1
|
Thakkar Y, Kobets T, Api AM, Duan JD, Williams GM. The Chicken Egg Genotoxicity Assay (CEGA): Assessing Target Tissue Exposure and Metabolism in the Embryo-Fetal Chicken Livers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025. [PMID: 40356313 DOI: 10.1002/em.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
The Chicken Egg Genotoxicity Assay (CEGA) is an avian egg-based model that utilizes the livers of developing chicken embryo-fetuses to assess the ability of chemicals to produce direct DNA damage. The main goal of the study was to evaluate target tissue exposure and metabolism in the CEGA to assess its suitability as a biologically relevant new approach methodology (NAM) for detecting the genotoxic potential of chemicals. An imaging study using two-photon excitation microscopy after the administration of a fluorescent dye (acridine orange) verified that chemicals following administration into the air sac of the fertilized chicken egg reach the target organ, liver. A metabolism study using liquid chromatography with high resolution mass spectrometry (LC/MS), conducted after the administration of benzo(a)pyrene (B(a)P) according to the CEGA protocol, confirmed the formation of sufficient amounts of reactive metabolite(s) responsible for the genotoxic effects of a parent compound upon reaching the target tissue. Moreover, an RNA sequencing study revealed that B(a)P in embryo-fetal chicken livers significantly upregulated several genes responsible for the activity of the CYP1A1 enzyme, which is critical for the bioactivation of B(a)P. These findings, along with the previously reported DNA damage (i.e., DNA adducts and single-strand breaks) produced by B(a)P in CEGA, support sufficient target tissue exposure to B(a)P and the ability of avian fetal livers to bioactivate B(a)P to a reactive intermediate. Overall, the findings in the study support the conclusion that the CEGA can be considered a robust potential alternative to the animal testing strategy for assessing the genotoxic potential of chemicals.
Collapse
Affiliation(s)
- Yax Thakkar
- Research Institute for Fragrance Materials, Inc., Mahwah, New Jersey, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - T Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., Mahwah, New Jersey, USA
| | - J D Duan
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - G M Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
2
|
Rude CI, Wilson LB, La Du J, Lalli PM, Colby SM, Schultz KJ, Smith JN, Waters KM, Tanguay RL. Aryl hydrocarbon receptor-dependent toxicity by retene requires metabolic competence. Toxicol Sci 2024; 202:50-68. [PMID: 39107868 PMCID: PMC11514837 DOI: 10.1093/toxsci/kfae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds frequently detected in the environment with widely varying toxicities. Many PAHs activate the aryl hydrocarbon receptor (AHR), inducing the expression of a battery of genes, including xenobiotic metabolizing enzymes like cytochrome P450s (CYPs); however, not all PAHs act via this mechanism. We screened several parent and substituted PAHs in in vitro AHR activation assays to classify their unique activity. Retene (1-methyl-7-isopropylphenanthrene) displays Ahr2-dependent teratogenicity in zebrafish, but did not activate human AHR or zebrafish Ahr2, suggesting a retene metabolite activates Ahr2 in zebrafish to induce developmental toxicity. To investigate the role of metabolism in retene toxicity, studies were performed to determine the functional role of cyp1a, cyp1b1, and the microbiome in retene toxicity, identify the zebrafish window of susceptibility, and measure retene uptake, loss, and metabolite formation in vivo. Cyp1a-null fish were generated using CRISPR-Cas9. Cyp1a-null fish showed increased sensitivity to retene toxicity, whereas Cyp1b1-null fish were less susceptible, and microbiome elimination had no significant effect. Zebrafish required exposure to retene between 24 and 48 hours post fertilization (hpf) to exhibit toxicity. After static exposure, retene concentrations in zebrafish embryos increased until 24 hpf, peaked between 24 and 36 hpf, and decreased rapidly thereafter. We detected retene metabolites at 36 and 48 hpf, indicating metabolic onset preceding toxicity. This study highlights the value of combining molecular and systems biology approaches with mechanistic and predictive toxicology to interrogate the role of biotransformation in AHR-dependent toxicity.
Collapse
Affiliation(s)
- Christian I Rude
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Lindsay B Wilson
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Jane La Du
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| | - Priscila M Lalli
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Sean M Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katherine J Schultz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Jordan N Smith
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Katrina M Waters
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Robyn L Tanguay
- Environmental and Molecular Toxicology Department, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
3
|
Shao L, Yue F, Fan J, Su Q, Liu H, Zhang Q, Xu L. Comparative Proteomics and Metabonomics Analysis of Different Diapause Stages Revealed a New Regulation Mechanism of Diapause in Loxostege sticticalis (Lepidoptera: Pyralidae). Molecules 2024; 29:3472. [PMID: 39124877 PMCID: PMC11314584 DOI: 10.3390/molecules29153472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024] Open
Abstract
Histone acetylation is an important epigenetic mechanism that has been shown to play a role in diapause regulation. To explore the physiological and molecular mechanisms of histone deacetylase in the diapause process, LC-MS/MS analysis was used to perform TMT proteomic and metabolomic analysis on non-diapause (ND), pre-diapause (PreD), diapause (D), cold treatment (CT), and post-diapause (RD) stages of the meadow moth. A total of 5367 proteins were identified by proteomics, including 1179 differentially expressed proteins. We found 975 (602 up-regulated and 373 down-regulated), 997 (608 up-regulated and 389 down-regulated), 1119 (726 up-regulated and 393 down-regulated), 1179 (630 up-regulated and 549 down-regulated), 94 (51 up-regulated and 43 down-regulated), 111 (63 up-regulated and 48 down-regulated), 533 (243 up-regulated and 290 down-regulated), 58 (31 up-regulated and 27 down-regulated), and 516 (228 up-regulated and 288 down-regulated) proteins in ND and PreD, ND and D, ND and CT, ND and RD, PreD and D, PreD and CT, PreD and RD, D and CT, D and RD, and CT and RD stages, respectively. A total of 1255 differentially expressed metabolites were annotated by metabolomics. Through KEGG analysis and time series analysis of differentially expressed metabolites, we found that phospholipids were annotated in significantly different modules, demonstrating their important role in the diapause process of the meadow moth. Using phospholipids as an indicator for weighted gene co-expression network analysis, we analyzed the most relevant differentially expressed proteins in the module and found that ribosomal 40s and 60s subunits were the most relevant proteins for diapause. Because there have been studies that have shown that histone deacetylase is associated with the diapause of meadow moths, we believe that histone deacetylase regulates the 40s and 60s subunits of ribosomes, which in turn affects the diapause of meadow moths. This finding expands our understanding of the regulation of meadow moth diapause and provides new insights into its control mechanism.
Collapse
Affiliation(s)
- Lijun Shao
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.S.)
| | - Fangzheng Yue
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110034, China
| | - Jinfu Fan
- Erdos Forestry and Grassland Bureau, Erdos 017000, China (Q.S.)
| | - Qin Su
- Erdos Forestry and Grassland Bureau, Erdos 017000, China (Q.S.)
| | - Hairui Liu
- Jiaxiang County Natural Resources and Planning Bureau, Jining 272000, China
| | - Quanyi Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.S.)
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China; (L.S.)
| |
Collapse
|
4
|
John A, Raza H. Azadirachtin Attenuates Carcinogen Benzo(a) Pyrene-Induced DNA Damage, Cell Cycle Arrest, Apoptosis, Inflammatory, Metabolic, and Oxidative Stress in HepG2 Cells. Antioxidants (Basel) 2023; 12:2001. [PMID: 38001854 PMCID: PMC10669168 DOI: 10.3390/antiox12112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Azadirachtin (AZD), a limonoid from the versatile, tropical neem tree (Azadirachta indica), is well known for its many medicinal, and pharmacological effects. Its effects as an anti-oxidant, anti-inflammatory, and anti-cancer agent are well known. However, not many studies have explored the effects of AZD on toxicities induced by benzo(a)pyrene (B(a)P), a toxic component of cigarette smoke known to cause DNA damage and cell cycle arrest, leading to different kinds of cancer. In the present study, using HepG2 cells, we investigated the protective effects of Azadirachtin (AZD) against B(a)P-induced oxidative/nitrosative and metabolic stress and mitochondrial dysfunction. Treatment with 25 µM B(a)P for 24 h demonstrated an increased production of reactive oxygen species (ROS), followed by increased lipid peroxidation and DNA damage presumably, due to the increased metabolic activation of B(a)P by CYP 450 1A1/1A2 enzymes. We also observed intrinsic and extrinsic apoptosis, alterations in glutathione-dependent redox homeostasis, cell cycle arrest, and inflammation after B(a)P treatment. Cells treated with 25 µM AZD for 24 h showed decreased oxidative stress and apoptosis, partial protection from DNA damage, and an improvement in mitochondrial functions and bioenergetics. The improvement in antioxidant status, anti-inflammatory potential, and alterations in cell cycle regulatory markers qualify AZD as a potential therapeutic in combination with anti-cancer drugs.
Collapse
Affiliation(s)
| | - Haider Raza
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, 5th Postal Region, Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
5
|
Pandelides Z, Sturgis MC, Thornton C, Aluru N, Willett KL. Benzo[a]pyrene-induced multigenerational changes in gene expression, behavior, and DNA methylation are primarily influenced by paternal exposure. Toxicol Appl Pharmacol 2023; 469:116545. [PMID: 37146889 PMCID: PMC11589888 DOI: 10.1016/j.taap.2023.116545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is implicated in many developmental and behavioral adverse outcomes in offspring of exposed parents. The objective of this study was to investigate sex-dependent multigenerational effects of preconceptional effects of BaP exposure. Adult wild-type (5D) zebrafish were fed 708 μg BaP/g diet (measured) at a rate of 1% body weight twice/day (14 μg BaP/g fish/day) for 21 days. Fish were spawned using a crossover design, and parental (F0) behavior and reproductive indexes were measured. In offspring, behavioral effects were measured at 96 h post fertilization (hpf) in F1 & F2 larvae, and again when F1s were adults. Compared to controls, there was no significant effect on F0 adult behavior immediately following exposure, but locomotor activity was significantly increased in F1 adults of both sexes. Larval behavior (96 hpf, photomotor response assay) was significantly altered in both the F1 and F2 generations. To assess molecular changes associated with BaP exposure, we conducted transcriptome and DNA methylation profiling in F0 gametes (sperm and eggs) and F1 embryos (10 hpf) from all four crosses. Embryos resulting from the BaP male and control female cross had the most differentially expressed genes (DEGs) and differentially methylated regions (DMRs). Some DMRs were associated with genes encoding chromatin modifying enzymes suggesting regulation of chromatin conformation by DNA methylation. Overall, these results suggest that parental dietary BaP exposure significantly contributes to the multigenerational adverse outcomes.
Collapse
Affiliation(s)
- Z Pandelides
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - M C Sturgis
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - C Thornton
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America
| | - N Aluru
- Biology Department, Woods Hole Oceanographic Institution and Woods Hole Center for Oceans and Human Health, Woods Hole, MA 02543, United States of America
| | - K L Willett
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
6
|
Cui J, Lin K, Xu L, Yue F, Yu L, Zhang Q. Transcriptome Analysis of Beet Webworm Shows That Histone Deacetylase May Affect Diapause by Regulating Juvenile Hormone. INSECTS 2022; 13:835. [PMID: 36135537 PMCID: PMC9505968 DOI: 10.3390/insects13090835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The beet webworm (Loxostege sticticalis L.) is an important agricultural pest and can tolerate harsh environmental conditions by entering diapause. The diapause mechanism of beet webworm is unknown. Therefore, we conducted a transcriptomic study of the process from diapause induction to diapause release in beet webworms. The results revealed 393 gene modules closely related to the diapause of beet webworm. The hub gene of the red module was the HDACI gene, which acts through histone deacetylase (HDAC) enzymes. HDAC enzyme activity was regulated by the light duration and influenced the JH content under induced beet webworm diapause conditions (12 h light:12 h dark). In addition, transcriptomic data suggested that circadian genes may not be the key genes responsible for beet webworm diapause. However, we showed that the photoperiod affects HDAC enzyme activity, and HDAC can regulate the involvement of JH in beet webworm diapause. This study provided a new module for studying insect diapause and links histone acetylation and diapause at the transcriptome level.
Collapse
Affiliation(s)
- Jin Cui
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Kejian Lin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Linbo Xu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Fangzheng Yue
- Center for Biological Disaster Prevention and Control, Chinese National Forestry and Grassland Administration, Shenyang 110034, China
| | - Liangbin Yu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Quanyi Zhang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| |
Collapse
|
7
|
Yan L, Messner CJ, Tian M, Gou X, Suter-Dick L, Zhang X. Evaluation of dioxin induced transcriptomic responses in a 3D human liver microtissue model. ENVIRONMENTAL RESEARCH 2022; 210:112906. [PMID: 35181307 DOI: 10.1016/j.envres.2022.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Three-dimensional human liver microtissue model provides a promising method for predicting the human hepatotoxicity of environmental chemicals. However, the dynamics of transcriptional responses of 3D human liver microtissue model to dioxins exposure remain unclear. Herein, time-series transcriptomic analysis was used to characterize modulation of gene expression over 14 days in 3D human liver microtissues exposed to 2,3,7,8-tetra-chlorodibenzo-p-dioxin (TCDD, 31 nM, 10 ng/ml). Changes in gene expression and modulation of biological pathways were evaluated at several time points. The results showed that microtissues stably expressed genes related to toxicological pathways (e.g. highly of genes involved in external stimuli and maintenance of cell homeostasis pathways) during the 14-day culture period. Furthermore, a weekly phenomenon pattern was observed for the number of the differentially expressed genes in microtissues exposed to TCDD at each time point. TCDD led to an induction of genes involved in cell cycle regulation at day three. Metabolic pathways were the main significantly induced pathways during the subsequent days, with the immune/inflammatory response enriched on the fifth day, and the cellular response to DNA damage was identified at the end of the exposure. Finally, relevant transcription patterns identified in microtissues were compared with published data on rodent and human cell-line studies to elucidate potential species-specific responses to TCDD over time. Cell development and cytochrome P450 pathway were mainly affected after a 3-day exposure, with the DNA damage response identified at the end of exposure in the human microtissue system but not in mouse/rat primary hepatocytes models. Overall, the 3D human liver microtissue model is a valuable tool to predict the toxic effects of environmental chemicals with a relatively long exposure.
Collapse
Affiliation(s)
- Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Catherine Jane Messner
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Laura Suter-Dick
- University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Sharin T, Gyasi H, Jones SP, Crump D, O'Brien JM. Concentration- and time-dependent induction of Cyp1a and DNA damage response by benzo(a)pyrene in LMH three-dimensional spheroids. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:319-327. [PMID: 33956355 DOI: 10.1002/em.22433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
In vitro liver toxicity tests performed using cell lines cultured as two-dimensional (2D) monolayer have limited CYP450 activity and may be inadequate for screening chemicals that require activation to exert toxicity. Metabolic competence is greatly improved using three-dimensional (3D) cell culture. In this study, Cyp1a induction, and subsequent DNA damage response induced by benzo(a)pyrene (BaP) were compared in 2D monolayer cells and 3D spheroids of the chicken hepatic cell line, LMH. Cells were exposed to BaP (0.1-100 μM) for different durations: 8, 24, 35, or 48 hr. Cyp1a activity, mRNA expression of Cyp1a and DNA damage response (DDR) genes, and phosphorylation of H2AX (γH2AX) were determined using the EROD assay, a customized PCR array, and flow cytometry, respectively. EROD activity was induced at 8 hr and achieved maximal induction at 24 hr in spheroids; earlier time points than for monolayer cells. In spheroids, BaP exposure resulted in a concentration-dependent increase in Cyp1a4 mRNA expression at 8 hr followed by upregulation of DDR genes at 24 hr, whereas Cyp1a4 mRNA induction was only observed at 48 hr in monolayer cells. Cyp1a5 mRNA was induced at 8 hr in monolayer cells but maximum induction was greater in spheroids. An increase in γH2AX was observed at 24 hr in spheroids; this endpoint was not evaluated in monolayer cells. These results suggest that BaP metabolism precedes the DNA damage response and occurs earlier in 3D spheroids. This study demonstrates that LMH 3D spheroids could be a suitable metabolically-competent in vitro model to measure genotoxicity of chemicals that require metabolic activation by Cyp1a.
Collapse
Affiliation(s)
- Tasnia Sharin
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Helina Gyasi
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephanie P Jones
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Doug Crump
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Jason M O'Brien
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
da Silva Moreira S, de Lima Inocêncio LC, Jorge BC, Reis ACC, Hisano H, Arena AC. Effects of benzo(a)pyrene at environmentally relevant doses on embryo-fetal development in rats. ENVIRONMENTAL TOXICOLOGY 2021; 36:831-839. [PMID: 33350577 DOI: 10.1002/tox.23085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Studies have demonstrated that Benzo(a)Pyrene (BaP), a polycyclic aromatic hydrocarbon ubiquituous in the environment, can cause teratogenic effects. Since the majority of studies used in vitro models or high doses of BaP, this study evaluated the teratogenicity, reproductive and developmental performance of low doses of BaP through maternal and fetus examination after daily oral administration of BaP (0; 0.1; 1.0 or 10 μg/kg) to pregnant Wistar rats from Gestational day (GD) 6 to GD 15 (the organogenesis period). Pregnant rats did not exhibit clinical signs of toxicity during the exposure period. However, dams exposed to the lowest dose of BaP showed a reduction in the erythrocytes number and in the creatinine levels. The groups exposed to 0.1 and 1.0 μg/kg presented a decrease in placental efficiency, as well as an increase in placental weight. After fetal examination, the treated group with the lowest dose showed a reduced relative anogenital distance, while the curve of normal distribution of weight was changed in the highest dose group. In addition, anomalies evidenced by changes in the renal size and degree of fetal ossification were observed in treated-fetus. In conclusion, treatment with BaP during organogenesis at this dose level is detrimental to the normal development of fetuses.
Collapse
Affiliation(s)
- Suyane da Silva Moreira
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Leonardo Cesar de Lima Inocêncio
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Bárbara Campos Jorge
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | - Ana Carolina Casali Reis
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
- Center of Toxicological Assistance (CEATOX), Institute of Biosciences of Botucatu, Universidade Estadual Paulista-Botucatu (UNESP), São Paulo, Brazil
| |
Collapse
|
10
|
Binello A, Cravotto G, Menzio J, Tagliapietra S. Polycyclic aromatic hydrocarbons in coffee samples: Enquiry into processes and analytical methods. Food Chem 2020; 344:128631. [PMID: 33261994 DOI: 10.1016/j.foodchem.2020.128631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered to be potentially genotoxic and carcinogenic in humans. These ubiquitous environmental pollutants may derive from the incomplete combustion and pyrolysis of organic matter. Coffee is an extensively consumed drink, and its PAHs contamination is not only ascribed to environmental pollution, but mainly to the roasting processes. Although no fixed limits have yet been set for residual PAHs in coffee, the present review intends to summarise and discuss the knowledge and recent advances in PAHs formation during roasting. Because coffee origin and brewing operations may affect PAHs content, we thoroughly analysed the literature on extraction and purification procedures, as well as the main analytical chromatographic methods for both coffee powders and brews. With regards to the safety of this appreciated commodity, the control on the entire production chain is desirable, because of coffee beverage could contribute to the daily human intake of PAHs.
Collapse
Affiliation(s)
- Arianna Binello
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, via P. Giuria 9, 10235 Turin, Italy.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, via P. Giuria 9, 10235 Turin, Italy.
| | - Janet Menzio
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, via P. Giuria 9, 10235 Turin, Italy.
| | - Silvia Tagliapietra
- Dipartimento di Scienza e Tecnologia del Farmaco, University of Turin, via P. Giuria 9, 10235 Turin, Italy.
| |
Collapse
|
11
|
The application of omics-based human liver platforms for investigating the mechanism of drug-induced hepatotoxicity in vitro. Arch Toxicol 2019; 93:3067-3098. [PMID: 31586243 DOI: 10.1007/s00204-019-02585-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Drug-induced liver injury (DILI) complicates safety assessment for new drugs and poses major threats to both patient health and drug development in the pharmaceutical industry. A number of human liver cell-based in vitro models combined with toxicogenomics methods have been developed as an alternative to animal testing for studying human DILI mechanisms. In this review, we discuss the in vitro human liver systems and their applications in omics-based drug-induced hepatotoxicity studies. We furthermore present bioinformatic approaches that are useful for analyzing toxicogenomic data generated from these models and discuss their current and potential contributions to the understanding of mechanisms of DILI. Human pluripotent stem cells, carrying donor-specific genetic information, hold great potential for advancing the study of individual-specific toxicological responses. When co-cultured with other liver-derived non-parenchymal cells in a microfluidic device, the resulting dynamic platform enables us to study immune-mediated drug hypersensitivity and accelerates personalized drug toxicology studies. A flexible microfluidic platform would also support the assembly of a more advanced organs-on-a-chip device, further bridging gap between in vitro and in vivo conditions. The standard transcriptomic analysis of these cell systems can be complemented with causality-inferring approaches to improve the understanding of DILI mechanisms. These approaches involve statistical techniques capable of elucidating regulatory interactions in parts of these mechanisms. The use of more elaborated human liver models, in harmony with causality-inferring bioinformatic approaches will pave the way for establishing a powerful methodology to systematically assess DILI mechanisms across a wide range of conditions.
Collapse
|
12
|
Dai W, Fu Y, Deng Y, Zeng Z, Gu P, Liu H, Liu J, Xu X, Wu D, Luo X, Yang L, Zhang J, Lin K, Hu G, Huang H. Regulation of Wnt Singaling Pathway by Poly (ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Lung Cancer in Mice Induced by Benzo(a)pyrene Inhalation Exposure. Front Pharmacol 2019; 10:338. [PMID: 31130856 PMCID: PMC6509174 DOI: 10.3389/fphar.2019.00338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the mechanism remained unclear. In this study, we further examined this process in vivo by using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice were individually treated with 0 or 10 μg/m3 BaP for 90 or 180 days by dynamic inhalation exposure. Pathological analysis of lung tissues showed that, with extended exposure time, carcinogenesis and injury in the lungs of WT mice was progressively worse; however, the injury was minimal and carcinogenesis was not detected in the lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure time was extended, the protein phosphorylation level was down-regulated in WT mice, but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA in WT mice were significantly higher than those in the control group, but there was no significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis, was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not statistically affected. Our work provides initial evidence that PARG silencing suppresses BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and Wnt ligands may provide new options for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Wenjuan Dai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Yingbin Fu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yanxia Deng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhuoying Zeng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Pan Gu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hailong Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xinyun Xu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Desheng Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xianru Luo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Linqing Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jinzhou Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Kai Lin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Gonghua Hu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China.,Department of Preventive Medicine, Gannan Medical University, Ganzhou, China
| | - Haiyan Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
13
|
Cai R, Qimuge N, Ma M, Wang Y, Tang G, Zhang Q, Sun Y, Chen X, Yu T, Dong W, Yang G, Pang W. MicroRNA-664-5p promotes myoblast proliferation and inhibits myoblast differentiation by targeting serum response factor and Wnt1. J Biol Chem 2018; 293:19177-19190. [PMID: 30323063 DOI: 10.1074/jbc.ra118.003198] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 10/02/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression at the post-transcriptional level and are involved in the regulation of the formation, maintenance, and function of skeletal muscle. Using miRNA sequencing and bioinformatics analysis, we previously found that the miRNA miR-664-5p is significantly differentially expressed in longissimus dorsi muscles of Rongchang pigs. However, the molecular mechanism by which miR-664-5p regulates myogenesis remains unclear. In this study, using flow cytometry, 5-ethynyl-2'-deoxyuridine staining, and cell count and immunofluorescent assays, we found that cell-transfected miR-664-5p mimics greatly promoted proliferation of C2C12 mouse myoblasts by increasing the proportion of cells in the S- and G2-phases and up-regulating the expression of cell cycle genes. Moreover, miR-664-5p inhibited myoblast differentiation by down-regulating myogenic gene expression. In contrast, miR-664-5p inhibitor repressed myoblast proliferation and promoted myoblast differentiation. Mechanistically, using dual-luciferase reporter gene experiments, we demonstrated that miR-664-5p directly targets the 3'-UTR of serum response factor (SRF) and Wnt1 mRNAs. We also observed that miR-664-5p inhibits both mRNA and protein levels of SRF and Wnt1 during myoblast proliferation and myogenic differentiation, respectively. Furthermore, the activating effect of miR-664-5p on myoblast proliferation was attenuated by SRF overexpression, and miR-664-5p repressed myogenic differentiation by diminishing the accumulation of nuclear β-catenin. Of note, miR-664-5p's inhibitory effect on myogenic differentiation was abrogated by treatment with Wnt1 protein, the key activator of the Wnt/β-catenin signaling pathway. Collectively, our findings suggest that miR-664-5p controls SRF and canonical Wnt/β-catenin signaling pathways in myogenesis.
Collapse
Affiliation(s)
- Rui Cai
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Naren Qimuge
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Meilin Ma
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yingqian Wang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Guorong Tang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Que Zhang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yunmei Sun
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Xiaochang Chen
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Taiyong Yu
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Wuzi Dong
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Gongshe Yang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Weijun Pang
- From the Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| |
Collapse
|
14
|
Hong X, Qin J, Chen R, Yuan L, Zha J, Huang C, Li N, Ji X, Wang Z. Phenanthrene-Induced Apoptosis and Its Underlying Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:14397-14405. [PMID: 29161501 DOI: 10.1021/acs.est.7b04045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phenanthrene (Phe) is one of the most abundant low-molecular-weight polycyclic aromatic hydrocarbons (PAHs). Widespread human and aquatic organism exposure to Phe has been reported, but the toxic effects of Phe and potential mechanisms are unclear. We focused on the chronic hepatotoxicity of Phe in adult Chinese rare minnows (Gobiocypris rarus) and the underlying mechanisms. The chronic effects of exposing Chinese rare minnows to 8.9, 82.3, or 510.0 μg/L Phe for 30 days were examined by histopathological observation, TUNEL assays, caspase activity assays, and gene expression profiles. The liver lesion frequency and hepatocyte apoptosis were increased in Phe-exposed groups. Caspase 9 and caspase 3 enzyme activity in liver tissues was markedly increased. The expression of miR-17/92 cluster members was significantly increased in the 82.3 and 510.0 μg/L groups. Moreover, the response of primary hepatocytes indicated a significant decrease in the mitochondrial membrane potential (MMP) after a 48 h exposure to Phe. Interestingly, miR-18a was significantly decreased in primary hepatocytes in all treatments. Moreover, molecular docking indicated that Phe might have the same binding domain as pri-miR-18a, forming pi-pi and pi-σ interactions with heterogeneous nuclear ribonucleoprotein (hnRNP) A1. Given the above, Phe caused liver lesions and induced hepatocyte apoptosis through the intrinsic apoptosis pathway, and the interaction of Phe with hnRNP A1 contributes to the suppression of miR-18a expression and hepatocyte apoptosis.
Collapse
Affiliation(s)
- Xiangsheng Hong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University , Wuhan 430070, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Jianhui Qin
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agriculture University , Wuhan 430070, China
| | - Rui Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Lilai Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Jinmiao Zha
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Chao Huang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Beijing Key Laboratory of Industrial Wastewater Treatment and Reuse, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100085, China
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
15
|
Shi Q, Fijten RR, Spina D, Riffo Vasquez Y, Arlt VM, Godschalk RW, Van Schooten FJ. Altered gene expression profiles in the lungs of benzo[a]pyrene-exposed mice in the presence of lipopolysaccharide-induced pulmonary inflammation. Toxicol Appl Pharmacol 2017; 336:8-19. [PMID: 28987381 PMCID: PMC5703654 DOI: 10.1016/j.taap.2017.09.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022]
Abstract
Patients with inflammatory lung diseases are often additionally exposed to polycyclic aromatic hydrocarbons like B[a]P and B[a]P-induced alterations in gene expression in these patients may contribute to the development of lung cancer. Mice were intra-nasally treated with lipopolysaccharide (LPS, 20μg/mouse) to induce pulmonary inflammation and subsequently exposed to B[a]P (0.5mg/mouse) by intratracheal instillation. Gene expression changes were analyzed in mouse lungs by RNA microarrays. Analysis of genes that are known to be involved in the cellular response to B[a]P indicated that LPS significantly inhibited gene expression of various enzymes linked to B[a]P metabolism, which was confirmed by phenotypic analyses of enzyme activity. Ultimately, these changes resulted in higher levels of B[a]P-DNA adducts in the lungs of mice exposed to B[a]P with prior LPS treatment compared to the lungs of mice exposed to B[a]P alone. Using principle component analysis (PCA), we found that of all the genes that were significantly altered in their expression, those that were able to separate the different exposure conditions were predominantly related to immune-response. Moreover, an overall analysis of differentially expressed genes indicated that cell-cell adhesion and cell-cell communication was inhibited in lungs of mice that received both B[a]P and LPS. Our results indicate that pulmonary inflammation increased the genotoxicity of B[a]P via inhibition of both phase I and II metabolism. Therefore, inflammation could be a critical contributor to B[a]P-induced carcinogenesis in humans.
Collapse
Affiliation(s)
- Q Shi
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - R R Fijten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| | - D Spina
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Y Riffo Vasquez
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - V M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environmental & Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - R W Godschalk
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands.
| | - F J Van Schooten
- Department of Toxicology & Pharmacology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, PO Box 616, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
16
|
Inflammation and the chemical carcinogen benzo[a]pyrene: Partners in crime. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:12-24. [DOI: 10.1016/j.mrrev.2017.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/02/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
|
17
|
Analysis of temporal expression profiles after sciatic nerve injury by bioinformatic method. Sci Rep 2017; 7:9818. [PMID: 28852045 PMCID: PMC5575162 DOI: 10.1038/s41598-017-10127-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/04/2017] [Indexed: 02/05/2023] Open
Abstract
After Peripheral nerve injuries (PNI), many complicated pathophysiologic processes will happen. A global view of functional changes following PNI is essential for the looking for the adequate therapeutic approaches. In this study, we performed an in-depth analysis on the temporal expression profiles after sciatic nerve injury by bioinformatic methods, including (1) cluster analysis of the samples; (2) identification of gene co-expression modules(CEMs) correlated with the time points; (3) analysis of differentially expressed genes at each time point (DEGs-ET); (4) analysis of differentially expressed genes varying over time (DEGs-OT); (5) creating Pairwise Correlation Plot for the samples; (6) Time Series Regression Analysis; (7) Determining the pathway, GO (gene ontology) and drug by enrichment analysis. We found that at a 3 h "window period" some specific gene expression may exist after PNI, and responses to lipopolysaccharide (LPS) and TNF signaling pathway may play important roles, suggesting that the inflammatory microenvironment exists after PNI. We also found that troglitazone was closely associated with the change of gene expression after PNI. Therefore, the further evaluation of the precise mechanism of troglitazone on PNI is needed and it may contribute to the development of new drugs for patients with PNI.
Collapse
|
18
|
Souza T, Jennen D, van Delft J, van Herwijnen M, Kyrtoupolos S, Kleinjans J. New insights into BaP-induced toxicity: role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch Toxicol 2016; 90:1449-58. [PMID: 26238291 PMCID: PMC4873527 DOI: 10.1007/s00204-015-1572-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Benzo(a)pyrene (BaP) is a ubiquitous carcinogen resulting from incomplete combustion of organic compounds and also present at high levels in cigarette smoke. A wide range of biological effects has been attributed to BaP and its genotoxic metabolite BPDE, but the contribution to BaP toxicity of intermediary metabolites generated along the detoxification path remains unknown. Here, we report for the first time how 3-OH-BaP, 9,10-diol and BPDE, three major BaP metabolites, temporally relate to BaP-induced transcriptomic alterations in HepG2 cells. Since BaP is also known to induce AhR activation, we additionally evaluated TCDD to source the expression of non-genotoxic AhR-mediated patterns. 9,10-Diol was shown to activate several transcription factor networks related to BaP metabolism (AhR), oxidative stress (Nrf2) and cell proliferation (HIF-1α, AP-1) in particular at early time points, while BPDE influenced expression of genes involved in cell energetics, DNA repair and apoptotic pathways. Also, in order to grasp the role of BaP and its metabolites in chemical hepatocarcinogenesis, we compared expression patterns from BaP(-metabolites) and TCDD to a signature set of approximately nine thousand gene expressions derived from hepatocellular carcinoma (HCC) patients. While transcriptome modulation by TCDD appeared not significantly related to HCC, BaP and BPDE were shown to deregulate metastatic markers via non-genotoxic and genotoxic mechanisms and activate inflammatory pathways (NF-κβ signaling, cytokine-cytokine receptor interaction). BaP also showed strong repression of genes involved in cholesterol and fatty acid biosynthesis. Altogether, this study provides new insights into BaP-induced toxicity and sheds new light onto its mechanism of action as a hepatocarcinogen.
Collapse
Affiliation(s)
- Terezinha Souza
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Department of Toxicogenomics, Maastricht University, Universiteitsingel 50, 6200 MD, Maastricht, The Netherlands.
| | - Danyel Jennen
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Joost van Delft
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| | - Soterios Kyrtoupolos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635, Athens, Greece
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
19
|
Xu D, Li S, Lin L, Qi F, Hang X, Sun Y. Gene expression profiling to identify the toxicities and potentially relevant disease outcomes due to endosulfan exposure. Toxicol Res (Camb) 2016; 5:621-632. [PMID: 30090376 PMCID: PMC6062354 DOI: 10.1039/c5tx00332f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/20/2016] [Indexed: 11/21/2022] Open
Abstract
Endosulfan, one of the most toxic organochlorine pesticides, belongs to a group of persistent organic pollutants. Gene expression profiling offers a promising approach in health hazard identification of chemicals. The aim of this study was to use gene expression profiling to identify the toxicities and potentially relevant human diseases due to endosulfan exposure. We performed DNA microarray analysis to analyze gene expression profiles in human endothelial cells exposed to 20, 40 and 60 μM endosulfan in combination with an endothelial phenotype. Microarray results showed that endosulfan increased the number of altered genes in a dose-dependent manner, and changed the expression of 161 genes across all treatment groups. qRT-PCR closely matched the microarray data for the genes tested. Significantly enriched biological processes for overlapping down-regulated genes include the neurological system process, signal transduction, and homeostatic process in all the dose groups. These down-regulated genes were associated with cytoskeleton organization and DNA repair at low doses, and involved in cell cycle, apoptosis, p53 pathway and carcinogenesis at high doses. Those up-regulated genes were linked to the inflammatory response and transcriptional misregulation in cancer at higher doses. These findings are consistent with our established endothelial phenotypes. Endosulfan may be relevant to human diseases including liver cancer, prostate cancer and leukemia using the NextBio Human Disease Atlas. These results provide molecular evidence supporting the toxicities and carcinogenic potential of endosulfan in humans.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Shuai Li
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Limei Lin
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Fei Qi
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Xiaoming Hang
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| | - Yeqing Sun
- Institute of Environmental Systems Biology , Dalian Maritime University , Linghai Road 1 , Dalian , 116026 , P.R. China . ; ; ; ; ; ; ; Tel: +86-411-84725675
| |
Collapse
|
20
|
Oh JH, Son MY, Choi MS, Kim S, Choi AY, Lee HA, Kim KS, Kim J, Song CW, Yoon S. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles. Toxicol Appl Pharmacol 2015; 299:8-23. [PMID: 26551752 DOI: 10.1016/j.taap.2015.11.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/31/2015] [Accepted: 11/05/2015] [Indexed: 12/31/2022]
Abstract
Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10-200μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans.
Collapse
Affiliation(s)
- Jung-Hwa Oh
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mi-Sun Choi
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Soojin Kim
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - A-Young Choi
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Hyang-Ae Lee
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Ki-Suk Kim
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Janghwan Kim
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chang Woo Song
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Seokjoo Yoon
- Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea; Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
21
|
Jennen DGJ, van Leeuwen DM, Hendrickx DM, Gottschalk RWH, van Delft JHM, Kleinjans JCS. Bayesian Network Inference Enables Unbiased Phenotypic Anchoring of Transcriptomic Responses to Cigarette Smoke in Humans. Chem Res Toxicol 2015; 28:1936-48. [PMID: 26360787 DOI: 10.1021/acs.chemrestox.5b00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microarray-based transcriptomic analysis has been demonstrated to hold the opportunity to study the effects of human exposure to, e.g., chemical carcinogens at the whole genome level, thus yielding broad-ranging molecular information on possible carcinogenic effects. Since genes do not operate individually but rather through concerted interactions, analyzing and visualizing networks of genes should provide important mechanistic information, especially upon connecting them to functional parameters, such as those derived from measurements of biomarkers for exposure and carcinogenic risk. Conventional methods such as hierarchical clustering and correlation analyses are frequently used to address these complex interactions but are limited as they do not provide directional causal dependence relationships. Therefore, our aim was to apply Bayesian network inference with the purpose of phenotypic anchoring of modified gene expressions. We investigated a use case on transcriptomic responses to cigarette smoking in humans, in association with plasma cotinine levels as biomarkers of exposure and aromatic DNA-adducts in blood cells as biomarkers of carcinogenic risk. Many of the genes that appear in the Bayesian networks surrounding plasma cotinine, and to a lesser extent around aromatic DNA-adducts, hold biologically relevant functions in inducing severe adverse effects of smoking. In conclusion, this study shows that Bayesian network inference enables unbiased phenotypic anchoring of transcriptomics responses. Furthermore, in all inferred Bayesian networks several dependencies are found which point to known but also to new relationships between the expression of specific genes, cigarette smoke exposure, DNA damaging-effects, and smoking-related diseases, in particular associated with apoptosis, DNA repair, and tumor suppression, as well as with autoimmunity.
Collapse
Affiliation(s)
- Danyel G J Jennen
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Danitsja M van Leeuwen
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Diana M Hendrickx
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Ralph W H Gottschalk
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Joost H M van Delft
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University , Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
22
|
Chepelev NL, Moffat ID, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Malik AI, Halappanavar S, Williams A, Yauk CL. Integrating toxicogenomics into human health risk assessment: lessons learned from the benzo[a]pyrene case study. Crit Rev Toxicol 2015; 45:44-52. [PMID: 25605027 DOI: 10.3109/10408444.2014.973935] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of short-term toxicogenomic tests to predict cancer (or other health effects) offers considerable advantages relative to traditional toxicity testing methods. The advantages include increased throughput, increased mechanistic data, and significantly reduced costs. However, precisely how toxicogenomics data can be used to support human health risk assessment (RA) is unclear. In a companion paper ( Moffat et al. 2014 ), we present a case study evaluating the utility of toxicogenomics in the RA of benzo[a]pyrene (BaP), a known human carcinogen. The case study is meant as a proof-of-principle exercise using a well-established mode of action (MOA) that impacts multiple tissues, which should provide a best case example. We found that toxicogenomics provided rich mechanistic data applicable to hazard identification, dose-response analysis, and quantitative RA of BaP. Based on this work, here we share some useful lessons for both research and RA, and outline our perspective on how toxicogenomics can benefit RA in the short- and long-term. Specifically, we focus on (1) obtaining biologically relevant data that are readily suitable for establishing an MOA for toxicants, (2) examining the human relevance of an MOA from animal testing, and (3) proposing appropriate quantitative values for RA. We describe our envisioned strategy on how toxicogenomics can become a tool in RA, especially when anchored to other short-term toxicity tests (apical endpoints) to increase confidence in the proposed MOA, and emphasize the need for additional studies on other MOAs to define the best practices in the application of toxicogenomics in RA.
Collapse
Affiliation(s)
- Nikolai L Chepelev
- Environmental Health Science and Research Bureau, Health Canada , Ottawa, ON , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Moffat I, Chepelev N, Labib S, Bourdon-Lacombe J, Kuo B, Buick JK, Lemieux F, Williams A, Halappanavar S, Malik A, Luijten M, Aubrecht J, Hyduke DR, Fornace AJ, Swartz CD, Recio L, Yauk CL. Comparison of toxicogenomics and traditional approaches to inform mode of action and points of departure in human health risk assessment of benzo[a]pyrene in drinking water. Crit Rev Toxicol 2015; 45:1-43. [PMID: 25605026 DOI: 10.3109/10408444.2014.973934] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Toxicogenomics is proposed to be a useful tool in human health risk assessment. However, a systematic comparison of traditional risk assessment approaches with those applying toxicogenomics has never been done. We conducted a case study to evaluate the utility of toxicogenomics in the risk assessment of benzo[a]pyrene (BaP), a well-studied carcinogen, for drinking water exposures. Our study was intended to compare methodologies, not to evaluate drinking water safety. We compared traditional (RA1), genomics-informed (RA2) and genomics-only (RA3) approaches. RA2 and RA3 applied toxicogenomics data from human cell cultures and mice exposed to BaP to determine if these data could provide insight into BaP's mode of action (MOA) and derive tissue-specific points of departure (POD). Our global gene expression analysis supported that BaP is genotoxic in mice and allowed the development of a detailed MOA. Toxicogenomics analysis in human lymphoblastoid TK6 cells demonstrated a high degree of consistency in perturbed pathways with animal tissues. Quantitatively, the PODs for traditional and transcriptional approaches were similar (liver 1.2 vs. 1.0 mg/kg-bw/day; lungs 0.8 vs. 3.7 mg/kg-bw/day; forestomach 0.5 vs. 7.4 mg/kg-bw/day). RA3, which applied toxicogenomics in the absence of apical toxicology data, demonstrates that this approach provides useful information in data-poor situations. Overall, our study supports the use of toxicogenomics as a relatively fast and cost-effective tool for hazard identification, preliminary evaluation of potential carcinogens, and carcinogenic potency, in addition to identifying current limitations and practical questions for future work.
Collapse
Affiliation(s)
- Ivy Moffat
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Nikolai Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie Bourdon-Lacombe
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada.,Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Julie K Buick
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - France Lemieux
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amal Malik
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Daniel R Hyduke
- Biological Engineering Department, Utah State University, Logan, UT, USA
| | - Albert J Fornace
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC, USA
| | - Carol D Swartz
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Leslie Recio
- Integrated Laboratory Systems Inc., Research Triangle Park, NC, USA
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
24
|
Hendrickx DM, Jennen DGJ, Briedé JJ, Cavill R, de Kok TM, Kleinjans JCS. Pattern recognition methods to relate time profiles of gene expression with phenotypic data: a comparative study. Bioinformatics 2015; 31:2115-22. [DOI: 10.1093/bioinformatics/btv108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/16/2015] [Indexed: 12/13/2022] Open
|
25
|
Caiment F, Gaj S, Claessen S, Kleinjans J. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res 2015; 43:2525-34. [PMID: 25690898 PMCID: PMC4357716 DOI: 10.1093/nar/gkv115] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The chain of events leading from a toxic compound exposure to carcinogenicity is still barely understood. With the emergence of high-throughput sequencing, it is now possible to discover many different biological components simultaneously. Using two different RNA libraries, we sequenced the complete transcriptome of human HepG2 liver cells exposed to benzo[a]pyrene, a potent human carcinogen, across six time points. Data were integrated in order to reveal novel complex chemical–gene interactions. Notably, we hypothesized that the inhibition of MGMT, a DNA damage response enzyme, by the over-expressed miR-181a-1_3p induced by BaP, may lead to liver cancer over time.
Collapse
Affiliation(s)
- Florian Caiment
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| | - Stan Gaj
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| | - Sandra Claessen
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht 6200, The Netherlands
| |
Collapse
|
26
|
Moreau M, Ouellet N, Ayotte P, Bouchard M. Effects of intravenous benzo[a]pyrene dose administration on levels of exposure biomarkers, DNA adducts, and gene expression in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:166-184. [PMID: 25506633 DOI: 10.1080/15287394.2014.954072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effects of benzo[a]pyrene (BaP) administration on biomarkers of exposure and early effects were studied in male Sprague-Dawley rats intravenously injected with doses of 0.4, 4, 10, or 40 μmol BaP/kg . Blood, tissues, and excreta were collected 8 and 24 h posttreatment. BaP and several of its metabolites were simultaneously measured in blood, tissues and excreta by ultra-high-performance liquid chromatography (UHPLC)/fluorescence. DNA adducts of BaP diol epoxide (BaPDE) in lungs were quantified using an ultrasensitive immunoassay with chemiluminescence detection. Expression of selected genes in lungs of treated rats (lung RNA) compared to control rats was also assessed by quantitative real-time polymerase chain reaction. There was a dose-dependent increase in blood, tissue, and excreted levels of BaP metabolites. At 8 and 24 h postinjection, BaP and hydroxyBaP were found in higher concentrations in blood and tissues compared to other analytes. However, diolBaP were excreted in greater amounts in urine and apparently more rapidly than hydroxyBaP. Mean percentages (± SD) of injected dose excreted in urine as 4,5-diolBaP during the 0-8 h and 0-24 h period posttreatment were 0.16 ± 0.027% and 0.14 ± 0.083%, respectively. Corresponding values for 3-OHBaP were 0.0045 ± 0.0009% and 0.026 ± 0.014%. BaP-diones were not detectable in blood, tissues, and excreta; 7,8-diolBaP and BaPtetrol were found to be minor metabolites. There was also a dose-dependent increase in DNA adduct formation in lung. Analysis of gene expression further showed a modulation of Cyp1a1, Cyp1b1, Nqo1, Nrf2, Fos, and Ahr expression at 10- and 40-μmol/kg doses, but not at the lower doses. This study provided a better assessment of the influence of absorbed BaP doses on biological levels of diolBaP and OHBaP exposure biomarkers and association of the latter with early biological alterations, such as DNA adducts and gene expression.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | | | |
Collapse
|
27
|
Moreau M, Ayotte P, Bouchard M. Kinetics of Diol and Hydroxybenzo[a]pyrene Metabolites in Relation to DNA Adduct Formation and Gene Expression in Rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:725-746. [PMID: 26090558 DOI: 10.1080/15287394.2015.1028119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Benzo[a]pyrene (BaP) is a human carcinogen, but there are no validated biomarkers of exposure and the relationship of carcinogenesis with early biological alterations is not fully documented. This study aimed at better documenting the toxicokinetics of diolBaP and hydroxyBaP metabolites as potential biomarkers of exposure to BaP in relation to DNA adduct formation and gene expression. Rats were intravenously (iv) injected with 40 μmol/kg BaP. BaP and several metabolites were measured in blood, tissues, and excreta collected at frequent intervals over 72 h posttreatment. BaP diol epoxide (BaPDE)-DNA adduct formation and gene expression were assessed in lungs. 3-HydroxyBaP (3-OHBaP) and 4,5-diolBaP were the most abundant measured metabolites, and differences in time courses were apparent between the two metabolites. Over the 0-72 h period, mean proportions of BaP dose recovered in urine as 3-OHBaP and 4,5-diolBaP (±SD) were 0.017 ± 0.003% and 0.1 ± 0.03%. Corresponding values in feces were 1.5 ± 0.5% and 0.42 ± 0.052%. BaPDE-DNA adducts were significantly increased in lungs and a correlation was observed with urinary 3-OHBaP and 4,5-diolBaP. Analysis of gene expression showed a modulation of expression of metabolic genes (Cyp1a1, Cyp1b1, Nqo1, Ahr) and oxidative stress and repair genes (Nrf2, Rad51). However, BaPDE adducts formation did not exhibit any significant correlation with expression of genes, except a negative correlation with Rad51 expression. Similarly, there was no significant correlation between urinary excretion of OHBaP and diolBaP and expression of genes, except for urinary 7-OHBaP excretion, which was negatively correlated with Rad51 expression. Results indicate that concomitant measurements of diolBaP and OHBaP may serve to better assess the extent of exposure as compared to single metabolite measurements, given kinetic differences between metabolites. Further, although some urinary metabolites were correlated with BaPDE adducts, links with gene expression need to be further investigated.
Collapse
Affiliation(s)
- Marjory Moreau
- a Department of Environmental and Occupational Health , Chair in Toxicological Risk Assessment and Management and the Research Institute of Public Health of the University of Montreal (IRSPUM), University of Montreal , Montreal , Quebec , Canada
| | | | | |
Collapse
|
28
|
Kalkhof S, Dautel F, Loguercio S, Baumann S, Trump S, Jungnickel H, Otto W, Rudzok S, Potratz S, Luch A, Lehmann I, Beyer A, von Bergen M. Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure. J Proteome Res 2014; 14:164-82. [PMID: 25362887 DOI: 10.1021/pr500957t] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benzo[a]pyrene (B[a]P) is an environmental contaminant mainly studied for its toxic/carcinogenic effects. For a comprehensive and pathway orientated mechanistic understanding of the effects directly triggered by a toxic (5 μM) or a subtoxic (50 nM) concentration of B[a]P or indirectly by its metabolites, we conducted time series experiments for up to 24 h to study the effects in murine hepatocytes. These cells rapidly take up and actively metabolize B[a]P, which was followed by quantitative analysis of the concentration of intracellular B[a]P and seven representative degradation products. Exposure with 5 μM B[a]P led to a maximal intracellular concentration of 1604 pmol/5 × 10(4) cells, leveling at 55 pmol/5 × 10(4) cells by the end of the time course. Changes in the global proteome (>1000 protein profiles) and metabolome (163 metabolites) were assessed in combination with B[a]P degradation. Abundance profiles of 236 (both concentrations), 190 (only 5 μM), and 150 (only 50 nM) proteins were found to be regulated in response to B[a]P in a time-dependent manner. At the endogenous metabolite level amino acids, acylcarnitines and glycerophospholipids were particularly affected by B[a]P. The comprehensive chemical, proteome and metabolomic data enabled the identification of effects on the pathway level in a time-resolved manner. So in addition to known alterations, also protein synthesis, lipid metabolism, and membrane dysfunction were identified as B[a]P specific effects.
Collapse
Affiliation(s)
- Stefan Kalkhof
- Department of Proteomics, UFZ, Helmholtz-Centre for Environmental Research , Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Stellas D, Souliotis VL, Bekyrou M, Smirlis D, Kirsch-Volders M, Degrassi F, Cundari E, Kyrtopoulos SA. Benzo[a]pyrene-induced cell cycle arrest in HepG2 cells is associated with delayed induction of mitotic instability. Mutat Res 2014; 769:59-68. [PMID: 25771725 DOI: 10.1016/j.mrfmmm.2014.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/19/2014] [Accepted: 07/11/2014] [Indexed: 06/04/2023]
Abstract
The environmental carcinogen benzo[a]pyrene (B[a]P) after being metabolised by cytochrome P450 enzymes forms DNA adducts. This abnormal situation induces changes in the cell cycle, DNA damage, chromosomal and mitotic aberrations, all of which may be related to carcinogenesis. In order to further investigate the mechanistic basis of these effects, HepG2 cells were treated with 3μM B[a]P for various time periods, followed by further incubation in the absence of B[a]P for up to 192h. B[a]P treatment led initially to S-phase arrest followed by recovery and subsequent induction of G2/M arrest, indicating activation of the corresponding DNA damage checkpoints. Immunofluorescence-based studies revealed accumulation of B[a]P-induced DNA adducts and chromosomal damage which persisted beyond mitosis and entry into a new cycle, thus giving rise to a new round of activation of the S-phase checkpoint. Prolonged further cultivation of the cells in the absence of B[a]P resulted in high frequencies of various abnormal mitotic events. Abrogation of the B[a]P-induced S-phase arrest by the Chk1 inhibitor UCN-01 triggered a strong apoptotic response but also dramatically decreased the frequency of mitotic abnormalities in the surviving cells, suggesting that events occurring during S-phase arrest contribute to the formation of delayed mitotic damage. Overall, our data demonstrate that, although S-phase arrest serves as a mechanism by which the cells reduce their load of genetic damage, its prolonged activation may also have a negative impact on the balance between cell death and heritable genetic damage.
Collapse
Affiliation(s)
- Dimitris Stellas
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece.
| | - Vassilis L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - Margarita Bekyrou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | - Enrico Cundari
- Laboratory for Cell Genetics,Vrije Universiteit Brussel, Brussels, Belgium; Institute of Molecular Biology and Pathology C.N.R., Rome, Italy
| | - Soterios A Kyrtopoulos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
30
|
Regnault C, Worms IAM, Oger-Desfeux C, MelodeLima C, Veyrenc S, Bayle ML, Combourieu B, Bonin A, Renaud J, Raveton M, Reynaud S. Impaired liver function in Xenopus tropicalis exposed to benzo[a]pyrene: transcriptomic and metabolic evidence. BMC Genomics 2014; 15:666. [PMID: 25103525 PMCID: PMC4141109 DOI: 10.1186/1471-2164-15-666] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/30/2014] [Indexed: 12/20/2022] Open
Abstract
Background Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role pollutants play in the decline of amphibian populations remains unclear. Amongst the most common aquatic contaminants, polycyclic aromatic hydrocarbons (PAHs) have been shown to induce several adverse effects on amphibian species in the larval stages. Conversely, adults exposed to high concentrations of the ubiquitous PAH, benzo[a]pyrene (BaP), tolerate the compound thanks to their highly efficient hepatic detoxification mechanisms. Due to this apparent lack of toxic effect on adults, no studies have examined in depth the potential toxicological impact of PAH on the physiology of adult amphibian livers. This study sheds light on the hepatic responses of Xenopus tropicalis when exposed to high environmentally relevant concentrations of BaP, by combining a high throughput transcriptomic approach (mRNA deep sequencing) and a characterization of cellular and physiological modifications to the amphibian liver. Results Transcriptomic changes observed in BaP-exposed Xenopus were further characterized using a time-dependent enrichment analysis, which revealed the pollutant-dependent gene regulation of important biochemical pathways, such as cholesterol biosynthesis, insulin signaling, adipocytokines signaling, glycolysis/gluconeogenesis and MAPK signaling. These results were substantiated at the physiological level with the detection of a pronounced metabolic disorder resulting in a possible insulin resistance-like syndrome phenotype. Hepatotoxicity induced by lipid and cholesterol metabolism impairments was clearly identified in BaP-exposed individuals. Conclusions Our data suggested that BaP may disrupt overall liver physiology, and carbohydrate and cholesterol metabolism in particular, even after short-term exposure. These results are further discussed in terms of how this deregulation of liver physiology can lead to general metabolic impairment in amphibians chronically exposed to contaminants, thereby illustrating the role xenobiotics might play in the global decline in amphibian populations. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-666) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Graupner A, Instanes C, Dertinger SD, Andersen JM, Lindeman B, Rongved TD, Brunborg G, Olsen AK. Single cell gel electrophoresis (SCGE) and Pig-a mutation assay in vivo-tools for genotoxicity testing from a regulatory perspective: a study of benzo[a]pyrene in Ogg1(-/-) mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 772:34-41. [PMID: 25308545 DOI: 10.1016/j.mrgentox.2014.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 01/14/2023]
Abstract
The OECD has developed test guidelines (TG) to identify agents with genotoxic effects. The in vivo alkaline single cell gel electrophoresis (SCGE) assay is currently being prepared to become such a TG. The performance of a combined SCGE/Pig-a gene mutation study was evaluated with the prototypical genotoxicant benzo[a]pyrene (BaP) at an exposure level known to induce germ cell mutation. We aimed to better understand (i) the strengths and weaknesses of the two methods applied in blood and their potential to predict germ cell mutagenicity, and (ii) the involvement of reactive oxygen species (ROS) following in vivo BaP-exposure. To explore the involvement of ROS on BaP genotoxicity, we utilised a mouse model deficient in a DNA glycosylase. Specifically, C57BL/6 mice (Ogg1(+/+) and Ogg1(-/-)) were treated for three consecutive days with 50 mg BaP/kg/day. DNA damage in nucleated blood cells was measured four hours after the last treatment with the SCGE assay, with and without formamidopyrimidine DNA glycosylase (Fpg). Pig-a mutant phenotype blood erythrocytes were analysed two and four weeks after treatment. BaP-induced DNA lesions were not significantly increased in either version of the SCGE assay. The phenotypic mutation frequencies for immature and mature erythrocytes were significantly increased after two weeks. These effects were not affected by genotype, suggesting oxidative damage may have a minor role in BaP genotoxicity, at least in the acute exposure situation studied here. While both assays are promising tools for risk assessment, these results highlight the necessity of understanding the limitations regarding each assay's ability to detect chemicals' genotoxic potential.
Collapse
Affiliation(s)
- Anne Graupner
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Christine Instanes
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | | | - Jill Mari Andersen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Birgitte Lindeman
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Tonje Danielsen Rongved
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Norwegian Institute of Public Health, Oslo 0403, Norway.
| |
Collapse
|
32
|
Rieswijk L, Lizarraga D, Brauers KJJ, Kleinjans JCS, van Delft JHM. Characterisation of cisplatin-induced transcriptomics responses in primary mouse hepatocytes, HepG2 cells and mouse embryonic stem cells shows conservation of regulating transcription factor networks. Mutagenesis 2013; 29:17-26. [DOI: 10.1093/mutage/get055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Kleinjans J. The use of toxicogenomics for cancer risk identification and assessment. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2013.06.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Zhao P, Fu J, Yao B, Song Y, Yuan L, Jia Y, Ma S, Chen W, Zhou Z. The cell cycle distribution should be given more consideration in cell-based in vitro toxicological studies. Arch Toxicol 2013; 88:337-43. [PMID: 23887207 DOI: 10.1007/s00204-013-1103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
In this study, to discuss the importance of the cell cycle distribution in cell-based in vitro toxicity mechanism studies, diethyl sulfate (DES) was selected as a model chemical that induced the alteration of the cell cycle distribution in human bronchial epithelial cell line 16HBE 14o- (HBE) cells. Cells were treated with various concentrations of DES, cell proliferation and apoptosis were then determined. The results showed that DES concentration-dependently inhibited HBE cells proliferation and induced apoptosis. When cells were treated with 2.0 mM of DES for 20 or 28 h, significant S and G2/M phase accumulation was observed. Then, the relative cellular levels of Cdk4, p-Cdk2 (Thr160), Cyclins A and B1 in DES-treated HBE cells at 20 and 28 h were determined by two ways. The differences of the cell cycle distribution between DES and control groups were ignored in one way and eliminated by using flow cytometric cell sorting in the other. The results obtained by the two ways were quite different, which indicated that the cell cycle distribution might result in confounding if it was significantly different between the treated and control groups. Therefore, we propose that the cell cycle distribution should be given more consideration in cell-based in vitro toxicological studies.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Toxicology, Peking University Health Science Center, Beijing, 100191, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
A review on ochratoxin A transcriptomic studies. Food Chem Toxicol 2013; 59:766-83. [PMID: 23747715 DOI: 10.1016/j.fct.2013.05.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
The mycotoxin Ochratoxin A (OTA) is a potent renal carcinogen in male rats. Transcriptomic studies on OTA (4 in vitro, 6 in vivo, 2 in vitro/in vivo) have been reviewed. The aim of 6 of them was mainly mechanistic whereas the rest had mostly predictive (1) or evaluation (5) purposes. An overall tendency towards gene expression downregulation was observed, probably as a result of protein synthesis inhibition. DNA damage response genes were not deregulated in most of the studies. Genes involved in acute renal injury, cell survival and cell proliferation were upregulated in several in vivo studies. Apoptosis genes were deregulated in vitro but less affected in vivo; activation of several MAPKs has been observed. Many genes related to oxidative stress or involved in cell-to-cell interaction pathways (Wnt) or cytoskeleton structure appeared to be deregulated either in vitro or in vivo. Regucalcin was highly downregulated in vivo and other calcium homeostasis genes were significantly deregulated in vitro. Genes related to OTA transport (OATs) and metabolism (CYPs) appeared downregulated in vivo. Overall, the mechanism of action of OTA remains unclear, however transcriptomic data have contributed to new mechanistic hypothesis generation and to in vitro-in vivo comparison.
Collapse
|
36
|
Doktorova TY, Ellinger-Ziegelbauer H, Vinken M, Vanhaecke T, van Delft J, Kleinjans J, Ahr HJ, Rogiers V. Comparison of genotoxicant-modified transcriptomic responses in conventional and epigenetically stabilized primary rat hepatocytes with in vivo rat liver data. Arch Toxicol 2012; 86:1703-15. [PMID: 23052194 DOI: 10.1007/s00204-012-0946-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 11/29/2011] [Indexed: 12/29/2022]
Abstract
The concept of mechanistic toxicogenomics implies that compound-induced changes in gene expression profiles provide valuable information about their mode of action. A growing number of research groups have presented evidence that whole-genome gene expression profiling techniques might be used as tools for in vivo and in vitro generation of gene signatures and elucidation of molecular mechanisms after exposure to toxic compounds. An important issue to be investigated is the in vivo relevance of in vitro-obtained data. In the current study, we compare the gene expression profiles generated in vitro, after exposing conventional and epigenetically stabilized primary rat hepatocytes to well-known genotoxic hepatocarcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and 2-nitrofluorene) with those derived in vivo after oral exposure of rats to these compounds. Similar statistical tools were applied on both sets of data. The major molecular pathways affected in the in vivo setting were DNA damage, detoxification and cell survival response, as previously described. In the conventional hepatocyte cultures, two of the three genotoxicants showed quite similar responses as in vivo with respect to these pathways. The third compound (2-nitrofluorene) revealed in vitro response which was not observed in vivo. In the epigenetically stabilized hepatocytes, in contrast to what was expected, the responses were less relevant for the in vivo situation. This study highlights the importance of in vitro/in vivo comparison of data that are generated using in vitro models and shows that conventional primary rat hepatocyte cultures represent an appropriate in vitro model to retrieve mechanistic information on the exposure to genotoxicants.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Department of Toxicology, Center for Pharmaceutical Research (CePhar), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tsamou M, Jennen DGJ, Claessen SMH, Magkoufopoulou C, Kleinjans JCS, van Delft JHM. Performance of in vitro γH2AX assay in HepG2 cells to predict in vivo genotoxicity. Mutagenesis 2012; 27:645-52. [DOI: 10.1093/mutage/ges030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
van Delft J, Gaj S, Lienhard M, Albrecht MW, Kirpiy A, Brauers K, Claessen S, Lizarraga D, Lehrach H, Herwig R, Kleinjans J. RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo[a]pyrene. Toxicol Sci 2012; 130:427-39. [PMID: 22889811 DOI: 10.1093/toxsci/kfs250] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Whole-genome transcriptome measurements are pivotal for characterizing molecular mechanisms of chemicals and predicting toxic classes, such as genotoxicity and carcinogenicity, from in vitro and in vivo assays. In recent years, deep sequencing technologies have been developed that hold the promise of measuring the transcriptome in a more complete and unbiased manner than DNA microarrays. Here, we applied this RNA-seq technology for the characterization of the transcriptomic responses in HepG2 cells upon exposure to benzo[a]pyrene (BaP), a well-known DNA damaging human carcinogen. Based on EnsEMBL genes, we demonstrate that RNA-seq detects ca 20% more genes than microarray-based technology but almost threefold more significantly differentially expressed genes. Functional enrichment analyses show that RNA-seq yields more insight into the biology and mechanisms related to the toxic effects caused by BaP, i.e., two- to fivefold more affected pathways and biological processes. Additionally, we demonstrate that RNA-seq allows detecting alternative isoform expression in many genes, including regulators of cell death and DNA repair such as TP53, BCL2 and XPA, which are relevant for genotoxic responses. Moreover, potentially novel isoforms were found, such as fragments of known transcripts, transcripts with additional exons, intron retention or exon-skipping events. The biological function(s) of these isoforms remain for the time being unknown. Finally, we demonstrate that RNA-seq enables the investigation of allele-specific gene expression, although no changes could be observed. Our results provide evidence that RNA-seq is a powerful tool for toxicology, which, compared with microarrays, is capable of generating novel and valuable information at the transcriptome level for characterizing deleterious effects caused by chemicals.
Collapse
Affiliation(s)
- Joost van Delft
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Doktorova TY, Ellinger-Ziegelbauer H, Vinken M, Vanhaecke T, van Delft J, Kleinjans J, Ahr HJ, Rogiers V. Comparison of hepatocarcinogen-induced gene expression profiles in conventional primary rat hepatocytes with in vivo rat liver. Arch Toxicol 2012; 86:1399-411. [PMID: 22484513 DOI: 10.1007/s00204-012-0847-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/22/2012] [Indexed: 01/07/2023]
Abstract
At present, substantial efforts are focused on the development of in vitro assays coupled with "omics" technologies for the identification of carcinogenic substances as an alternative to the classical 2-year rodent carcinogenicity bioassay. A prerequisite for the eventual regulatory acceptance of such assays, however, is the in vivo relevance of the observed in vitro findings. In the current study, hepatocarcinogen-induced gene expression profiles generated after the exposure of conventional cultures of primary rat hepatocytes to three non-genotoxic carcinogens (methapyrilene hydrochloride, piperonyl butoxide, and Wy-14643), three genotoxic carcinogens (aflatoxin B1, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, and 2-nitrofluorene), and two non-carcinogens (nifedipine and clonidine) are compared with previously obtained in vivo data after oral administration for up to 14 days of the same hepatocarcinogens to rats. In addition to the comparison of deregulated genes and functions per compound between in vivo and in vitro models, the major discriminating cellular pathways found in vivo in livers of exposed rats were examined for deregulation in vitro. Further, in vivo-derived gene signatures for the identification of genotoxic versus non-genotoxic carcinogens are used to classify in vitro-tested hepatocarcinogens and non-carcinogens. In the primary hepatocyte cultures, two out of the three tested genotoxic carcinogens mimicked the in vivo-relevant DNA damage response and were correctly assessed. Exposure to the non-genotoxic hepatocarcinogens, however, triggered a relatively weak response in the in vitro system, with no clear similarities to in vivo. This study contributes to the further optimization of toxicogenomics predictive tools when applied in in vitro settings.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Niziolek-Kierecka M, Dreij K, Lundstedt S, Stenius U. γH2AX, pChk1, and Wip1 as Potential Markers of Persistent DNA Damage Derived from Dibenzo[a,l]pyrene and PAH-Containing Extracts from Contaminated Soils. Chem Res Toxicol 2012; 25:862-72. [DOI: 10.1021/tx200436n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
41
|
Lizarraga D, Gaj S, Brauers KJ, Timmermans L, Kleinjans JC, van Delft JHM. Benzo[a]pyrene-induced changes in microRNA-mRNA networks. Chem Res Toxicol 2012; 25:838-49. [PMID: 22316170 DOI: 10.1021/tx2003799] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toxicological studies assessing the safety of compounds for humans frequently use in vitro systems to characterize toxic responses in combination with transcriptomic analyses. Thus far, changes have mostly been investigated at the mRNA level. Recently, microRNAs have attracted attention because they are powerful negative regulators of mRNA levels and, thus, may be responsible for the modulation of important mRNA networks implicated in toxicity. This study aimed to identify possible microRNA-mRNA networks as novel interactions on the gene expression level after a genotoxic insult. We used benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, as a model genotoxic/carcinogenic compound. We analyzed time-dependent effects on mRNA and microRNA profiles in HepG2 cells, a widely used human liver cell line that expresses active p53 and is competent for the biotransformation of BaP. Changes in microRNA expression in response to BaP, in combination with multiple alterations of mRNA levels, were observed. Many of these altered mRNAs are targets of altered microRNAs. Using pathway analysis, we evaluated the relevance of such microRNA deregulations to genotoxicity. This revealed eight microRNAs that appear to participate in specific BaP-responsive pathways relevant to genotoxicity, such as apoptotic signaling, cell cycle arrest, DNA damage response, and DNA damage repair. Our results particularly highlight the potential of microRNA-29b, microRNA-26a-1*, and microRNA-122* as novel players in the BaP response. Therefore, this study demonstrates the added value of an integrated microRNA-mRNA approach for identifying molecular mechanisms induced by BaP in an in vitro human model.
Collapse
Affiliation(s)
- Daneida Lizarraga
- Netherlands Toxicogenomics Centre, Maastricht University , P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
42
|
Yadetie F, Butcher S, Førde HE, Campsteijn C, Bouquet JM, Karlsen OA, Denoeud F, Metpally R, Thompson EM, Manak JR, Goksøyr A, Chourrout D. Conservation and divergence of chemical defense system in the tunicate Oikopleura dioica revealed by genome wide response to two xenobiotics. BMC Genomics 2012; 13:55. [PMID: 22300585 PMCID: PMC3292500 DOI: 10.1186/1471-2164-13-55] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 02/02/2012] [Indexed: 12/15/2022] Open
Abstract
Background Animals have developed extensive mechanisms of response to xenobiotic chemical attacks. Although recent genome surveys have suggested a broad conservation of the chemical defensome across metazoans, global gene expression responses to xenobiotics have not been well investigated in most invertebrates. Here, we performed genome survey for key defensome genes in Oikopleura dioica genome, and explored genome-wide gene expression using high density tiling arrays with over 2 million probes, in response to two model xenobiotic chemicals - the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) the pharmaceutical compound Clofibrate (Clo). Results Oikopleura genome surveys for key genes of the chemical defensome suggested a reduced repertoire. Not more than 23 cytochrome P450 (CYP) genes could be identified, and neither CYP1 family genes nor their transcriptional activator AhR was detected. These two genes were present in deuterostome ancestors. As in vertebrates, the genotoxic compound BaP induced xenobiotic biotransformation and oxidative stress responsive genes. Notable exceptions were genes of the aryl hydrocarbon receptor (AhR) signaling pathway. Clo also affected the expression of many biotransformation genes and markedly repressed genes involved in energy metabolism and muscle contraction pathways. Conclusions Oikopleura has the smallest number of CYP genes among sequenced animal genomes and lacks the AhR signaling pathway. However it appears to have basic xenobiotic inducible biotransformation genes such as a conserved genotoxic stress response gene set. Our genome survey and expression study does not support a role of AhR signaling pathway in the chemical defense of metazoans prior to the emergence of vertebrates.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jennen D, Ruiz-Aracama A, Magkoufopoulou C, Peijnenburg A, Lommen A, van Delft J, Kleinjans J. Integrating transcriptomics and metabonomics to unravel modes-of-action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in HepG2 cells. BMC SYSTEMS BIOLOGY 2011; 5:139. [PMID: 21880148 PMCID: PMC3231768 DOI: 10.1186/1752-0509-5-139] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND The integration of different 'omics' technologies has already been shown in several in vivo studies to offer a complementary insight into cellular responses to toxic challenges. Being interested in developing in vitro cellular models as alternative to animal-based toxicity assays, we hypothesize that combining transcriptomics and metabonomics data improves the understanding of molecular mechanisms underlying the effects caused by a toxic compound also in vitro in human cells. To test this hypothesis, and with the focus on non-genotoxic carcinogenesis as an endpoint of toxicity, in the present study, the human hepatocarcinoma cell line HepG2 was exposed to the well-known environmental carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). RESULTS Transcriptomics as well as metabonomics analyses demonstrated changes in TCDD-exposed HepG2 in common metabolic processes, e.g. amino acid metabolism, of which some of the changes only being confirmed if both 'omics' were integrated. In particular, this integrated analysis identified unique pathway maps involved in receptor-mediated mechanisms, such as the G-protein coupled receptor protein (GPCR) signaling pathway maps, in which the significantly up-regulated gene son of sevenless 1 (SOS1) seems to play an important role. SOS1 is an activator of several members of the RAS superfamily, a group of small GTPases known for their role in carcinogenesis. CONCLUSIONS The results presented here were not only comparable with other in vitro studies but also with in vivo studies. Moreover, new insights on the molecular responses caused by TCDD exposure were gained by the cross-omics analysis.
Collapse
Affiliation(s)
- Danyel Jennen
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Ainhoa Ruiz-Aracama
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Christina Magkoufopoulou
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Ad Peijnenburg
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Arjen Lommen
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, PO Box 230, 6700 AE Wageningen, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Joost van Delft
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
- Netherlands Toxicogenomics Centre, PO Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|