1
|
Marbrey MW, Kistner B, Douglas ES, Caron KM. AHR activated placental adrenomedullin: A plausible factor in smoke-induced preeclampsia protection. Placenta 2025; 167:175-180. [PMID: 40408837 DOI: 10.1016/j.placenta.2025.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
INTRODUCTION The placenta develops as trophectoderm cells invade and secrete peptides to remodel the maternal vasculature. Impaired invasion can lead to preeclampsia. Maternal smoking during pregnancy can cause miscarriage and fetal developmental problems. Yet curiously, cigarette use during pregnancy correlates with a decreased risk for preeclampsia. To explore this, we have studied the secreted peptide, adrenomedullin (ADM) that promotes placentation and is increased by maternal smoking. The aryl hydrocarbon receptor (AHR) is a transcription factor that binds cigarette-associated carcinogenic ligands. We hypothesized that AHR activation by cigarette smoke induces Adm to promote placental development. METHODS Pregnant transgenic animals exhibiting overexpression of Adm or genetic loss of Ahr were exposed to cigarette smoke. Embryo and placenta tissues were evaluated. Immortalized trophoblast cells (HTR8/SVneo) were also exposed to cigarette smoke extract before AHR chromatin immunoprecipitation with quantitative polymerase chain reaction. RESULTS Ablation of Ahr reduced embryo weights and embryo/placental weight ratios. Further, overexpression of Adm increased placental weights in sham treated conditions yet caused abnormal placental growth and stunted embryo development with cigarette smoke. Finally, chromatin immunoprecipitation results demonstrated that AHR significantly binds to two sites on the ADM promoter. DISCUSSION In a mouse model of high Adm expression, cigarette smoke can elicit stunted embryo and placental weights and abnormal placental morphology. Thus, tightly regulated ADM levels are critical for murine gestational development and in the presence of cigarette smoke, are promoted by AHR-mediated transcriptional activation. These studies provide compelling results suggesting AHR drives ADM upregulation in the smoke-exposed placenta.
Collapse
Affiliation(s)
- Margeaux W Marbrey
- Duke University School of Medicine, Department of Obstetrics & Gynecology, Division of Reproductive Sciences, Durham, NC, USA.
| | - Bryan Kistner
- University of North Carolina Chapel Hill School of Medicine, Department of Cell Biology & Physiology, Chapel Hill, NC, USA
| | - Elizabeth S Douglas
- University of North Carolina Chapel Hill School of Medicine, Department of Cell Biology & Physiology, Chapel Hill, NC, USA
| | - Kathleen M Caron
- University of North Carolina Chapel Hill School of Medicine, Department of Cell Biology & Physiology, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Shukla V, Iqbal K, Okae H, Arima T, Soares MJ. Effects of an aryl hydrocarbon receptor ligand on human trophoblast cell development. Hum Reprod 2025:deaf075. [PMID: 40294436 DOI: 10.1093/humrep/deaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 03/05/2025] [Indexed: 04/30/2025] Open
Abstract
STUDY QUESTION How does activation of aryl hydrocarbon receptor (AHR) signaling affect human trophoblast cell development and differentiation? SUMMARY ANSWER AHR activation alters gene expression without impairing the ability of trophoblast cells to maintain a stem cell state or differentiate into essential cell types, such as extravillous trophoblast (EVT) cells or syncytiotrophoblast (ST), while promoting the production of 2-methoxy estradiol (2ME), which may impact placental development. WHAT IS KNOWN ALREADY The placenta serves both as a nutrient delivery system and a protective barrier against environmental toxins. AHR signaling is known to mediate cellular responses to environmental pollutants, potentially affecting trophoblast cell function, but the specific impacts of AHR activation on these cells were not fully understood. STUDY DESIGN, SIZE, DURATION This study utilized an in vitro model of human trophoblast stem (TS) cells to investigate the downstream effects of AHR activation. The study focused on both undifferentiated TS cells and cells undergoing differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS Human TS cells were used as a model system. Researchers examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in TS cells maintained in their stem state and in TS cells induced to differentiate into EVT cells or ST. The study assessed changes in gene expression, particularly focusing on CYP1A1 and CYP1B1, as well as the production of 2ME. MAIN RESULTS AND THE ROLE OF CHANCE AHR activation stimulated the expression of CYP1A1 and CYP1B1, key genes associated with AHR signaling, in both undifferentiated and differentiating trophoblast cells. While AHR activation did not impact the ability of the cell to remain in a stem state or differentiate, it increased the production of 2ME, which may influence placentation. These effects were dependent on AHR signaling. LARGE SCALE DATA n/a. LIMITATIONS, REASONS FOR CAUTION This study was conducted in vitro, which may not fully replicate in vivo conditions. Further research is needed to confirm whether these findings apply to placental development in humans. WIDER IMPLICATIONS OF THE FINDINGS The results suggest that AHR signaling activated by environmental pollutants could have a significant impact on placental development through mechanisms involving AHR activation. These findings may have broader implications for understanding how environmental factors affect fetal development. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the National Institutes of Health: ES028957, HD020676, ES029280, HD105734, HD112559, and the Sosland Foundation. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michael J Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Cao J, Han M, Li F, Zhang J, Ji J, Wei J. Predictive value and mediating effect analysis of the AHR-ARNT-CYP1A1 axis for missed abortion related to polycyclic aromatic hydrocarbons exposure. Sci Rep 2025; 15:4920. [PMID: 39929862 PMCID: PMC11810996 DOI: 10.1038/s41598-025-88464-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
This study aimed to determine the predictive value of aryl hydrocarbon receptor (AHR) signaling pathway genes, and to detect the mediating effect of AHR that may mediate the influence of polycyclic aromatic hydrocarbons (PAHs) on missed abortion. The present study was conducted using a 1:2 matched case-control study, a total of 94 cases of women with missed abortion and 188 matched women controls with normal pregnancy but voluntarily abortion were included. The receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC) were used to evaluate the predictive value of AHR signaling pathway genes for missed abortion. The mediating role of AHR within the effect pathway between PAHs exposure and missed abortion was performed using the mediation package of the R language. The results showed that the level of PAH-DNA adducts in the case group (487.61 ± 6.29) pg/ml was higher than that in the control group (446.86 ± 5.95) pg/ml (P < 0.001). There were significant differences in the expression levels of AHR, aryl hydrocarbon receptor nuclear translocator (ARNT), aryl hydrocarbon receptor repressor (AHRR), cytochrome P450 enzymes 1A1 (CYP1A1) and glutathione S-transferase P1 (GSTP1) genes between the case group and the control group (P < 0.01). After adjusting for covariates, high exposure of PAH-DNA adducts levels increased AHR and CYP1A1 expression. The 5-fold cross-validation results revealed that the mean value of the area under the ROC curve (AUC) of AHR-ARNT-CYP1A1 axis was 0.931 (95%CI: 0.858 ~ 0.999), which had good predictive performance in assessing the risk of prevalence of missed abortion. AHR gene might play a partial mediating effect in the association between PAHs exposure and missed abortion, and the percentage of mediating effect was 36.56%.
Collapse
Affiliation(s)
- Jiuru Cao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Mei Han
- Department of Epidemiology, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Fuxing Li
- Department of Epidemiology, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jiayu Zhang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China
| | - Jingru Ji
- Department of Obstetrics and Gynecology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Junni Wei
- Department of Epidemiology, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
4
|
Zhao Y, Zhou C, Zhang S, Mishra JS, Li H, Lei W, Wang K, Kumar S, Zheng J. An endogenous aryl hydrocarbon receptor ligand induces preeclampsia-like phenotypes in rats. J Physiol 2025; 603:579-594. [PMID: 39652430 PMCID: PMC11737537 DOI: 10.1113/jp287503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder during human pregnancy. Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor. Exogenous and endogenous AhR ligands can induce hypertension in male rats and mice. Herein, using rats as a model, we tested the hypothesis that over-regulation of endogenous AhR ligands during pregnancy impairs vascular functions by disrupting the transcriptome in the placenta, contributing to the development of PE. Pregnant rats were injected daily with an endogenous AhR ligand, 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), from gestational day (GD) 10 to 19. Maternal mean blood pressure was measured on GD16-20. Proteinuria and uteroplacental blood flow were monitored on GD20. Placentas collected on GD20 were used to determine changes in vascular density and transcriptome. Compared with the vehicle control, ITE elevated maternal mean blood pressure by 22% and 16% on GD16 and 17, respectively. ITE increased proteinuria by 50% and decreased uteroplacental blood flow by 26%. ITE reduced the placental vascular density by 18%. RNA sequencing analysis revealed that ITE induced 1316 and 2020 differentially expressed genes (DEGs) in female and male placentas, respectively. These DEGs were enriched in pathways relevant to heart diseases, vascular functions and inflammation. Bioinformatics analysis also predicted that ITE altered immune cell infiltration in placentas depending on fetal sex. These data suggest that over-regulation of endogenous AhR ligands may lead to PE with impaired vascular functions and disrupted fetal sex-specific transcriptomes and immune cell infiltration in placentas. These AhR ligand-induced DEGs and pathways may represent promising therapeutic targets for PE-induced cardiovascular dysfunctions. KEY POINTS: An endogenous AhR ligand (ITE) elevated maternal blood pressure and proteinuria in pregnant rats, and decreased uteroplacental blood flow and fetal and placental growth, all of which are hallmarks of preeclampsia. ITE reduced vascular density and altered immune cell distribution in rat placentas. ITE dysregulated transcriptomes in rat placentas in a fetal sex-specific manner. These ITE-dysregulated genes and pathways are highly relevant to diseases of heart, vascular functions and inflammatory responses.
Collapse
Affiliation(s)
- Ying‐Jie Zhao
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Chi Zhou
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonAZUSA
| | - Si‐Yan Zhang
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jay S. Mishra
- Department of Comparative BiosciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Hui‐Hui Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wei Lei
- Cardiovascular Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| | - Kai Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Sathish Kumar
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Comparative BiosciencesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Zheng
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
5
|
Kim HY, Seok YS, Moon HY, Cho GJ, Ahn KH, Hong SC, Oh MJ, Kim HJ. The Role of the Aryl Hydrocarbon Receptor in Vascular Factors Related to Preeclampsia in a Smoking Mouse Model. Curr Issues Mol Biol 2024; 46:741-752. [PMID: 38248350 PMCID: PMC10814390 DOI: 10.3390/cimb46010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Smoking cigarettes is known to lower the risk of preeclampsia. The objective of this study is to evaluate the effect of smoking on the expression of soluble FMS-like tyrosine kinase-1 (sFlt-1), vascular endothelial growth factor (VEGF), and endoglin (sEng)-1 and the role of the aryl hydrocarbon receptor (AhR) in pregnant mice. We developed a smoking mouse model using a gas-filling system. One or two cigarettes per day were exposed to each of the five pregnant mice for five days a week throughout pregnancy. AhR agonist and antagonist were injected. Serum levels and expression in the placenta of sFlt-1, VEGF, and sEng-1 were analyzed and compared among the cigarette smoke and no-exposure groups after delivery. Compared to the no-smoke exposure group, the serum level of sFlt-1 was significantly decreased in the two-cigarette-exposed group (p < 0.001). When the AhR antagonist was added to the two-cigarette-exposed group, sFlt-1 levels were significantly increased compared to the two-cigarette group (p = 0.002). The levels of sFlt-1 in the AhR antagonist group did not change regardless of two-cigarette exposure (p = 0.064). With the AhR agonist, sFlt-1 decreased significantly compared to the control (p = 0.001) and AhR antagonist group (p = 0.002). The sFlt-1 level was significantly decreased after the injection of the AhR agonist compared to the control group (p = 0.001). Serum levels of VEGF were significantly decreased in the one-cigarette-exposed group compared to the control group; however, there was no difference between the control and the two-cigarette-exposed groups. The placental expression of sFlt-1, VEGF, and sEng were inconsistent. This study offers insights into the potential role of AhR on antiangiogenic sFlt-1 associated with preeclampsia. It may support the invention of a new treatment strategy for preeclampsia using AhR activation.
Collapse
Affiliation(s)
- Ho-Yeon Kim
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Ye-Seon Seok
- Department of Obstetric and Gynecology, Korea University Guro Hospital, Seoul 08308, Republic of Korea;
| | - Hye-Yeon Moon
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Geum-Joon Cho
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Ki-Hoon Ahn
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Soon-Cheol Hong
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Min-Jeong Oh
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| | - Hai-Joong Kim
- Department of Obstetrics and Gynecology, Korea University School of Medicine, Seoul 02841, Republic of Korea; (H.-Y.K.); (H.-Y.M.); (K.-H.A.); (S.-C.H.); (H.-J.K.)
| |
Collapse
|
6
|
Xodo S, Londero AP, Orsaria M, Marzinotto S, Colussi G, Cagnacci A, Mariuzzi L, Gri G. Examining the Aryl Hydrocarbon Receptor Network in the Placental Tissues of Pregnancies Complicated by Pre-Eclampsia: An Explorative Case-Control Analysis. Life (Basel) 2023; 13:2122. [PMID: 38004262 PMCID: PMC10672047 DOI: 10.3390/life13112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Severe maternal and newborn morbidity and mortality associated with pre-eclampsia, which are caused partly by premature delivery, affect a factual proportion of pregnancies. Despite its prevalence, the underlying causes of pre-eclampsia remain elusive, with emerging evidence implicating the aryl hydrocarbon receptor (AhR) in its pathogenesis. This study sought to elucidate the involvement of the AhR and its associated pathway in pre-eclampsia by comparing placental components of the AhR pathway in pregnant individuals with and without pre-eclampsia. This case-control investigation was conducted at the University Hospital of Udine from May 2021 to February 2023. The AhR was assessed using immunohistochemistry and immunofluorescence, and its mRNA was evaluated using a Real-Time Quantitative Reverse Transcription PCR. Levels of mRNA expression were also estimated for other components of the AhR pathway (CYP1B1, IDO1, ARNT, TIPARP, S100A4, and AHRR). Our findings show decreased levels of expression of AhR, IDO1, ARNT, TiPARP, and S100A4 in the placental tissues of individuals with pre-eclampsia compared to controls (p < 0.05). The AhR exhibited a distinct localization within the syncytiotrophoblast (nuclei and cytoplasm) and CD45-positive cells (nuclei and cytoplasm). Furthermore, a significant positive correlation between the AhR and S100A4 (rho = 0.81) was observed in normal placentas, while CYP1B1 displayed a significant negative correlation with the AhR (rho = -0.72), within addition to its negative correlation with TiPARP (rho = -0.83). This study illuminates pre-eclampsia's molecular aberrations, suggesting new diagnostic, therapeutic, and mechanistic approaches. This study emphasizes the need for more research to validate and broaden these findings to improve the management of this complex pregnancy condition.
Collapse
Affiliation(s)
- Serena Xodo
- Clinic of Obstetrics and Gynecology, “Azienda Sanitaria Universitaria Integrata di Udine”, DAME, University of Udine, 33100 Udine, Italy
| | - Ambrogio P. Londero
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy;
- Obstetrics and Gynecology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Maria Orsaria
- Institute of Pathology, “Azienda Sanitaria Universitaria Integrata di Udine”, DAME, University of Udine, 33100 Udine, Italy; (M.O.)
| | - Stefania Marzinotto
- Institute of Pathology, “Azienda Sanitaria Universitaria Integrata di Udine”, DAME, University of Udine, 33100 Udine, Italy; (M.O.)
| | - Gianluca Colussi
- Hypertension Unit, Department of Medicine, ASFO “Santa Maria degli Angeli” Hospital of Pordenone, 33170 Pordenone, Italy;
| | - Angelo Cagnacci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Infant Health, University of Genoa, 16132 Genova, Italy;
- Academic Unit of Obstetrics and Gynecology, IRCCS Ospedale San Martino, 16132 Genoa, Italy
| | - Laura Mariuzzi
- Institute of Pathology, “Azienda Sanitaria Universitaria Integrata di Udine”, DAME, University of Udine, 33100 Udine, Italy; (M.O.)
| | - Giorgia Gri
- DIMEC—Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
7
|
Ren R, Fang Y, Sherchan P, Lu Q, Lenahan C, Zhang JH, Zhang J, Tang J. Kynurenine/Aryl Hydrocarbon Receptor Modulates Mitochondria-Mediated Oxidative Stress and Neuronal Apoptosis in Experimental Intracerebral Hemorrhage. Antioxid Redox Signal 2022; 37:1111-1129. [PMID: 35481813 PMCID: PMC9784632 DOI: 10.1089/ars.2021.0215] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/30/2022]
Abstract
Aims: Oxidative stress and neuronal apoptosis play crucial roles in the pathological processes of secondary injury after intracerebral hemorrhage (ICH). Aryl hydrocarbon receptor (AHR), together with its endogenous ligand kynurenine, is known to mediate free radical accumulation and neuronal excitotoxicity in central nervous systems. Herein, we investigate the pathological roles of kynurenine/AHR after ICH. Results: Endogenous AHR knockout alleviated reactive oxygen species accumulation and neuronal apoptosis in ipsilateral hemisphere at 48 h after ICH in mice. The ICH insult resulted in an increase of total and nucleus AHR protein levels and AHR transcriptional activity. Inhibition of AHR provided both short- and long- term neurological benefits by attenuating mitochondria-mediated oxidative stress and neuronal apoptosis after ICH in mice. RhoA-Bax signaling activated mitochondrial death pathway and participated in deleterious actions of AHR. Finally, we reported that exogenous kynurenine aggravated AHR activation and mediated the brain mentioned earlier. Male animals were used in the experiments. Innovation: We show for the first time that kynurenine/AHR mediates mitochondria death and free radical accumulation, at least partially via the RhoA/Bax signaling pathway. Pharmacological antagonists of AHR and kynurenine may ameliorate neurobehavioral function and improve the prognosis of patients with ICH. Conclusion: Kynurenine/AHR may serve as a potential therapeutic target to attenuate mitochondria-mediated oxidative stress and neuronal cells impairment in patients with ICH. Antioxid. Redox Signal. 37, 1111-1129.
Collapse
Affiliation(s)
- Reng Ren
- Department of Neurointensive Care Unit and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Qin Lu
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Neurosurgery, and Loma Linda University School of Medicine, Loma Linda, California, USA
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Jianmin Zhang
- Department of Neurointensive Care Unit and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| |
Collapse
|
8
|
Seymore TN, Rivera-Núñez Z, Stapleton PA, Adibi JJ, Barrett ES. Phthalate Exposures and Placental Health in Animal Models and Humans: A Systematic Review. Toxicol Sci 2022; 188:153-179. [PMID: 35686923 PMCID: PMC9333406 DOI: 10.1093/toxsci/kfac060] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phthalates are ubiquitous compounds known to leach from the plastic products that contain them. Due to their endocrine-disrupting properties, a wide range of studies have elucidated their effects on reproduction, metabolism, neurodevelopment, and growth. Additionally, their impacts during pregnancy and on the developing fetus have been extensively studied. Most recently, there has been interest in the impacts of phthalates on the placenta, a transient major endocrine organ critical to maintenance of the uterine environment and fetal development. Phthalate-induced changes in placental structure and function may have significant impacts on the course of pregnancy and ultimately, child health. Prior reviews have described the literature on phthalates and placental health; however to date, there has been no comprehensive, systematic review on this topic. Here, we review 35 papers (24 human and 11 animal studies) and summarize phthalate exposures in relation to an extensive set of placental measures. Phthalate-related alterations were reported for placental morphology, hormone production, vascularization, histopathology, and gene/protein expression. The most consistent changes were observed in vascular and morphologic endpoints, including cell composition. These changes have implications for pregnancy complications such as preterm birth and intrauterine growth restriction as well as potential ramifications for children's health. This comprehensive review of the literature, including common sources of bias, will inform the future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Talia N Seymore
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
| | - Jennifer J Adibi
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, New Jersey 08854, USA
| |
Collapse
|
9
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
10
|
Iqbal K, Pierce SH, Kozai K, Dhakal P, Scott RL, Roby KF, Vyhlidal CA, Soares MJ. Evaluation of Placentation and the Role of the Aryl Hydrocarbon Receptor Pathway in a Rat Model of Dioxin Exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:117001. [PMID: 34747641 PMCID: PMC8574979 DOI: 10.1289/ehp9256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR). OBJECTIVES The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action. METHODS Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological, biochemical, and molecular analyses. RESULTS TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine-placental interface were guided by the actions of TCDD on endothelial cells. DISCUSSION We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation of the hemochorial placenta. https://doi.org/10.1289/EHP9256.
Collapse
Affiliation(s)
- Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Stephen H. Pierce
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Keisuke Kozai
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Pramod Dhakal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Regan L. Scott
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
| | - Katherine F. Roby
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Anatomy and Cell Biology, KUMC, Kansas City, Kansas, USA
| | - Carrie A. Vyhlidal
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children’s Mercy Kansas City, Kansas City, Missouri
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Michael J. Soares
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center (KUMC), Kansas City, Kansas, USA
- Department of Pathology and Laboratory Medicine, KUMC, Kansas City, Kansas, USA
- Center for Perinatal Research, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, Missouri
- Department of Obstetrics and Gynecology, KUMC, Kansas City, Kansas, USA
| |
Collapse
|
11
|
El-Dairi R, Huuskonen P, Pasanen M, Rysä J. Aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone regulated gene networks in human primary trophoblasts. Reprod Toxicol 2020; 96:370-379. [PMID: 32858204 DOI: 10.1016/j.reprotox.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in placenta. AhR belongs to a class of transcriptional regulators that control many developmental and physiological events (e.g. xenobiotic metabolism). Our study describes AhR regulated transcriptional responses in human primary trophoblast by using the AhR agonist, β-naphthoflavone (BNF). Human primary trophoblast cells were isolated from full term placenta after delivery. The trophoblasts were exposed to 25 μM of AhR agonist, BNF, for 72 hours. Gene expression profiling was conducted with Illumina HT-12 expression beadchips. Expression of selected genes was confirmed with RT-qPCR. Ingenuity pathway analysis (IPA) was used to predict functional pathways and upstream regulators of differentially expressed genes in order to identify regulatory networks associated with AhR. In response to BNF exposure, 64 genes were upregulated, and 257 genes were downregulated compared to control trophoblasts (±1.5-fold, p < 0.05). BNF regulated genes included placental hormones and genes implicated in immune- and inflammatory responses in addition to their well-known effects on xenobiotic metabolism, oxidative stress, antioxidant defense. In conclusion, these results show that BNF has wide-ranging effects on placental gene expression beyond xenobiotic metabolism e.g. disruption of inflammatory processes and hormones in the placenta.
Collapse
Affiliation(s)
- Rami El-Dairi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Pasi Huuskonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Markku Pasanen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
12
|
Gorczyca L, Aleksunes LM. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: a review across tissues and species. Expert Opin Drug Metab Toxicol 2020; 16:239-253. [PMID: 32077332 DOI: 10.1080/17425255.2020.1732348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: The breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette superfamily of transporters. Using the energy garnered from the hydrolysis of ATP, BCRP actively removes drugs and endogenous molecules from the cell. With broad expression across the liver, kidney, brain, placenta, testes, and small intestines, BCRP can impact the pharmacokinetics and pharmacodynamics of xenobiotics.Areas covered: The purpose of this review is to summarize the transcriptional signaling pathways that regulate BCRP expression across various tissues and mammalian species. We will cover the endobiotic- and xenobiotic-activated transcription factors that regulate the expression and activity of BCRP. These include the estrogen receptor, progesterone receptor, peroxisome proliferator-activated receptor, constitutive androstane receptor, pregnane X receptor, nuclear factor e2-related factor 2, and aryl hydrocarbon receptor.Expert opinion: Key transcription factors regulate BCRP expression and function in response to hormones and xenobiotics. Understanding this regulation provides an opportunity to improve pharmacotherapeutic outcomes by enhancing the efficacy and reducing the toxicity of drugs that are substrates of this efflux transporter.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.,Division of Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
13
|
Blanco-Castañeda R, Galaviz-Hernández C, Souto PCS, Lima VV, Giachini FR, Escudero C, Damiano AE, Barragán-Zúñiga LJ, Martínez-Aguilar G, Sosa-Macías M. The role of xenobiotic-metabolizing enzymes in the placenta: a growing research field. Expert Rev Clin Pharmacol 2020; 13:247-263. [PMID: 32129110 DOI: 10.1080/17512433.2020.1733412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The placenta is a temporary and unique organ that allows for the physical connection between a mother and fetus; this organ regulates the transport of gases and nutrients mediating the elimination of waste products contained in the fetal circulation. The placenta performs metabolic and excretion functions, on the basis of multiple enzymatic systems responsible for the oxidation, reduction, hydrolysis, and conjugation of xenobiotics. These mechanisms give the placenta a protective role that limits the fetal exposure to harmful compounds. During pregnancy, some diseases require uninterrupted treatment even if it is detrimental to the fetus. Drugs and other xenobiotics alter gene expression in the placenta with repercussions for the fetus and mother's well-being.Areas covered: This review provides a brief description of the human placental structure and function, the main drug and xenobiotic transporters and metabolizing enzymes, placenta-metabolized substrates, and alterations in gene expression that the exposure to xenobiotics may cause.Expert opinion: Research should be focused on the identification and validation of biological markers for the assessment of the harmful effects of some drugs in pregnancy, including the evaluation of polymorphisms and methylation patterns in chorionic villous samples and/or amniotic fluid.
Collapse
Affiliation(s)
| | | | - Paula C S Souto
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Victor Vitorino Lima
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Fernanda R Giachini
- Laboratory of Vascular Biology, Institute of Health Sciences and Health, Universidad Federal De Mato Grosso, Barra Do Garcas, Brazil
| | - Carlos Escudero
- Vascular Physiology Laboratory Group of Investigation in Tumor Angiogenesis (GIANT) Group of Research and Innovation in Vascular Health (GRIVAS Health) Basic Sciences Department Faculty of Sciences, Universidad Del Bio-Bio, Chillan, Chile
| | - Alicia E Damiano
- Laboratorio De Biología De La Reproducción, IFIBIO Houssay-UBA-CONICET, Buenos Aires, Argentina.,Departamento De Ciencias Biológicas, Facultad De Farmacia Y Bioquimica, Buenos Aires, UBA, Argentina
| | | | - Gerardo Martínez-Aguilar
- Unidad De Investigación Biomédica - Instituto Mexicano del Seguro Social (IMSS) Durango, Durango, México
| | - Martha Sosa-Macías
- Academia De Genómica, Instituto Politécnico Nacional-CIIDIR Durango, Durango, Mexico
| |
Collapse
|
14
|
Bouazza N, Foissac F, Hirt D, Urien S, Benaboud S, Lui G, Treluyer JM. Methodological Approaches to Evaluate Fetal Drug Exposure. Curr Pharm Des 2020; 25:496-504. [PMID: 30892158 DOI: 10.2174/1381612825666190319102812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Drug prescriptions are usual during pregnancy, however, women and their fetuses still remain an orphan population with regard to drugs efficacy and safety. Most xenobiotics diffuse through the placenta and some of them can alter fetus development resulting in structural abnormalities, growth or functional deficiencies. METHODS To summarize the different methodologies developed towards the prediction of fetal drug exposure. RESULTS Neonatal cord blood concentration is the most specific measurement of the transplacental drug transfer at the end of pregnancy. Using the cord blood and mother drug concentrations altogether, drug exchanges between the mother and fetus can be modeled and quantified via a population pharmacokinetic analysis. Thereafter, it is possible to estimate the fetus exposure and the fetus-to-mother exposure ratio. However, the prediction of placental transfer before any administration to pregnant women is desirable. Animal studies remain difficult to interpret due to structural and functional inter-species placenta differences. The ex-vivo perfusion of the human placental cotyledon is the method of reference to study the human placental transfer of drugs because it is thought to mimic the functional placental tissue. However, extrapolation of data to in vivo situation remains difficult. Some research groups have extensively worked on physiologically based models (PBPK) to predict fetal drug exposure and showed very encouraging results. CONCLUSION PBPK models appeared to be a very promising tool in order to predict fetal drug exposure in-silico. However, these models mainly picture the end of pregnancy and knowledge regarding both, development of the placental permeability and transporters is strongly needed.
Collapse
Affiliation(s)
- Naïm Bouazza
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Frantz Foissac
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Déborah Hirt
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| | - Saïk Urien
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France
| | - Sihem Benaboud
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| | - Gabrielle Lui
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| | - Jean-Marc Treluyer
- Universite Paris Descartes, EA7323, Sorbonne Paris Cite, France.,Unite de Recherche Clinique Paris Descartes Necker Cochin, AP-HP, France.,CIC-1419 Inserm, Cochin-Necker, Paris, France.,Service de Pharmacologie Clinique, Hôpital Cochin, AP-HP, Groupe Hospitalier Paris Centre, Paris, France
| |
Collapse
|
15
|
Kilanowicz A, Sitarek K, Stragierowicz J, Klimczak M, Bruchajzer E. Prenatal toxicity and maternal-fetal distribution of 1,3,5,8-tetrachloronaphthalene (1,3,5,8-TeCN) in Wistar rats. CHEMOSPHERE 2019; 226:75-84. [PMID: 30921639 DOI: 10.1016/j.chemosphere.2019.03.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
1,3,5,8-tetrachloronaphthalene (1,3,5,8-TeCN) is a Persistent Organic Pollutant (POP) that belongs to the group of polychlorinated naphthalenes (PCNs). The aim of the study was to investigate the maternal-fetal distribution and prenatal toxicity of 1,3,5,8-TeCN after its administration to pregnant Wistar rats during organogenesis. Radiolabeled 1,3,5,8-tetrachloronaphthalene-[ring-U-3H] was given by gavage at a dose of 0.3 mg per dam to evaluate its tissue distribution, and that of unlabeled 1,3,5,8-TeCN, at daily doses of 0.3, 1.0 or 3.0 mg kg b.w.-1 to assess prenatal toxicity. After a single administration of 1,3,5,8-TeCN, the highest concentration was detected in maternal adipose tissue. The concentration in the brain, uterus, kidneys, adrenals, ovaries, lungs and liver established in dams were two to nine times higher than in the maternal blood. 1,3,5,8-TeCN penetrated the blood-brain-barrier and the placenta. The results obtained from developmental toxicity indicate that 1,3,5,8-TeCN did not cause maternal toxicity and was not embryotoxic or teratogenic. However, fetotoxic effects were observed after non-toxic doses for dams (1.0 and 3.0 mg∙b.w.-1·day-1). 1,3,5,8-TeCN did not induce congenital skeletal defects but increased the number of fetuses with sternum ossification delay. After a dose of 3.0 mg kg b.w.-1·day-1, significantly more fetuses were found with enlargement of the renal pelvis: unilateral in female offspring and bilateral in male offspring. At the doses used, 1,3,5,8-TeCN, unlike hexachloronaphthalene, was not a CYP1A1 inducer.
Collapse
Affiliation(s)
- Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Krystyna Sitarek
- Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Lodz, Sw. Teresy od Dzieciatka Jezus 8, 91-348 Lodz, Poland.
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Michał Klimczak
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| | - Elżbieta Bruchajzer
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
| |
Collapse
|
16
|
Yang T, Feng YL, Chen L, Vaziri ND, Zhao YY. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor. Crit Rev Toxicol 2019; 49:445-460. [PMID: 31433724 DOI: 10.1080/10408444.2019.1635987] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/09/2023]
Abstract
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of cancer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell proliferation and apoptosis, immune metabolism and other processes, which further affected tumor growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the largest source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands increases, it seems sensible to summarize current research on these ligands. In this review, we highlight the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research. This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramatically pave the way for targeted cancer treatment.
Collapse
Affiliation(s)
- Tian Yang
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Ya-Long Feng
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Lin Chen
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi'an, China
| |
Collapse
|
17
|
Kim M, Son D, Shin S, Park D, Byun S, Jung E. Protective effects of Camellia japonica flower extract against urban air pollutants. Altern Ther Health Med 2019; 19:30. [PMID: 30691451 PMCID: PMC6350298 DOI: 10.1186/s12906-018-2405-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Background Exposure of skin to urban air pollutants is closely related to skin aging and inflammatory responses such as wrinkles formation, pigmentation spot, atopic dermatitis, and acne. Thus, a great deal of interest has been focused on the development of natural resources that can provide a protective effect to skin from pollutants. Methods The antioxidative activity of Camellia japonica flower extract (CJFE) was evaluated by 1,2-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay, and the inhibitory effect of CJFE by urban air pollutants-induced reactive oxygen species (ROS) production was determined in cultured normal human dermal fibroblasts (NHDFs). We additionally investigated the protective effects of CJFE against urban air pollutant using in vitro and ex vivo model. Results CJFE with high phenolic concentration showed antioxidative activity on scavenging capacity of 1,2-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation in a concentration dependent manner. CJFE inhibited urban air pollutants-induced ROS generation, matrixmetalloproteinase-1 (MMP-1) production and a xenobiotic response element (XRE)-luciferase activity indicating the aryl hydrocarbon receptor (AhR) transactivation. In addition, CJFE showed an excellent protective activity against pollutants-induced deteriorating effect in ex vivo model. CJFE reduced the level of pollutants-induced malondialdehyde (MDA), lipid peroxidation marker, inhibited MMP-1 expression and increased collagen synthesis. It also reduced the cell numbers with pyknotic nuclei (mainly occurring in apoptosis) and detachment of dermo-epidermal junction (DEJ) induced by pollutants. Conclusions Apparently, it is proposed that CJFE can be used as a protective material against pollutant-induced skin damages. Electronic supplementary material The online version of this article (10.1186/s12906-018-2405-4) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Ames J, Warner M, Mocarelli P, Brambilla P, Signorini S, Siracusa C, Huen K, Holland N, Eskenazi B. AHR gene-dioxin interactions and birthweight in the Seveso Second Generation Health Study. Int J Epidemiol 2018; 47:1992-2004. [PMID: 30124847 PMCID: PMC6280946 DOI: 10.1093/ije/dyy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is proposed to interfere with fetal growth via altered activity of the aryl hydrocarbon receptor (protein: AHR; gene: AHR) pathway which regulates diverse biological and developmental processes including xenobiotic metabolism. Genetic variation in AHR is an important driver of susceptibility to low birthweight in children exposed to prenatal smoking, but less is known about these genetic interactions with TCDD, AHR's most potent xenobiotic ligand. Methods The Seveso Women's Health Study (SWHS), initiated in 1996, is a cohort of 981 Italian women exposed to TCDD from an industrial explosion in July 1976. We measured TCDD concentrations in maternal serum collected close to the time of the accident. In 2008 and 2014, we followed up the SWHS cohort and collected data on birth outcomes of SWHS women with post-accident pregnancies. We genotyped 19 single nucleotide polymorphisms (SNPs) in AHR among the 574 SWHS mothers. Results Among 901 singleton births, neither SNPs nor TCDD exposure alone were significantly associated with birthweight. However, we found six individual SNPs in AHR which adversely modified the association between maternal TCDD and birthweight, implicating gene-environment interaction. We saw an even stronger susceptibility to TCDD due to interaction when we examined the joint contribution of these SNPs in a risk allele score. These SNPs were all located in noncoding regions of AHR, particularly in proximity to the promoter. Conclusions This is the first study to demonstrate that genetic variation across the maternal AHR gene may shape fetal susceptibilities to TCDD exposure.
Collapse
Affiliation(s)
- Jennifer Ames
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Stefano Signorini
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Claudia Siracusa
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Karen Huen
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
19
|
Expression, Localization, and Activity of the Aryl Hydrocarbon Receptor in the Human Placenta. Int J Mol Sci 2018; 19:ijms19123762. [PMID: 30486367 PMCID: PMC6321474 DOI: 10.3390/ijms19123762] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/12/2022] Open
Abstract
The human placenta is an organ between the blood of the mother and the fetus, which is essential for fetal development. It also plays a role as a selective barrier against environmental pollutants that may bypass epithelial barriers and reach the placenta, with implications for the outcome of pregnancy. The aryl hydrocarbon receptor (AhR) is one of the most important environmental-sensor transcription factors and mediates the metabolism of a wide variety of xenobiotics. Nevertheless, the identification of dietary and endogenous ligands of AhR suggest that it may also fulfil physiological functions with which pollutants may interfere. Placental AhR expression and activity is largely unknown. We established the cartography of AhR expression at transcript and protein levels, its cellular distribution, and its transcriptional activity toward the expression of its main target genes. We studied the profile of AhR expression and activity during different pregnancy periods, during trophoblasts differentiation in vitro, and in a trophoblast cell line. Using diverse methods, such as cell fractionation and immunofluorescence microscopy, we found a constitutive nuclear localization of AhR in every placental model, in the absence of any voluntarily-added exogenous activator. Our data suggest an intrinsic activation of AhR due to the presence of endogenous placental ligands.
Collapse
|
20
|
Giummarra L, Crewther SG, Riddell N, Murphy MJ, Crewther DP. Pathway analysis identifies altered mitochondrial metabolism, neurotransmission, structural pathways and complement cascade in retina/RPE/ choroid in chick model of form-deprivation myopia. PeerJ 2018; 6:e5048. [PMID: 29967729 PMCID: PMC6026464 DOI: 10.7717/peerj.5048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose RNA sequencing analysis has demonstrated bidirectional changes in metabolism, structural and immune pathways during early induction of defocus induced myopia. Thus, the aim of this study was to investigate whether similar gene pathways are also related to the more excessive axial growth, ultrastructural and elemental microanalytic changes seen during the induction and recovery from form-deprivation myopia (FDM) in chicks and predicted by the RIDE model of myopia. Methods Archived genomic transcriptome data from the first three days of induction of monocularly occluded form deprived myopia (FDMI) in chicks was obtained from the GEO database (accession # GSE6543) while data from chicks monocularly occluded for 10 days and then given up to 24 h of normal visual recovery (FDMR) were collected. Gene set enrichment analysis (GSEA) software was used to determine enriched pathways during the induction (FDMI) and recovery (FDMR) from FD. Curated gene-sets were obtained from open access sources. Results Clusters of significant changes in mitochondrial energy metabolism, neurotransmission, ion channel transport, G protein coupled receptor signalling, complement cascades and neuron structure and growth were identified during the 10 days of induction of profound myopia and were found to correlate well with change in axial dimensions. Bile acid and bile salt metabolism pathways (cholesterol/lipid metabolism and sodium channel activation) were significantly upregulated during the first 24 h of recovery from 10 days of FDM. Conclusions The gene pathways altered during induction of FDM are similar to those reported in defocus induced myopia and are established indicators of oxidative stress, osmoregulatory and associated structural changes. These findings are also consistent with the choroidal thinning, axial elongation and hyperosmotic ion distribution patterns across the retina and choroid previously reported in FDM and predicted by RIDE.
Collapse
Affiliation(s)
- Loretta Giummarra
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Sheila G Crewther
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Nina Riddell
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Melanie J Murphy
- School of Psychology & Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - David P Crewther
- Centre for Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
21
|
Bircsak KM, Moscovitz JE, Wen X, Archer F, Yuen PYS, Mohammed M, Memon N, Weinberger BI, Saba LM, Vetrano AM, Aleksunes LM. Interindividual Regulation of the Breast Cancer Resistance Protein/ ABCG2 Transporter in Term Human Placentas. Drug Metab Dispos 2018; 46:619-627. [PMID: 29386232 PMCID: PMC5896368 DOI: 10.1124/dmd.117.079228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is a maternally-facing efflux transporter that regulates the placental disposition of chemicals. Transcription factors and gene variants are important regulatory factors that influence transporter expression. In this study, we sought to identify the genetic and transcriptional mechanisms underlying the interindividual expression of BCRP mRNA and protein across 137 term placentas from uncomplicated pregnancies. Placental expression of BCRP and regulatory transcription factor mRNAs was measured using multiplex-branched DNA analysis. BCRP expression and ABCG2 genotypes were determined using Western blot and Fluidigm Biomark genetic analysis, respectively. Placentas were obtained from a racially and ethnically diverse population, including Caucasian (33%), African American (14%), Asian (14%), Hispanic (15%), and mixed (16%) backgrounds, as well as unknown origins (7%). Between placentas, BCRP mRNA and protein varied up to 47-fold and 14-fold, respectively. In particular, BCRP mRNA correlated significantly with known transcription factor mRNAs, including nuclear factor erythroid 2-related factor 2 and aryl hydrocarbon receptor. Somewhat surprisingly, single-nucleotide polymorphisms (SNPs) in the ABCG2 noncoding regions were not associated with variation in placental BCRP mRNA or protein. Instead, the coding region polymorphism (C421A/Q141K) corresponded with 40%-50% lower BCRP protein in 421C/A and 421A/A placentas compared with wild types (421C/C). Although BCRP protein and mRNA expression weakly correlated (r = 0.25, P = 0.040), this relationship was absent in individuals expressing the C421A variant allele. Study results contribute to our understanding of the interindividual regulation of BCRP expression in term placentas and may help to identify infants at risk for increased fetal exposure to chemicals due to low expression of this efflux protein.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Faith Archer
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Poi Yu Sofia Yuen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Moiz Mohammed
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Naureen Memon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Barry I Weinberger
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Laura M Saba
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Anna M Vetrano
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| |
Collapse
|
22
|
The Placental Barrier: the Gate and the Fate in Drug Distribution. Pharm Res 2018; 35:71. [DOI: 10.1007/s11095-017-2286-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022]
|
23
|
Dusek J, Carazo A, Trejtnar F, Hyrsova L, Holas O, Smutny T, Micuda S, Pavek P. Steviol, an aglycone of steviol glycoside sweeteners, interacts with the pregnane X (PXR) and aryl hydrocarbon (AHR) receptors in detoxification regulation. Food Chem Toxicol 2017; 109:130-142. [DOI: 10.1016/j.fct.2017.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/20/2017] [Accepted: 09/01/2017] [Indexed: 01/01/2023]
|
24
|
Jurado-Manzano BB, Zavala-Reyes D, Turrubiartes-Martínez EA, Portales-Pérez DP, González-Amaro R, Layseca-Espinosa E. FICZ generates human tDCs that induce CD4 + CD25 high Foxp3 + Treg-like cell differentiation. Immunol Lett 2017; 190:84-92. [PMID: 28765071 DOI: 10.1016/j.imlet.2017.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) play a central role in the maintenance of immune homeostasis, their participation as professional antigen presenting cells is essential to the initiation of the adaptive immune response as well as to the induction of tolerance. The recently described role of the aryl hydrocarbon receptor (AhR) in the immune system, particularly in the modulation of the adaptive immune response has attracted the attention as a potential player in the induction of immune tolerance. However, the effects of AhR activation through endogenous ligands on human DCs have been poorly evaluated. In this study, we investigated the effect of FICZ, a natural AhR ligand, on monocyte-derived dendritic cells (Mo-DCs) from healthy subjects. We found that the activation of AhR through FICZ during DCs differentiation and maturation processes resulted in a decreased expression of CD83, an increased expression of the enzyme IDO and a reduced production of the pro-inflammatory cytokines IL-6 and TNF-α. More importantly, FICZ-treated DCs were able to induce the differentiation of naive T lymphocytes into CD4+ CD25high Foxp3+ T reg-like cells. Our results show that the activation of the AhR on human DCs induces a tolerogenic phenotype with potential implications in immunotherapy.
Collapse
Affiliation(s)
- Brenda B Jurado-Manzano
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Daniel Zavala-Reyes
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Edgar A Turrubiartes-Martínez
- Laboratory of Genetics and Molecular Diagnostic, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Diana P Portales-Pérez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Science, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Esther Layseca-Espinosa
- Department of Immunology, School of Medicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico; Research Center of Health Sciences and Biomedicine (CICSaB), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
25
|
Fan H, Su X, Yang B, Zhao A. Aryl hydrocarbon receptor and unexplained miscarriage. J Obstet Gynaecol Res 2017; 43:1029-1036. [PMID: 28503784 DOI: 10.1111/jog.13309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 12/14/2016] [Accepted: 01/13/2017] [Indexed: 01/05/2023]
Abstract
AIM The aim of this study was to carry out a preliminary investigation of the expression of aryl hydrocarbon receptor (AhR) in decidua and villus and the relationship between AhR and unexplained miscarriage. METHODS The expression of AhR mRNA and protein from decidua and villus were measured using real-time reverse transcription-polymerase chain reaction, western blot and immunohistochemistry in 34 patients with unexplained miscarriage (miscarriage group) and 38 women with normal early pregnancy (control group). RESULTS The AhR mRNA and protein expression was increased significantly in the villus in both groups compared with decidua (P < 0.05, P < 0.05). In decidua, AhR mRNA and protein expression in the miscarriage group was increased significantly compared with the control group (P < 0.05, P < 0.05). In villus, AhR mRNA and protein expression in the miscarriage group was increased significantly compared with the control group (P < 0.05, P < 0.05). AhR is expressed mostly in the cytoplasm of syncytiotrophoblasts in villus, and also in the cytoplasm of decidual cells. CONCLUSIONS AhR was expressed more in the villus than in the decidua, and the upregulation of AhR mRNA and protein expression is associated with the pathogenesis of unexplained miscarriage.
Collapse
Affiliation(s)
- Hongjie Fan
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoling Su
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Binlie Yang
- Department of Obstetrics and Gynecology, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Aimin Zhao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Neradugomma NK, Liao MZ, Mao Q. Buprenorphine, Norbuprenorphine, R-Methadone, and S-Methadone Upregulate BCRP/ABCG2 Expression by Activating Aryl Hydrocarbon Receptor in Human Placental Trophoblasts. Mol Pharmacol 2017; 91:237-249. [PMID: 27974484 PMCID: PMC5325079 DOI: 10.1124/mol.116.107367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022] Open
Abstract
Opioid dependence during pregnancy is a rising concern. Maintaining addicted pregnant women on long-acting opioid receptor agonist is the most common strategy to manage drug abuse in pregnant women. Methadone (MET) and buprenorphine (BUP) are widely prescribed for opiate maintenance therapy. Norbuprenorphine (NBUP) is the primary active metabolite of BUP. These medications can cross the placenta to the fetus, leading to postpartum neonatal abstinence syndrome. Despite their use during pregnancy, little is known about the cellular changes in the placenta brought about by these drugs. In this study, we showed that BUP, NBUP, and MET at clinically relevant plasma concentrations significantly induced BCRP mRNA up to 10-fold in human model placental JEG3 and BeWo cells and in primary human villous trophoblasts, and this induction was abrogated by CH223191, an aryl hydrocarbon receptor (AhR)-specific antagonist. These drugs increased AhR recruitment onto the AhR-response elements and significantly induced breast cancer resistance protein (BCRP) gene transcription. AhR overexpression further increased BCRP mRNA and protein expression. Knockdown of AhR by shRNA decreased BCRP expression, and this decrease was reversed by rescuing AhR expression. Finally, induction of BCRP expression in JEG3 and BeWo cells was accompanied by an increase in its efflux activity. Collectively, we have demonstrated, for the first time, that BUP, NBUP, and MET are potent AhR agonists and can induce BCRP in human placental trophoblasts by activating AhR. Given the critical role of BCRP in limiting fetal exposure to drugs and xenobiotics, long-term use of these medications may affect fetal drug exposure by altering BCRP expression in human placenta.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Buprenorphine/analogs & derivatives
- Buprenorphine/pharmacology
- Female
- Gene Knockdown Techniques
- Humans
- Ligands
- Methadone/pharmacology
- Placenta/cytology
- Pregnancy
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/metabolism
- Transcription, Genetic/drug effects
- Trophoblasts/drug effects
- Trophoblasts/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Naveen K Neradugomma
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
Wu Y, Chen X, Chang X, Huang YJ, Bao S, He Q, Li Y, Zheng J, Duan T, Wang K. Potential involvement of placental AhR in unexplained recurrent spontaneous abortion. Reprod Toxicol 2015; 59:45-52. [PMID: 26593447 DOI: 10.1016/j.reprotox.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of pregnancy. Recent studies have demonstrated that the aryl hydrocarbon receptor (AhR) might play important roles in establishing and maintaining early pregnancy. In this study, we found that placental AhR protein levels were significantly lower and placental CYP1A1 mRNA levels were higher in unexplained RSA (URSA) patients than in control subjects. The results of immunohistochemical analyzes showed that placental AhR was expressed in syncytiotrophoblast cells and that the level of AhR was markedly lower in these cells in URSA subjects than in control subjects. β-Naphthoflavone (β-NF, an AhR ligand) at 5μM significantly inhibited proliferation and migration in HTR-8/SVneo cells and was associated with the activation of AhR. Moreover, overexpressing AhR in JAR cells significantly increased CYP1A1 mRNA levels and inhibited cell migration. These results indicate that AhR is highly activated in URSA placentas and that the activation of AhR in the placenta might impair trophoblast cell proliferation and migration, possibly leading to the occurrence of URSA.
Collapse
Affiliation(s)
- Y Wu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - X Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - X Chang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - Y J Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - S Bao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - Q He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - Y Li
- Department of Ob./Gyn., University of Wisconsin-Madison, Madison, WI 53715 USA
| | - J Zheng
- Department of Ob./Gyn., University of Wisconsin-Madison, Madison, WI 53715 USA
| | - T Duan
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China; Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China.
| | - K Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China.
| |
Collapse
|
28
|
Fan H, Xu M, Tang Q. Aryl hydrocarbon receptor and its ligands for regulation of Th17/Treg cell differentiation in ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2015; 23:3101-3108. [DOI: 10.11569/wcjd.v23.i19.3101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic, non-specific intestinal mucosal inflammatory disease, and its pathogenesis is related to the imbalance of Th17/Treg. The aryl hydrocarbon receptor (AhR) is a cytoplasmic transcription factor, which is involved in the regulation of drug metabolism, cell growth and differentiation, and is closely related to the occurrence of autoimmune disease and inflammatory disease. Recent studies have found that activation of AhR can regulate the differentiation of Th17/Treg in UC patients. This paper reviews the structure and function of AhR and its effect on differentiation of Th17/Treg in UC.
Collapse
|
29
|
Jin UH, Kim SB, Safe S. Omeprazole Inhibits Pancreatic Cancer Cell Invasion through a Nongenomic Aryl Hydrocarbon Receptor Pathway. Chem Res Toxicol 2015; 28:907-918. [PMID: 25826687 PMCID: PMC4948974 DOI: 10.1021/tx5005198] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Omeprazole and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are aryl hydrocarbon receptor (AhR) agonists that inhibit the invasion of breast cancer cells through inhibition of CXCR4 transcription. Treatment of highly invasive Panc1 pancreatic cancer cells with TCDD, omeprazole, and seven other AhR-active pharmaceuticals showed that only omeprazole and tranilast, but not TCDD, inhibited invasion in a Boyden chamber assay. Similar results were observed in MiaPaCa2 cells, another quasimensenchymal pancreatic ductal adenocarcinoma (QM-PDA) pancreatic cancer cell line, whereas invasion was not observed with BxPC3 or L3.6pL cells, which are classified as classical (less invasive) pancreatic cancer cells. It was also observed in QM-PDA cells that TCDD, omeprazole, and tranilast did not induce CYP1A1 or CXCR4 and that treatment with these compounds did not result in nuclear uptake of AhR. In contrast, treatment of BxPC3 and L3.6pL cells with these AhR ligands resulted in induction of CYP1A1 (by TCDD) and nuclear uptake of AhR, which was similar to that observed for Ah-responsive MDA-MB-468 breast and HepG2 liver cancer cell lines. Results of AhR and AhR nuclear translocator (Arnt) knockdown experiments in Panc1 and MiaPaCa2 cells demonstrated that omeprazole- and tranilast-mediated inhibition of invasion was AhR-dependent but Arnt-independent. These results demonstrate that in the most highly invasive subtype of pancreatic cancer cells (QM-PDA) the selective AhR modulators omeprazole and tranilast inhibit invasion through a nongenomic AhR pathway.
Collapse
Affiliation(s)
- Un-Ho Jin
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466
| | - Sang-Bae Kim
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466
- Institute of Biosciences and Technology, Texas A&M Health Science Center, 2121 W. Holcombe Blvd., Houston TX 77030
| |
Collapse
|
30
|
Staud F, Ceckova M. Regulation of drug transporter expression and function in the placenta. Expert Opin Drug Metab Toxicol 2015; 11:533-55. [DOI: 10.1517/17425255.2015.1005073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Rieke S, Koehn S, Hirsch-Ernst K, Pfeil R, Kneuer C, Marx-Stoelting P. Combination effects of (tri)azole fungicides on hormone production and xenobiotic metabolism in a human placental cell line. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2014; 11:9660-79. [PMID: 25233012 PMCID: PMC4199042 DOI: 10.3390/ijerph110909660] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/22/2014] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
Consumers are exposed to multiple residues of different pesticides via the diet. Therefore, EU legislation for pesticides requires the evaluation of single active substances as well as the consideration of combination effects. Hence the analysis of combined effects of substances in a broad dose range represents a key challenge to current experimental and regulatory toxicology. Here we report evidence for additive effects for (tri)azole fungicides, a widely used group of antifungal agents, in the human placental cell line Jeg-3. In addition to the triazoles cyproconazole, epoxiconazole, flusilazole and tebuconazole and the azole fungicide prochloraz also pesticides from other chemical classes assumed to act via different modes of action (i.e., the organophosphate chlorpyrifos and the triazinylsulfonylurea herbicide triflusulfuron-methyl) were investigated. Endpoints analysed include synthesis of steroid hormone production (progesterone and estradiol) and gene expression of steroidogenic and non-steroidogenic cytochrome-P-450 (CYP) enzymes. For the triazoles and prochloraz, a dose dependent inhibition of progesterone production was observed and additive effects could be confirmed for several combinations of these substances in vitro. The non-triazoles chlorpyrifos and triflusulfuron-methyl did not affect this endpoint and, in line with this finding, no additivity was observed when these substances were applied in mixtures with prochloraz. While prochloraz slightly increased aromatase expression and estradiol production and triflusulfuron-methyl decreased estradiol production, none of the other substances had effects on the expression levels of steroidogenic CYP-enzymes in Jeg-3 cells. For some triazoles, prochloraz and chlorpyrifos a significant induction of CYP1A1 mRNA expression and potential combination effects for this endpoint were observed. Inhibition of CYP1A1 mRNA induction by the AhR inhibitor CH223191 indicated AhR receptor dependence this effect.
Collapse
Affiliation(s)
- Svenja Rieke
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Sophie Koehn
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Karen Hirsch-Ernst
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Rudolf Pfeil
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Carsten Kneuer
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| | - Philip Marx-Stoelting
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str 8-10, 10589 Berlin, Germany.
| |
Collapse
|
32
|
Satsu H, Yoshida K, Mikubo A, Ogiwara H, Inakuma T, Shimizu M. Establishment of a stable aryl hydrocarbon receptor-responsive HepG2 cell line. Cytotechnology 2014; 67:621-32. [PMID: 24667997 DOI: 10.1007/s10616-014-9711-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/20/2014] [Indexed: 10/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. It heterodimerizes with aryl hydrocarbon nuclear translocator, binds to the xenobiotic-responsive element (XRE), and enhances the transcription of genes encoding xenobiotic metabolizing enzymes. AHR also plays important roles in the inhibition of intestinal carcinogenesis and the modulation of gut immunity. It is very important to screen for AHR-activating compounds because those are expected to produce the AHR-mediated physiological functions. Until now, AHR-mediated transcriptional activity represented by the transcriptional activity of CYP1A1 in luciferase assay has been applied as a screening procedure for AHR-activating compounds. However, the AHR-mediated transcriptional activity did not necessarily correspond with the CYP1A1 transcriptional activity. To evaluate AHR-mediated transcriptional activity more specifically, and to screen for AHR-activating compounds, we establish a stable AHR-responsive HepG2 cell line by co-transfection of an AHR expression vector and an AHR-responsive vector (pGL3-XRE) containing a luciferase gene and three tandemly arranged XRE elements into a human hepatoma derived cell line, HepG2. The induction of luciferase activity in the stable AHR-responsive HepG2 cell line by typical AHR activators occurred in time- and concentration-dependent manners. By assessing the AHR target genes CYP1A1, UGT1A1, and ABCG2, an AHR activator-mediated induction was observed at mRNA level. Furthermore, the AHR activator-mediated induction of luciferase activity was positively correlated with the mRNA levels of CYP1A1, UGT1A1, and ABCG2. These findings verified the usefulness of the established stable AHR-responsive HepG2 cell line for the screening of AHR-activating compounds.
Collapse
Affiliation(s)
- Hideo Satsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan,
| | | | | | | | | | | |
Collapse
|
33
|
Le Vee M, Kolasa E, Jouan E, Collet N, Fardel O. Differentiation of human placental BeWo cells by the environmental contaminant benzo(a)pyrene. Chem Biol Interact 2014; 210:1-11. [DOI: 10.1016/j.cbi.2013.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/22/2013] [Accepted: 12/09/2013] [Indexed: 12/15/2022]
|
34
|
Papoutsis AJ, Selmin OI, Borg JL, Romagnolo DF. Gestational exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin induces BRCA-1 promoter hypermethylation and reduces BRCA-1 expression in mammary tissue of rat offspring: preventive effects of resveratrol. Mol Carcinog 2013; 54:261-9. [PMID: 24136580 DOI: 10.1002/mc.22095] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 11/06/2022]
Abstract
Studies with murine models suggest that maternal exposure to aromatic hydrocarbon receptor (AhR) agonists may impair mammary gland differentiation and increase the susceptibility to mammary carcinogenesis in offspring. However, the molecular mechanisms responsible for these perturbations remain largely unknown. Previously, we reported that the AhR agonists 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CpG methylation of the breast cancer-1 (BRCA-1) gene and reduced BRCA-1 expression in breast cancer cell lines. Based on the information both the human and rat BRCA-1 genes harbor xenobiotic responsive elements (XRE = 5'-GCGTG-3'), which are binding targets for the AhR, we extended our studies to the analysis of offspring of pregnant Sprague-Dawley rats treated during gestation with TCDD alone or in combination with the dietary AhR antagonist resveratrol (Res). We report that the in utero exposure to TCDD increased the number of terminal end buds (TEB) and reduced BRCA-1 expression in mammary tissue of offspring. The treatment with TCDD induced occupancy of the BRCA-1 promoter by DNA methyltransferase-1 (DNMT-1), CpG methylation of the BRCA-1 promoter, and expression of cyclin D1 and cyclin-dependent kinase-4 (CDK4). These changes were partially overridden by pre-exposure to Res, which stimulated the expression of the AhR repressor (AhRR) and its recruitment to the BRCA-1 gene. These findings point to maternal exposure to AhR agonists as a risk factor for breast cancer in offspring through epigenetic inhibition of BRCA-1 expression, whereas dietary antagonists of the AhR may exert protective effects.
Collapse
Affiliation(s)
- Andreas J Papoutsis
- Department of Nutritional Sciences and Arizona Cancer Center, The University of Arizona, Tucson, Arizona
| | | | | | | |
Collapse
|
35
|
Systems approaches evaluating the perturbation of xenobiotic metabolism in response to cigarette smoke exposure in nasal and bronchial tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:512086. [PMID: 24224167 PMCID: PMC3808713 DOI: 10.1155/2013/512086] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 02/03/2023]
Abstract
Capturing the effects of exposure in a specific target organ is a major challenge in risk assessment. Exposure to cigarette smoke (CS) implicates the field of tissue injury in the lung as well as nasal and airway epithelia. Xenobiotic metabolism in particular becomes an attractive tool for chemical risk assessment because of its responsiveness against toxic compounds, including those present in CS. This study describes an efficient integration from transcriptomic data to quantitative measures, which reflect the responses against xenobiotics that are captured in a biological network model. We show here that our novel systems approach can quantify the perturbation in the network model of xenobiotic metabolism. We further show that this approach efficiently compares the perturbation upon CS exposure in bronchial and nasal epithelial cells in vivo samples obtained from smokers. Our observation suggests the xenobiotic responses in the bronchial and nasal epithelial cells of smokers were similar to those observed in their respective organotypic models exposed to CS. Furthermore, the results suggest that nasal tissue is a reliable surrogate to measure xenobiotic responses in bronchial tissue.
Collapse
|
36
|
Stejskalova L, Rulcova A, Vrzal R, Dvorak Z, Pavek P. Dexamethasone accelerates degradation of aryl hydrocarbon receptor (AHR) and suppresses CYP1A1 induction in placental JEG-3 cell line. Toxicol Lett 2013; 223:183-91. [PMID: 24091107 DOI: 10.1016/j.toxlet.2013.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 01/16/2023]
Abstract
The JEG-3 choriocarcinoma cell line has been proposed as a model cell line of human placental trophoblast for induction studies via aryl hydrocarbon receptor (AHR). We examined whether glucocorticoid dexamethasone influences AHR-mediated induction of CYP1A1 enzyme in the JEG-3 cell line. We found that dexamethasone dose- and time-dependently suppresses CYP1A1 transactivation in gene reporter assays, CYP1A1 mRNA induction, and upregulation of 7-ethoxyresorufin-O-deethylase (EROD) activity by 3-methylcholanthrene (MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in JEG-3 cells. Co-transfection of JEG-3 cells with glucocorticoid receptor (GR) expression construct and treatment with dexamethasone abolished the effect of MC on CYP1A1 promoter construct in transient transfection gene reporter assays. RU486, a GR antagonist, suppressed the effect of dexamethasone on MC-induced transactivation of AHR responsive reporter constructs. We also found that dexamethasone stimulates both ligand-dependent and ligand-independent degradation of AHR but not of aryl hydrocarbon receptor nuclear translocator (ARNT) protein in JEG-3 cells. In experiments with proteasome inhibitors MG132 and bortezomib, we found that the degradation is not sensitive to proteasome inhibition in JEG-3. We can conclude that dexamethasone suppresses AHR-mediated CYP1A1 induction in JEG-3 cells through the unique mechanism of AHR-GR crosstalk, which involves accelerated degradation of AHR.
Collapse
Affiliation(s)
- Lucie Stejskalova
- Institute of Molecular and Translation Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotiska 5, 779 00 Olomouc, Czech Republic; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University in Prague, Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | | | | | | | | |
Collapse
|
37
|
Pavek P, Smutny T. Nuclear receptors in regulation of biotransformation enzymes and drug transporters in the placental barrier. Drug Metab Rev 2013; 46:19-32. [PMID: 24020384 DOI: 10.3109/03602532.2013.835819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Over the past 20 years, the toxicological and protective roles of the placental barrier with respect to drug detoxification and transporter-controlled protection of the fetus have been intensively examined. Several cytochrome P450 enzymes are expressed in placental trophoblast at different stages of pregnancy, though only a few of these have functional activity to metabolize xenobiotics. Drug transporters such as P-glycoprotein/MDR1 or breast cancer resistance protein (BCRP) are highly expressed in the placenta, and their functional activities have been demonstrated in the placenta both in vitro and in vivo. In addition, several studies have reported on ligand-activated transcription factors and nuclear receptors referred to as "xenosensors" in the placenta. The xenosensors control transcriptional regulation of both xenobiotic-metabolizing enzymes and drug transporters in different organs. Their ligands include toxic compounds and environmental pollutants, drugs, as well as herbal, dietary or vitamin supplements. Nevertheless, it remains debatable whether the placental barrier adapts to toxic injuries coming either from maternal medication or environmental contamination and whether the placenta contains a mechanism to respond dynamically in protecting the developing fetus. In the present paper, we summarize current knowledge about the activity and expression of major ligand-activated transcriptional mechanisms involved in biotransformation enzymes and transporters regulation in human placenta. In particular, we highlight the emerging roles of aryl hydrocarbon (AHR), vitamin D (VDR), glucocorticoid (GR) and pregnane X (PXR) receptors in that regulation. We show that the placenta constitute a unique metabolizing organ with significant overlap of exogenous and endogenous compounds metabolism controlled by nuclear receptors.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Centre for Drug Development, Charles University in Prague , Hradec Kralove , Czech Republic
| | | |
Collapse
|
38
|
Effects of glucocorticoids on cytochrome P450 1A1 (CYP1A1) expression in isolated human placental trophoblast. J Appl Biomed 2013. [DOI: 10.2478/v10136-012-0022-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
39
|
Exclusive prenatal exposure to a 16 PAH mixture does not impact anxiety-related behaviours and regional brain metabolism in adult male rats: A role for the period of exposure in the modulation of PAH neurotoxicity. Toxicol Lett 2013; 221:40-6. [DOI: 10.1016/j.toxlet.2013.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 11/20/2022]
|
40
|
Peltier MR, Arita Y, Klimova NG, Gurzenda EM, Koo HC, Murthy A, Lerner V, Hanna N. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) enhances placental inflammation. J Reprod Immunol 2013; 98:10-20. [PMID: 23642494 PMCID: PMC3752305 DOI: 10.1016/j.jri.2013.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/22/2013] [Accepted: 02/13/2013] [Indexed: 02/02/2023]
Abstract
Preterm birth is a leading cause of perinatal morbidity and mortality that is often associated with ascending infections from the lower genital tract. Recent studies with animal models have suggested that developmental exposure to the environmental toxin 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can increase the risk of preterm birth in the offspring. How TCDD may modify placental immunity to ascending infections is unclear. Therefore, we studied the effects of TCDD treatment on basal and Escherichia coli-stimulated cytokine production by placental explants. Cultures of second-trimester placentas were treated with up to 40 nM TCDD for 72 h and then stimulated with 10(7)CFU/ml E. coli for an additional 24h. Concentrations of cytokines and PGE2 were measured in conditioned medium by immunoassay. TCDD exposure increased mRNA levels of IL-1β by unstimulated cultures, but no effects on protein levels of this cytokine were detected. TNF-α production was unaffected by TCDD for unstimulated cultures, but pre-treatment with 40 nM TCDD significantly increased E. coli-stimulated TNF-α production. Both basal and bacteria-stimulated PGE2 and COX-2 gene expression were enhanced by TCDD pretreatment. In contrast, production of the anti-inflammatory cytokine, IL-10, was reduced by TCDD pretreatment for both unstimulated and E. coli-stimulated cultures. No effect of TCDD on the viability of the cultures was detected. These results suggest that TCDD exposure may shift immunity to enhance a proinflammatory phenotype at the maternal-fetal interface that could increase the risk of infection-mediated preterm birth.
Collapse
Affiliation(s)
- Morgan R. Peltier
- Women and Children’s Health Research Laboratory, Winthrop University Hospital, Mineola, NY, USA
- Department of Obstetrics and Gynecology, Winthrop University Hospital, Mineola, NY, USA
| | - Yuko Arita
- Women and Children’s Health Research Laboratory, Winthrop University Hospital, Mineola, NY, USA
| | - Natalia G. Klimova
- Women and Children’s Health Research Laboratory, Winthrop University Hospital, Mineola, NY, USA
- Department of Pediatrics, Winthrop University Hospital, Mineola, NY, USA
| | - Ellen M. Gurzenda
- Women and Children’s Health Research Laboratory, Winthrop University Hospital, Mineola, NY, USA
| | - Hchi-Chi Koo
- Women and Children’s Health Research Laboratory, Winthrop University Hospital, Mineola, NY, USA
- Department of Pediatrics, Winthrop University Hospital, Mineola, NY, USA
| | | | - Veronica Lerner
- Department of Obstetrics and Gynecology, Bellevieu Hospital, New York, NY, USA
| | - Nazeeh Hanna
- Women and Children’s Health Research Laboratory, Winthrop University Hospital, Mineola, NY, USA
- Department of Pediatrics, Winthrop University Hospital, Mineola, NY, USA
| |
Collapse
|
41
|
Kobayashi S, Sata F, Sasaki S, Ban S, Miyashita C, Okada E, Limpar M, Yoshioka E, Kajiwara J, Todaka T, Saijo Y, Kishi R. Genetic association of aromatic hydrocarbon receptor (AHR) and cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) polymorphisms with dioxin blood concentrations among pregnant Japanese women. Toxicol Lett 2013; 219:269-78. [PMID: 23528250 DOI: 10.1016/j.toxlet.2013.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 01/09/2023]
Abstract
Dioxins are metabolized by cytochrome P450, family 1 (CYP1) via the aromatic hydrocarbon receptor (AHR). We determined whether different blood dioxin concentrations are associated with polymorphisms in AHR (dbSNP ID: rs2066853), AHR repressor (AHRR; rs2292596), CYP1 subfamily A polypeptide 1 (CYP1A1; rs4646903 and rs1048963), CYP1 subfamily A polypeptide 2 (CYP1A2; rs762551), and CYP1 subfamily B polypeptide 1 (CYP1B1; rs1056836) in pregnant Japanese women. These six polymorphisms were detected in 421 healthy pregnant Japanese women. Differences in dioxin exposure concentrations in maternal blood among the genotypes were investigated. Comparisons among the GG, GA, and AA genotypes of AHR showed a significant difference (genotype model: P=0.016 for the mono-ortho polychlorinated biphenyl concentrations and toxicity equivalence quantities [TEQs]). Second, we found a significant association with the dominant genotype model ([TT+TC] vs. CC: P=0.048 for the polychlorinated dibenzo-p-dioxin TEQs; P=0.035 for polychlorinated dibenzofuran TEQs) of CYP1A1 (rs4646903). No significant differences were found among blood dioxin concentrations and polymorphisms in AHRR, CYP1A1 (rs1048963), CYP1A2, and CYP1B1. Thus, polymorphisms in AHR and CYP1A1 (rs4646903) were associated with maternal dioxin concentrations. However, differences in blood dioxin concentrations were relatively low.
Collapse
Affiliation(s)
- Sumitaka Kobayashi
- Department of Public Health Sciences, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Saghir SA, Khan SA, McCoy AT. Ontogeny of mammalian metabolizing enzymes in humans and animals used in toxicological studies. Crit Rev Toxicol 2012; 42:323-57. [PMID: 22512665 DOI: 10.3109/10408444.2012.674100] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is well recognized that expression of enzymes varies during development and growth. However, an in-depth review of this acquired knowledge is needed to translate the understanding of enzyme expression and activity into the prediction of change in effects (e.g. kinetics and toxicity) of xenobiotics with age. Age-related changes in metabolic capacity are critical for understanding and predicting the potential differences resulting from exposure. Such information may be especially useful in the evaluation of the risk of exposure to very low (µg/kg/day or ng/kg/day) levels of environmental chemicals. This review is to better understand the ontogeny of metabolizing enzymes in converting chemicals to either less-toxic metabolite(s) or more toxic products (e.g. reactive intermediate[s]) during stages before birth and during early development (neonate/infant/child). In this review, we evaluated the ontogeny of major "phase I" and "phase II" metabolizing enzymes in humans and commonly used experimental animals (e.g. mouse, rat, and others) in order to fill the information gap.
Collapse
Affiliation(s)
- Shakil Ahmed Saghir
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan, USA.
| | | | | |
Collapse
|