JJ, Tao H, Huang C, Li J. Nuclear erythroid 2-related factor 2: a novel potential therapeutic target for liver fibrosis. Food Chem Toxicol 2013; 59:421-7. [PMID: 23793039 DOI: 10.1016/j.fct.2013.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 06/10/2013] [Accepted: 06/12/2013] [Indexed: 12/30/2022]
Abstract
Hepatic stellate cells (HSC) are the key fibrogenic cells of the liver. HSC activation is a process of cellular transdifferentiation that occurs upon liver injury, but the mechanisms underlying liver fibrosis are unknown. Nuclear erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor with a variety of downstream targets aimed at cytoprotection. However, Nrf2 has recently been implicated as a new therapeutic target for the treatment of liver fibrosis. This review focuses on the transcriptional repressors that either control liver injury or regulate specific fibrogenic functions of liver fibrosis. We also show that Nrf2 may reveal significant gene expression changes, suggesting that Nrf2 activation may ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Jing-Jing Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | | | | | | |
Collapse
|
38
|
Nrf2 protection against liver injury produced by various hepatotoxicants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:305861. [PMID: 23766851 PMCID: PMC3676920 DOI: 10.1155/2013/305861] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/21/2013] [Accepted: 04/29/2013] [Indexed: 12/16/2022]
Abstract
To investigate the role of Nrf2 as a master defense against the hepatotoxicity produced by various chemicals, Nrf2-null, wild-type, Keap1-knock down (Keap1-Kd) and Keap1-hepatocyte knockout (Keap1-HKO) mice were used as a “graded Nrf2 activation” model. Mice were treated with 14 hepatotoxicants at appropriate doses, and blood and liver samples were collected thereafter (6 h to 7 days depending on the hepatotoxicant). Graded activation of Nrf2 offered a Nrf2-dependent protection against the hepatotoxicity produced by carbon tetrachloride, acetaminophen, microcystin, phalloidin, furosemide, cadmium, and lithocholic acid, as evidenced by serum alanine aminotransferase (ALT) activities and by histopathology. Nrf2 activation also offered moderate protection against liver injury produced by ethanol, arsenic, bromobenzene, and allyl alcohol but had no effects on the hepatotoxicity produced by D-galactosamine/endotoxin and the Fas ligand antibody Jo-2. Graded Nrf2 activation reduced the expression of inflammatory genes (MIP-2, mKC, IL-1β, IL-6, and TNFα), oxidative stress genes (Ho-1, Egr1), ER stress genes (Gadd45 and Gadd153), and genes encoding cell death (Noxa, Bax, Bad, and caspase3). Thus, this study demonstrates that Nrf2 prevents the liver from many, but not all, hepatotoxicants. The Nrf2-mediated protection is accompanied by induction of antioxidant genes, suppression of inflammatory responses, and attenuation of oxidative stress.
Collapse
|
39
|
Role of the Nrf2-ARE pathway in liver diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:763257. [PMID: 23766860 PMCID: PMC3665261 DOI: 10.1155/2013/763257] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/12/2013] [Indexed: 12/14/2022]
Abstract
The liver is a central organ that performs a wide range of functions such as detoxification and metabolic homeostasis. Since it is a metabolically active organ, liver is particularly susceptible to oxidative stress. It is well documented that liver diseases including hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma are highly associated with antioxidant capacity. NF-E2-related factor-2 (Nrf2) is an essential transcription factor that regulates an array of detoxifying and antioxidant defense genes expression in the liver. It is activated in response to electrophiles and induces its target genes by binding to the antioxidant response element (ARE). Therefore, the roles of the Nrf2-ARE pathway in liver diseases have been extensively investigated. Studies from several animal models suggest that the Nrf2-ARE pathway collectively exhibits diverse biological functions against viral hepatitis, alcoholic and nonalcoholic liver disease, fibrosis, and cancer via target gene expression. In this review, we will discuss the role of the Nrf2-ARE pathway in liver pathophysiology and the potential application of Nrf2 as a therapeutic target to prevent and treat liver diseases.
Collapse
|
40
|
Reisman SA, Ward KW, Klaassen CD, Meyer CJ. CDDO-9,11-dihydro-trifluoroethyl amide (CDDO-dhTFEA) induces hepatic cytoprotective genes and increases bile flow in rats. Xenobiotica 2012; 43:571-8. [PMID: 23244591 DOI: 10.3109/00498254.2012.750022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. The transcription factor Nrf2 is important for hepatoprotection against oxidative stress, as it regulates many cytoprotective genes, including several important for glutathione (GSH) homeostasis. In addition to being an important endogenous antioxidant, GSH is also critical for the maintenance of bile acid-independent bile flow. While it has been well-established that synthetic oleanane triterpenoids pharmacologically activate Nrf2, their effects on bile flow and hepatic cytoprotective capacity have not been fully explored. 2. The present studies were conducted to evaluate the effects of a compound in this class, CDDO-9,11-dihydro-trifluoroethyl amide (CDDO-dhTFEA), on these parameters. CDDO-dhTFEA at 3, 10 or 30 mg/kg was orally administered to bile duct-cannulated rats once daily for 7 days, with bile collected 5 h after each dose for 1 h. Livers were harvested after the final bile collection for the evaluation of histology and Nrf2 targets. 3. CDDO-dhTFEA did not affect liver histology. CDDO-dhTFEA markedly and dose-dependently increased bile flow, as well as the biliary excretion of GSH, cholesterol and phospholipids without affecting biliary excretion of bile acids. This was accompanied by dose-dependent increases in mRNA expression and/or enzyme activity of a broad panel of cytoprotective Nrf2 target genes, including NAD(P)H quinone oxidoreductase 1 (Nqo1), thioredoxin reductase (Txnrd), sulfiredoxin 1(Srxn1), glutamate cysteine ligase catalytic and modifier subunits (Gclc and Gclm), glutathione reductase (Gsr), gamma-glutamyl transpeptidase 1 (Ggt1), heme oxygenase-1 (Ho-1) and epoxide hydrolase-1 (Eh-1). 4. These data further demonstrate the important hepatobiliary attributes of oleanane synthetic triterpenoids and support their continued investigation for liver diseases.
Collapse
|
41
|
Abstract
Nuclear erythroid 2-related factor 2 (Nrf2) is an oxidative stress-mediated transcription factor with a variety of downstream targets aimed at cytoprotection. Nrf2 has recently been implicated as a new therapeutic target for the treatment of liver disease. Here, we focus on the most common liver diseases-nonalcoholic fatty liver disease/steatohepatitis, alcoholic liver disease, and drug-induced liver injury-and highlight areas in the development of these conditions where activation of Nrf2 may alleviate disease progression.
Collapse
Affiliation(s)
- AM Bataille
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - JE Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
42
|
Jennings P, Limonciel A, Felice L, Leonard MO. An overview of transcriptional regulation in response to toxicological insult. Arch Toxicol 2012; 87:49-72. [DOI: 10.1007/s00204-012-0919-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/30/2012] [Indexed: 12/30/2022]
|
43
|
Tran HYP, Shin EJ, Saito K, Nguyen XKT, Chung YH, Jeong JH, Bach JH, Park DH, Yamada K, Nabeshima T, Yoneda Y, Kim HC. Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radic Biol Med 2012; 52:1159-74. [PMID: 22245015 DOI: 10.1016/j.freeradbiomed.2011.12.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 12/03/2011] [Accepted: 12/11/2011] [Indexed: 01/08/2023]
Abstract
We investigated the role of cytokines in trimethyltin (TMT)-induced convulsive neurotoxicity. Evaluation of TNF-α, interferon-γ, and interleukin (IL)-6 knockout (-/-) mice showed that the IL-6(-/-) mice had the greatest susceptibility to TMT-induced seizures. In both wild-type and IL-6(-/-) mice, TMT treatment increased glutathione oxidation, lipid peroxidation, protein oxidation, and levels of reactive oxygen species in the hippocampus. These effects were more pronounced in the IL-6(-/-) mice than in wild-type controls. In addition, the ability of TMT to induce nuclear translocation of Nrf2 and upregulation of heme oxygenase-1 and γ-glutamylcysteine ligase was significantly decreased in IL-6(-/-) mice. Treatment of IL-6(-/-) mice with recombinant IL-6 protein (rIL-6) restored these effects of TMT. Treatment with rIL-6 also significantly attenuated the TMT-induced inhibition of phosphoinositol 3-kinase (PI3K)/Akt signaling, thereby increasing phosphorylation of Bad (Bcl-xL/Bcl-2-associated death promoter protein), expression of Bcl-xL and Bcl-2, and the interaction between p-Bad and 14-3-3 protein and decreasing Bax expression and caspase-3 cleavage. Furthermore, in IL-6(-/-) mice, rIL-6 provided significant protection against TMT-induced neuronal degeneration; this effect of rIL-6 was counteracted by the PI3K inhibitor LY294002. These results suggest that activation of Nrf2-dependent glutathione homeostasis and PI3K/Akt signaling is required for the neuroprotective effects of IL-6 against TMT.
Collapse
Affiliation(s)
- Hoang-Yen Phi Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 200-701, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ichihara G, Kitoh J, Li W, Ding X, Ichihara S, Takeuchi Y. Neurotoxicity of 1-bromopropane: Evidence from animal experiments and human studies. J Adv Res 2012. [DOI: 10.1016/j.jare.2011.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Bitar MS, Al-Mulla F. A defect in Nrf2 signaling constitutes a mechanism for cellular stress hypersensitivity in a genetic rat model of type 2 diabetes. Am J Physiol Endocrinol Metab 2011; 301:E1119-29. [PMID: 21878664 DOI: 10.1152/ajpendo.00047.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nrf2 regulates the expression and coordinated induction of a battery of antioxidant phase 2 genes that protect cells against the cumulative damaging effects of oxidative stress (OS), a major contributor in the development of chronic diabetic complications. Using cultured dermal fibroblasts from rats with type 2 diabetes (DFs), we investigated the intracellular redox status and the adaptive response to OS, in which Nrf2 plays a central role. Our data confirmed that the generation of superoxide by NADPH oxidase and the mitochondria was enhanced in DFs compared with corresponding controls. This was associated with a decrease in the antioxidant capacity and an increase in the sensitivity of these DFs to hydrogen peroxide-induced necrotic cell death. Nrf2 levels in total cell extracts were diminished, and this abnormality appears to stem from a diabetes-related decrease in Nrf2 protein stability. Endogenous (oligomycin) and exogenous (tert-butylhydroquinone) induction of OS enhanced the nuclear translocation of Nrf2 and increased the mRNA expression of Nrf2-sensitive genes in control but not DFs. The activity of the GSK-3β/Fyn axis was increased markedly in DFs when compared with the corresponding controls. Chemical inhibition of GSK-3β mitigated the diabetes-related suppression of the OS-induced nuclear accumulation of Nrf2 and the transcriptional activation of the genes downstream of Nrf2. Overall, these findings suggest that an augmentation in GSK-3β/Fyn signaling during diabetes contributes to a deficit in both the cellular redox state and the Nrf2-based adaptive response to OS. Moreover, they may also offer a new perspective in the understanding and treatment of nonhealing diabetic wounds.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Animals
- Cells, Cultured
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Female
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Hypersensitivity/genetics
- Hypersensitivity/metabolism
- Hypersensitivity/pathology
- NF-E2-Related Factor 2/antagonists & inhibitors
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/physiology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Oxidative Stress/physiology
- Proto-Oncogene Proteins c-fyn/genetics
- Proto-Oncogene Proteins c-fyn/metabolism
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Transgenic
- Rats, Wistar
- Reactive Oxygen Species/adverse effects
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology, Faculty of Medicine, Health Sciences Center, University of Kuwait, Safat, Kuwait.
| | | |
Collapse
|
46
|
Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats. Toxicol Appl Pharmacol 2011; 256:386-98. [PMID: 21549141 DOI: 10.1016/j.taap.2011.04.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/12/2011] [Accepted: 04/17/2011] [Indexed: 01/24/2023]
Abstract
The influence of aging on susceptibility to environmental contaminants is not well understood. To extend knowledge in this area, we examined effects in rat brain of the volatile organic compound, toluene. The objective was to test whether oxidative stress (OS) plays a role in the adverse effects caused by toluene exposure, and if so, if effects are age-dependent. OS parameters were selected to measure the production of reactive oxygen species (NADPH Quinone oxidoreductase 1 (NQO1), NADH Ubiquinone reductase (UBIQ-RD)), antioxidant homeostasis (total antioxidant substances (TAS), superoxide dismutase (SOD), γ-glutamylcysteine synthetase (γ-GCS), glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRD)), and oxidative damage (total aconitase and protein carbonyls). In this study, Brown Norway rats (4, 12, and 24 months) were dosed orally with toluene (0, 0.65 or 1g/kg) in corn oil. Four hours later, frontal cortex, cerebellum, striatum, and hippocampus were dissected, quick frozen on dry ice, and stored at -80°C until analysis. Some parameters of OS were found to increase with age in select brain regions. Toluene exposure also resulted in increased OS in select brain regions. For example, an increase in NQO1 activity was seen in frontal cortex and cerebellum of 4 and 12 month old rats following toluene exposure, but only in the hippocampus of 24 month old rats. Similarly, age and toluene effects on glutathione enzymes were varied and brain-region specific. Markers of oxidative damage reflected changes in oxidative stress. Total aconitase activity was increased by toluene in frontal cortex and cerebellum at 12 and 24 months, respectively. Protein carbonyls in both brain regions and in all age groups were increased by toluene, but step-down analyses indicated toluene effects were statistically significant only in 12month old rats. These results indicate changes in OS parameters with age and toluene exposure resulted in oxidative damage in frontal cortex and cerebellum of 12 month old rats. Although increases in oxidative damage are associated with increases in horizontal motor activity in older rats, further research is warranted to determine if these changes in OS parameters are related to neurobehavioral and neurophysiological effects of toluene in animal models of aging.
Collapse
|
47
|
Higgins LG, Hayes JD. The cap'n'collar transcription factor Nrf2 mediates both intrinsic resistance to environmental stressors and an adaptive response elicited by chemopreventive agents that determines susceptibility to electrophilic xenobiotics. Chem Biol Interact 2010; 192:37-45. [PMID: 20932822 DOI: 10.1016/j.cbi.2010.09.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 09/24/2010] [Indexed: 01/09/2023]
Abstract
Transcription factor Nrf2 regulates genes encoding drug-metabolising enzymes and drug transporters, as well as enzymes involved in the glutathione, thioredoxin and peroxiredoxin antioxidant pathways. Using mouse embryonic fibroblast (MEF) cells from Nrf2(+/+) and Nrf2(-/-) mice, in conjunction with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay, we have shown that loss of Nrf2 diminishes the intrinsic resistance of mutant fibroblasts towards isothiocyanates (i.e. sulforaphane), epoxides (i.e. (2S,3S)-(-)-3-phenylglycidol, ethyl 3-phenylglycidate and styrene-7,8-epoxide), peroxides, hydroquinones and quinones (i.e. tert-butylhydroperoxide, tert-butylhydroquinone and 2,3-dimethoxynaphthoquinone), NaAsO(2), and various mutagens, including β-propiolactone, cisplatin, mechlorethamine and methyl methanesulfonate to ∼50% of that observed in equivalent wild-type cells. Exposure of Nrf2(+/+) fibroblasts, but not Nrf2(-/-) fibroblasts, to a non-toxic dose (3μmol/l) of the chemopreventive agent sulforaphane (Sul) stimulated an adaptive response that, 18h after first being subjected to the isothiocyanate, caused an induction of between 2- and 10-fold in the levels of mRNA for glutamate-cysteine ligase catalytic (Gclc) and modifier (Gclm) subunits, glutathione S-transferases and NAD(P)H:quinone oxidoreductase-1 (Nqo1); this was accompanied by an increase in total glutathione of between 1.5- and 1.9-fold. Pre-treatment of Nrf2(+/+) MEF cells with 3μM Sul for 18h prior to challenge with xenobiotics, conferred between 2.0- and 4.0-fold protection against isothiocyanates, reactive carbonyls, peroxides, quinones, NaAsO(2), and the anticancer nitrogen mustard chlorambucil, but pre-treatment with 3μM Sul produced no such increased tolerance in Nrf2(-/-) MEF cells. The inducible resistance towards acrolein, cumene hydroperoxide and chlorambucil, produced by pre-treating wild-type fibroblasts with 3μM Sul, was dependent on glutathione because simultaneous pre-treatment with 5μmol/l buthionine sulfoximine abolished the increased tolerance of these xenobiotics. However, inducible resistance towards menadione that occurred upon pre-treatment with 3μM Sul was independent of glutathione and may be due to upregulation of Nqo1. Thus Nrf2 controls cellular resistance against electrophiles.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|