1
|
Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov 2019; 19:131-148. [DOI: 10.1038/s41573-019-0048-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
2
|
Matsunaga N, Fukuchi Y, Imawaka H, Tamai I. Sandwich-Cultured Hepatocytes for Mechanistic Understanding of Hepatic Disposition of Parent Drugs and Metabolites by Transporter-Enzyme Interplay. Drug Metab Dispos 2018; 46:680-691. [PMID: 29352067 DOI: 10.1124/dmd.117.079236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Functional interplay between transporters and drug-metabolizing enzymes is currently one of the hottest topics in the field of drug metabolism and pharmacokinetics. Uptake transporter-enzyme interplay is important to determine intrinsic hepatic clearance based on the extended clearance concept. Enzyme and efflux transporter interplay, which includes both sinusoidal (basolateral) and canalicular efflux transporters, determines the fate of metabolites formed in the liver. As sandwich-cultured hepatocytes (SCHs) maintain metabolic activities and form a canalicular network, the whole interplay between uptake and efflux transporters and drug-metabolizing enzymes can be investigated simultaneously. In this article, we review the utility and applicability of SCHs for mechanistic understanding of hepatic disposition of both parent drugs and metabolites. In addition, the utility of SCHs for mimicking species-specific disposition of parent drugs and metabolites in vivo is described. We also review application of SCHs for clinically relevant prediction of drug-drug interactions caused by drugs and metabolites. The usefulness of mathematical modeling of hepatic disposition of parent drugs and metabolites in SCHs is described to allow a quantitative understanding of an event in vitro and to develop a more advanced model to predict in vivo disposition.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Yukina Fukuchi
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Haruo Imawaka
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| | - Ikumi Tamai
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Tsukuba, Japan (N.M. Y.F., H.I.); Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan (I.T.)
| |
Collapse
|
3
|
Oizumi K, Sekine S, Fukagai M, Susukida T, Ito K. Identification of Bile Acids Responsible for Inhibiting the Bile Salt Export Pump, Leading to Bile Acid Accumulation and Cell Toxicity in Rat Hepatocytes. J Pharm Sci 2017; 106:2412-2419. [DOI: 10.1016/j.xphs.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
|
4
|
Ogimura E, Nakagawa T, Deguchi J, Sekine S, Ito K, Bando K. Troglitazone Inhibits Bile Acid Amidation: A Possible Risk Factor for Liver Injury. Toxicol Sci 2017; 158:347-355. [DOI: 10.1093/toxsci/kfx091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Zhou L, Pang X, Jiang J, Zhong D, Chen X. Nimesulide and 4'-Hydroxynimesulide as Bile Acid Transporters Inhibitors Are Contributory Factors for Drug-Induced Cholestasis. Drug Metab Dispos 2017; 45:441-448. [PMID: 28202577 DOI: 10.1124/dmd.116.074104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/08/2017] [Indexed: 02/13/2025] Open
Abstract
Nimesulide (NIM) is a classic nonsteroidal anti-inflammatory drug. However, some patients treated with NIM experienced cholestatic liver injury. For this reason, we investigated the potential mechanism underlying NIM-induced cholestasis by using in vivo and in vitro models. Oral administration of 100 mg/kg/day NIM to Wistar rats for 5 days increased the levels of plasma total bile acids, alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase by 1.49-, 1.31-, 1.60-, and 1.29-fold, respectively. In sandwich-cultured rat hepatocytes, NIM and 4'-hydroxynimesulide (M1) reduced the biliary excretion index of d8-taurocholic acid (d8-TCA) and 5 (and 6)-carboxy-2',7'-dichlorofluorescein in a concentration-dependent manner, indicating the inhibition of the efflux transporters bile salt export pump and multidrug resistance-associated protein 2, respectively. In suspended rat hepatocytes, NIM and M1 inhibited the uptake transporters of d8-TCA for Na+-taurocholate cotransporting polypeptide at IC50 values of 21.3 and 25.0 μM, respectively, and for organic anion-transporting proteins at IC50 values of 45.6 and 39.4 μM, respectively. By contrast, nitro-reduced NIM and the further acetylated metabolite did not inhibit or only marginally inhibited these transporters at the maximum soluble concentrations. Inhibitory effects of NIM and M1 on human bile acid transporters were also confirmed using sandwich-cultured human hepatocytes. These data suggest that the inhibition of bile acid transporters by NIM and M1 is one of the biologic mechanisms of NIM-induced cholestasis.
Collapse
Affiliation(s)
- Lei Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (L.Z., X.P., J.J., D.Z., X.C.); and the University of Chinese Academy of Sciences, Beijing, People's Republic of China (L.Z., J.J., D.Z., X.C.)
| | - Xiaoyan Pang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (L.Z., X.P., J.J., D.Z., X.C.); and the University of Chinese Academy of Sciences, Beijing, People's Republic of China (L.Z., J.J., D.Z., X.C.)
| | - Jingfang Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (L.Z., X.P., J.J., D.Z., X.C.); and the University of Chinese Academy of Sciences, Beijing, People's Republic of China (L.Z., J.J., D.Z., X.C.)
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (L.Z., X.P., J.J., D.Z., X.C.); and the University of Chinese Academy of Sciences, Beijing, People's Republic of China (L.Z., J.J., D.Z., X.C.)
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China (L.Z., X.P., J.J., D.Z., X.C.); and the University of Chinese Academy of Sciences, Beijing, People's Republic of China (L.Z., J.J., D.Z., X.C.)
| |
Collapse
|
6
|
Kang L, Si L, Rao J, Li D, Wu Y, Wu S, Wu M, He S, Zhu W, Wu Y, Xu J, Li G, Huang J. Polygoni Multiflori Radix derived anthraquinones alter bile acid disposition in sandwich-cultured rat hepatocytes. Toxicol In Vitro 2017; 40:313-323. [PMID: 28161596 DOI: 10.1016/j.tiv.2017.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 01/30/2023]
Abstract
Hepatic adverse reaction associated with Polygoni Multiflori Radix (PMR) has been frequently reported in recent years. Highly-enriched anthraquinones (AQs) in PMR, such as emodin, chrysophanol and physcion, have been found to be hepatotoxic. In the present study, sandwich-cultured rat hepatocytes (SCRHs) were employed to investigate the effect of individual and combined AQs on the disposition of endogenous bile acids (BAs) and exogenous probe substrates including deuterium-labeled taurocholate (d5-TCA), glycochenodeoxycholic acid (d4-GCDCA) and 5 (and 6)-carboxy-2',7'-dichlorofluorescein (CDF). Emodin and chrysophanol significantly inhibited bile salt export pump and multidrug resistance-associated protein 2 (Mrp2), respectively, as evidenced by decreased biliary excretion index (BEI) of d5-TCA and CDF. Moreover, basolateral efflux transporters were inhibited by all individual and combined AQs. As a result, cellular accumulation of total and specific endogenous BAs were significantly elevated by individual AQs, alone or combined. In addition, down-regulation of Mrps in both gene and protein levels by AQs served as another critical contributing factor for BA accumulation in SCRHs. To be noted, subsequent adaptive gene regulation, including reduced Ntcp expression, upregulated Bsep levels, and downregulated Cyp8b1, alleviated, to a certain extent, but not prevented from toxic BA accumulation. In summary, all three AQs of interest are likely to alter BA disposition through direct inhibition of BA transporters as well as regulated expression of BA transporters and enzymes.
Collapse
Affiliation(s)
- Li Kang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Luqin Si
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Rao
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Minghui Wu
- Malcom Randall VA Medical Center, Gainesville, FL 32608, USA
| | - Sijie He
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenwen Zhu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Wu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Gao Li
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiangeng Huang
- Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Hubei Engineering Research Center for Novel Drug Delivery Systems, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
7
|
Tian X, Gao Y, Xu Z, Lian S, Ma Y, Guo X, Hu P, Li Z, Huang C. Pharmacokinetics of mangiferin and its metabolite-Norathyriol, Part 1: Systemic evaluation of hepatic first-pass effect in vitro and in vivo. Biofactors 2016; 42:533-544. [PMID: 27130074 DOI: 10.1002/biof.1291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/21/2016] [Indexed: 12/17/2022]
Abstract
Mangiferin (MGF), a glucoside of xanthone existing in phytomedicines and food, is increasingly attracting attention on diabetes treatment, while the underlying mechanism leading to its low oral bioavailability is unclear. Norathyriol (NTR), an active metabolite with hypoglycemic activity and its exposure after MGF dosing remains unclear. Hence, a rapid and sensitive LC-MS/MS method was established and validated to determine MGF and NTR and applied in the PK study in rats. Correspondingly, the in vitro experiments on temperature-dependent uptake, and MGF metabolism in hepatocyte and enterobacteria samples were performed. Results revealed that hepatic first-pass effect slightly contributed to the poor bioavailability of MGF, based on the MGF exposure in portal vein plasma was nearly similar to that in systemic plasma, and the MGF accumulation in the liver was limited, so was that of NTR. Correspondingly, the in vitro study revealed the MGF uptake was mainly dependent on poor passive transport, possibly leading to its limited hepatic metabolism and accumulation. Moreover, the NTR exposure remained considerably low (Cmax < 3 ng/mL, AUCNTR /AUCMGF < 3%) in plasma after single MGF dosing, corresponding to its tiny proportion (0.1%) of MGF in MGF-incubated enterobacteria samples. However, given the low generation and elimination rates of NTR, NTR might accumulate in plasma and exert effects after repeated MGF dosing, although requires further study. This work is the first systemic study on PK profiles of MGF and NTR in vitro and in vivo, which is important for the interpretation on the poor bioavailability and pharmacodynamics of MGF. © 2016 BioFactors, 42(5):533-544, 2016.
Collapse
Affiliation(s)
- Xiaoting Tian
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yu Gao
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhou Xu
- College of life and environmental sciences, Shanghai Normal University, Shanghai, People's Republic of China
| | - Shan Lian
- Department of pharmacy ,Harbin University of Commerce, Harbin, People's Republic of China
| | - Yuanjie Ma
- Department of pharmacy ,Harbin University of Commerce, Harbin, People's Republic of China
| | - Xiaozhen Guo
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Pei Hu
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhixiong Li
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Chenggang Huang
- Modernization of traditional Chinese medicine, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai, People's Republic of China.
| |
Collapse
|
8
|
Sigurdsson V, Takei H, Soboleva S, Radulovic V, Galeev R, Siva K, Leeb-Lundberg L, Iida T, Nittono H, Miharada K. Bile Acids Protect Expanding Hematopoietic Stem Cells from Unfolded Protein Stress in Fetal Liver. Cell Stem Cell 2016; 18:522-32. [DOI: 10.1016/j.stem.2016.01.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/15/2015] [Accepted: 01/04/2016] [Indexed: 02/08/2023]
|
9
|
Establishment of a Drug-Induced, Bile Acid–Dependent Hepatotoxicity Model Using HepaRG Cells. J Pharm Sci 2016; 105:1550-60. [DOI: 10.1016/j.xphs.2016.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/04/2016] [Accepted: 01/08/2016] [Indexed: 01/29/2023]
|
10
|
Sheng J, Tian X, Xu G, Wu Z, Chen C, Wang L, Pan L, Huang C, Pan G. The hepatobiliary disposition of timosaponin b2 is highly dependent on influx/efflux transporters but not metabolism. Drug Metab Dispos 2015; 43:63-72. [PMID: 25336752 DOI: 10.1124/dmd.114.059923] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
The purpose of this study was to characterize the hepatobiliary disposition of timosaponin B2 (TB-2), a natural saponin. Although TB-2 has multiple pharmacologic activities, the mechanism of its hepatobiliary disposition has not been explored. Because the metabolism of TB-2 is limited and the accumulation of TB-2 in primary hepatocytes is highly temperature dependent (93% of its accumulation is due to active uptake), the contribution of hepatic transporters was investigated. Organic anion-transporting polypeptide (OATP) 1B1- and OATP1B3-transfected human embryonic kidney 293 cells were employed. TB-2 serves as a substrate for OATP1B1 and OATP1B3, with the former playing a predominant role in the hepatic uptake of TB-2. An inhibition study in sandwich-cultured rat hepatocytes suggested that TB-2 is a substrate for both breast cancer resistance protein (Bcrp) and multidrug resistance-associated protein 2 (Mrp2), consistent with its high biliary excretion index (43.1-44.9%). This hypothesis was further verified in BCRP and MRP2 membrane vesicles. The cooperation of uptake and efflux transporters in TB-2 hepatic disposition could partially explain the double-peak phenomenon observed in rat plasma and liver and biliary clearance, which accounted for 70% of the total TB-2 clearance. Moreover, TB-2 significantly increased the rosuvastatin concentration in rat plasma in a concentration-dependent manner and decreased its biliary excretion, which corresponded to reductions in rosuvastatin accumulation in hepatocytes and the biliary excretion index in sandwich-cultured rat hepatocytes, representing a perfect example of a potential saponin-statin drug-drug interaction. These studies demonstrate that transporters (Oatp, Bcrp/Mrp2), but not metabolism, contribute significantly to rat TB-2 hepatobiliary disposition.
Collapse
Affiliation(s)
- Jingjing Sheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Guanglin Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Zhitao Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Chen Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Le Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Lili Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (X.T., Z.W., L.W., C.H., G.P.); Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China (J.S., G.X., L.P.); and Institute of Life Sciences, Jiangsu University, Zhenjiang, People's Republic of China (C.C.)
| |
Collapse
|
11
|
Guo C, He L, Yao D, A J, Cao B, Ren J, Wang G, Pan G. Alpha-naphthylisothiocyanate modulates hepatobiliary transporters in sandwich-cultured rat hepatocytes. Toxicol Lett 2014; 224:93-100. [DOI: 10.1016/j.toxlet.2013.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/12/2022]
|
12
|
YANG KYUNGHEE, KÖCK KATHLEEN, SEDYKH ALEXANDER, TROPSHA ALEXANDER, BROUWER KIML. An updated review on drug-induced cholestasis: mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. J Pharm Sci 2013; 102:3037-57. [PMID: 23653385 PMCID: PMC4369767 DOI: 10.1002/jps.23584] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/13/2013] [Accepted: 04/16/2013] [Indexed: 12/15/2022]
Abstract
Drug-induced cholestasis is an important form of acquired liver disease and is associated with significant morbidity and mortality. Bile acids are key signaling molecules, but they can exert toxic responses when they accumulate in hepatocytes. This review focuses on the physiological mechanisms of drug-induced cholestasis associated with altered bile acid homeostasis due to direct (e.g., bile acid transporter inhibition) or indirect (e.g., activation of nuclear receptors, altered function/expression of bile acid transporters) processes. Mechanistic information about the effects of a drug on bile acid homeostasis is important when evaluating the cholestatic potential of a compound, but experimental data often are not available. The relationship between physicochemical properties, pharmacokinetic parameters, and inhibition of the bile salt export pump among 77 cholestatic drugs with different pathophysiological mechanisms of cholestasis (i.e., impaired formation of bile vs. physical obstruction of bile flow) was investigated. The utility of in silico models to obtain mechanistic information about the impact of compounds on bile acid homeostasis to aid in predicting the cholestatic potential of drugs is highlighted.
Collapse
Affiliation(s)
- KYUNGHEE YANG
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - KATHLEEN KÖCK
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - ALEXANDER SEDYKH
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - ALEXANDER TROPSHA
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - KIM L.R. BROUWER
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
13
|
De Bruyn T, Chatterjee S, Fattah S, Keemink J, Nicolaï J, Augustijns P, Annaert P. Sandwich-cultured hepatocytes: utility for in vitro exploration of hepatobiliary drug disposition and drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2013; 9:589-616. [PMID: 23452081 DOI: 10.1517/17425255.2013.773973] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The sandwich-cultured hepatocyte (SCH) model has become an invaluable in vitro tool for studying hepatic drug transport, metabolism, biliary excretion and toxicity. The relevant expression of many hepatocyte-specific functions together with the in vivo-like morphology favor SCHs over other preclinical models for evaluating hepatobiliary drug disposition and drug-induced hepatotoxicity. AREAS COVERED In this review, the authors highlight recommended procedures required for reproducibly culturing hepatocytes in sandwich configuration. It also provides an overview of the SCH model characteristics as a function of culture time. Lastly, the article presents a summary of the most prominent applications of the SCH model, including hepatic drug clearance prediction, drug-drug interaction potential and drug-induced hepatotoxicity. EXPERT OPINION When human (cryopreserved) hepatocytes are used to establish sandwich cultures, the model appears particularly valuable to quantitatively investigate clinically relevant mechanisms related to in vivo hepatobiliary drug disposition and hepatotoxicity. Nonetheless, the SCH model would largely benefit from better insight into the fundamental cell signaling mechanisms that are critical for long-term in vitro maintenance of the hepatocytic phenotype. Studies systematically exploring improved cell culture conditions (e.g., co-cultures or extracellular matrix modifications), as well as in vitro work identifying key transcription factors involved in hepatocyte differentiation are currently emerging.
Collapse
Affiliation(s)
- Tom De Bruyn
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49-bus-921, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
14
|
Griffin LM, Watkins PB, Perry CH, St Claire RL, Brouwer KLR. Combination lopinavir and ritonavir alter exogenous and endogenous bile acid disposition in sandwich-cultured rat hepatocytes. Drug Metab Dispos 2013; 41:188-96. [PMID: 23091188 PMCID: PMC3533430 DOI: 10.1124/dmd.112.047225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/22/2012] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the bile salt export pump (BSEP) can cause intracellular accumulation of bile acids and is a risk factor for drug-induced liver injury in humans. Antiretroviral protease inhibitors lopinavir (LPV) and ritonavir (RTV) are reported BSEP inhibitors. However, the consequences of LPV and RTV, alone and combined (LPV/r), on hepatocyte viability, bile acid transport, and endogenous bile acid disposition in rat hepatocytes have not been examined. The effect of LPV, RTV, and LPV/r on cellular viability and the disposition of [(3)H]taurocholic acid (TCA) and [(14)C]chenodeoxycholic acid (CDCA) was determined in sandwich-cultured rat hepatocytes (SCRH) and suspended rat hepatocytes. Lactate dehydrogenase and ATP assays revealed a concentration-dependent effect of LPV and RTV on cellular viability. LPV (5 µM), alone and combined with 5 µM RTV, significantly decreased [(3)H]TCA accumulation in cells + bile of SCRHs compared with control. LPV/r significantly increased [(3)H]TCA cellular accumulation (7.7 ± 0.1 pmol/mg of protein) compared with vehicle and 5 µM LPV alone (5.1 ± 0.7 and 5.0 ± 0.5 pmol/mg of protein). The [(3)H]TCA biliary clearance was reduced significantly by LPV and RTV and further reduced by LPV/r. LPV and RTV did not affect the initial uptake rates of [(3)H]TCA or [(14)C]CDCA in suspended rat hepatocytes. LPV (50 µM), RTV (5 µM), and LPV/r (5 and 50 µM/5 µM) significantly decreased the accumulation of total measured endogenous bile acids (TCA, glycocholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, and α/β-tauromuricholic acid) in SCRH. Quantification of endogenous bile acids in SCRH may reveal important adaptive responses associated with exposure to known BSEP inhibitors.
Collapse
Affiliation(s)
- LaToya M Griffin
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | |
Collapse
|
15
|
PPAR Medicines and Human Disease: The ABCs of It All. PPAR Res 2012; 2012:504918. [PMID: 22919365 PMCID: PMC3423947 DOI: 10.1155/2012/504918] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/21/2022] Open
Abstract
ATP-dependent binding cassette (ABC) transporters are a family of transmembrane proteins that pump a variety of hydrophobic compounds across cellular and subcellular barriers and are implicated in human diseases such as cancer and atherosclerosis. Inhibition of ABC transporter activity showed promise in early preclinical studies; however, the outcomes in clinical trials with these agents have not been as encouraging. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that regulate genes involved in fat and glucose metabolism, and inflammation. Activation of PPAR signaling is also reported to regulate ABC gene expression. This suggests the potential of PPAR medicines as a novel means of controlling ABC transporter activity at the transcriptional level. This paper summarizes the advances made in understanding how PPAR medicines affect ABC transporters, and the potential implications for impacting on human diseases, in particular with respect to cancer and atherosclerosis.
Collapse
|
16
|
Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes. Toxicol Appl Pharmacol 2012; 261:1-9. [PMID: 22342602 DOI: 10.1016/j.taap.2012.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 01/08/2023]
Abstract
Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR® technology, BAs were measured in cells+bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells+bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3±5.9 μM in CTL rat and 183±56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16±0.21 μM in CTL rat SCH and 9.61±6.36 μM in CTL human SCH. Treatment of cells for 24h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na⁺-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account.
Collapse
|
17
|
Keogh JP. Membrane transporters in drug development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 63:1-42. [PMID: 22776638 DOI: 10.1016/b978-0-12-398339-8.00001-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Membrane transporters have wide, but specific tissue distributions. They can impact on multiple endogenous and xenobiotic processes. Knowledge and awareness within the pharmaceutical industry of their impact on drug absorption, distribution, metabolism and elimination (ADME) and drug safety is growing rapidly. Clinically important transporter-mediated drug-drug interactions (DDIs) have been observed. Up to nine diverse transporters are implicated in the DDIs of a number of widely prescribed drugs, posing a significant challenge to the pharmaceutical industry. There is a complex interplay between multiple transporters and/or enzymes in the ADME and pharmacogenomics of drugs. Integrating these different mechanisms to understand their relative contributions to ADME is a key challenge. Many different factors complicate the study of membrane transporters in drug development. These include a lack of specific substrates and inhibitors, non-standard in vitro tools, and competing/complementary mechanisms (e.g. passive permeability and metabolism). Discovering and contextualizing the contribution of membrane transporters to drug toxicity is a significant new challenge. Drug interactions with key membrane transporters are routinely assessed for central nervous system (CNS) drug discovery therapies, but are not generally considered across the wider drug discovery. But, there is interest in utilizing membrane transporters as drug delivery agents. Computational modeling approaches, notably physiology-based/pharmacokinetic (PB/PK) modeling are increasingly applied to transporter interactions, and permit integration of multiple ADME mechanisms. Because of the range of tissues and transporters of interest, robust transporter, in vitro to in vivo, scaling factors are required. Empirical factors have been applied, but absolute protein quantitation will probably be required.
Collapse
|
18
|
Ogimura E, Sekine S, Horie T. Bile salt export pump inhibitors are associated with bile acid-dependent drug-induced toxicity in sandwich-cultured hepatocytes. Biochem Biophys Res Commun 2011; 416:313-7. [PMID: 22108051 DOI: 10.1016/j.bbrc.2011.11.032] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/05/2011] [Indexed: 12/26/2022]
Abstract
Drug-induced liver injury (DILI) is a major reason for the dropout of candidate compounds from drug testing and the withdrawal of pharmaceuticals from clinical use. Among the various mechanisms of liver injury, the accumulation of bile acids (BAs) within hepatocytes is thought to be a primary mechanism for the development of DILI. Although bile salt export pump (BSEP) dysfunction is considered a susceptibility factor for DILI, little is known about the relationship between drug-induced BSEP dysfunction and BA-dependent hepatotoxicity. Furthermore, few methods are at hand for the systematic and quantitative evaluation of BA-dependent DILI. This study aimed to construct a model of DILI by employing sandwich-cultured hepatocytes (SCHs). SCHs can be used to assess functions of canalicular transporters such as BSEP and the activity of metabolic enzymes. Here, the impact of 26 test compounds (ritonavir, troglitazone, etc.) was investigated on BA-dependent cytotoxicity in SCHs. SCHs were exposed to each compound for 24h with or without BAs (glycochenodeoxycholic acid, deoxycholic acid, etc.). As a result, BA-dependent toxicity was observed for 11 test compounds in SCHs treated in the presence of BAs, while no signs of toxicity were observed for SCHs treated in the absence of BAs. Of the 11 compounds, nine were known BSEP inhibitors. Moreover, for some compounds, an increase in the severity of BA-dependent toxicity was observed in SCHs that were co-treated with 1-aminobenzotriazole, a non-selective inhibitor of cytochrome P450 (CYP450)-mediated drug metabolism. These results indicate that the SCH-based model is likely to prove useful for the evaluation of BA-dependent DILI, including the effects of drug metabolism and BSEP inhibition on liver injury.
Collapse
Affiliation(s)
- Eiichiro Ogimura
- The Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | | | | |
Collapse
|