1
|
Gong L, Liu Y, Wang J, Zhao Z, Duan W, Xiao Y, Peng H, Zhao L, Khouchani M, Abdelmajid T, Aittahssaint N, He T, Jiang Z, Li J. miR-208a-3p Targets PPP6C to Regulate the Progression of Radiation-Induced Pneumonia. Antioxid Redox Signal 2025. [PMID: 40197027 DOI: 10.1089/ars.2023.0459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Aims: Radiation-induced pneumonia (RP) is a common complication after radiotherapy for clinical thoracic tumors, and increasing evidence suggests that miRNAs have potential value in regulating radiation-induced lung injury. However, the potential mechanism is still obscure. Here, we evaluated the miRNAs-dependent mechanism involved in the progression of RP. Results: Our data showed that mmu-miR-208a-3p was consistently highly expressed in the lung tissue of irradiated mice. In vitro studies demonstrated that the expression of miR-208a-3p in cells was significantly increased after X-ray irradiation. Further mechanism studies indicated that radiation-induced upregulation of miR-208a-3p promoted inflammatory responses by suppressing the expression of protein phosphatase 6C (PPP6C) and activating the cyclic GMP-AMP synthase/stimulator of interferon genes protein pathway. Overexpression of PPP6C can alleviate radiation-induced DNA damage and excessive accumulation of ROS. It was also observed that PPP6C inhibited ionizing RP in vivo. [Figure: see text] Innovation and Conclusion: miR-208a-3p/PPP6C represents a potential therapeutic target for RP which needs to be verified by future clinical studies. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Lixin Gong
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Yi Liu
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Jinyu Wang
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Zhe Zhao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Wenfang Duan
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Yu Xiao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Haibo Peng
- The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Mouna Khouchani
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Takoui Abdelmajid
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Nadia Aittahssaint
- Mohammed VI University Hospital, Cadi Ayyad University, Marrakech, Morocco
| | - Tao He
- Chengdu Integrated Traditional Chinese and Western Medicine Hospital/Chengdu First People's Hospital, Chengdu, China
- Non-Coding RNA and Drug Discovery Key Laboratory of Sichuan Province, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Zhiqiang Jiang
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College Nuclear Industry 416 Hospital, Chengdu, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
2
|
Zhao K, Sun Y, Zhong S, Luo JL. The multifaceted roles of cathepsins in immune and inflammatory responses: implications for cancer therapy, autoimmune diseases, and infectious diseases. Biomark Res 2024; 12:165. [PMID: 39736788 DOI: 10.1186/s40364-024-00711-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025] Open
Abstract
The cathepsin family comprises lysosomal proteases that play essential roles in various physiological processes, including protein degradation, antigen presentation, apoptosis, and tissue remodeling. Dysregulation of cathepsin activity has been linked to a variety of pathological conditions, such as cancer, autoimmune diseases, and neurodegenerative disorders. Understanding the functions of cathepsins is crucial for gaining insights into their roles in both health and disease, as well as for developing targeted therapeutic approaches. Emerging research underscores the significant involvement of cathepsins in immune cells, particularly T cells, macrophages, dendritic cells, and neutrophils, as well as their contribution to immune-related diseases. In this review, we systematically examine the impact of cathepsins on the immune system and their mechanistic roles in cancer, infectious diseases, autoimmune and neurodegenerative disorders, with the goal of identifying novel therapeutic strategies for these conditions.
Collapse
Affiliation(s)
- Kexin Zhao
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Yangqing Sun
- Department of Oncology, Hunan Provincial People's Hospital, Changsha, Hunan, 410005, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hengyang, Hunan, 421001, China.
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hengyang, Hunan, 421001, China.
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hengyang, Hunan, 410008, China.
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hengyang, Hunan, 421001, China.
| |
Collapse
|
3
|
Dabo AJ, Raghavan S, Ezegbunam W, Thankachen J, Evgrafov O, Majka S, Geraghty P, Foronjy RF. Cigarette smoke alters calcium flux to induce PP2A membrane trafficking and endothelial cell permeability. Sci Rep 2024; 14:28012. [PMID: 39543165 PMCID: PMC11564810 DOI: 10.1038/s41598-024-77776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024] Open
Abstract
Alveolar capillary barrier disruption induces local edema and inflammation that impairs pulmonary function and promotes alveolar destruction in COPD. This study aimed to determine how cigarette smoke modulated the serine-threonine phosphatase protein phosphatase 2 A (PP2A) to alter the barrier function of human lung microvascular endothelial cells (HLMVECs). Cigarette smoke exposure lowered overall PP2A activity and enhanced endothelial permeability in HLMVECs. However, directly decreasing PP2A activity with Fostriecin significantly reduced endothelial cell permeability. Protein fractionation studies determined that cigarette smoke diminished cytosolic PP2A activity but increased membrane and cytoskeletal activity. These changes coincided with the translocation of PP2A to the membrane, which reduced occludin phosphorylation in the membrane. Cigarette smoke decreased protein tyrosine phosphatase 1B (PTP1B) activity, a PP2A activator which also counters calcium intracellular influx. The decrease in PTP1B activity correlated with reduced calcium efflux in endothelial cells and these changes in calcium flux regulated PP2A activity. Indeed, culturing endothelial cells in low calcium medium prevented the decrease in cytosolic PP2A activity mediated by cigarette smoke. Together, these findings outline a mechanism whereby cigarette smoke acts via calcium to traffic PP2A from the cytosol to the membrane where it dephosphorylates occludin to increase endothelial cell permeability.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sonya Raghavan
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wendy Ezegbunam
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Jincy Thankachen
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oleg Evgrafov
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Sue Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA.
- Division of Pulmonary & Critical Care Medicine, SUNY Downstate Health Sciences University, 450 Clarkson Ave, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Antoniu S, Rascu S. Protein phosphatase 2A activators under investigation for smoking-related chronic obstructive pulmonary disease and related disorders. Expert Opin Investig Drugs 2024; 33:1135-1142. [PMID: 39394816 DOI: 10.1080/13543784.2024.2416982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) is characterized by progressive inflammation during therapy. Cystic fibrosis (CF), alpha-one antitrypsin deficiency (AATD), and non-CF bronchiectasis are also chronic respiratory disorders with inflammation and progression that share many similarities with COPD. Therefore, various anti-inflammatory approaches are currently being investigated, and protein phosphatase 2A (PP2A) activators may represent one such approach. AREAS COVERED Systematic review of papers published from 2000-to date on the anti-inflammatory role of endogenous PP2A, the consequences of its inhibition by smoking, and the beneficial effects of its activation in COPD. EXPERT OPINION PP2A activation is a plausible therapeutic approach in COPD and related disorders, such as CF, AATD, and non-CF bronchiectasis, although the available evidence is still mostly experimental. Metformin repurposing and consideration of inhalation for some of the molecules discussed in this study are promising approaches.
Collapse
Affiliation(s)
- Sabina Antoniu
- Department Medicine II/Nursing, University of Medicine and Pharmacy, Grigore T Popa Iasi, Iasi, Romania
| | - Setfan Rascu
- Faculty of Medicine, 3rd Department, University of Medicine and Pharmacy, Carol Davila Bucuresti, Bucuresti, Romania
| |
Collapse
|
5
|
Wang M, Zhu M, Jia X, Wu J, Yuan Q, Xu T, Wang Z, Huang M, Ji N, Zhang M. LincR-PPP2R5C regulates IL-1β ubiquitination in macrophages and promotes airway inflammation and emphysema in a murine model of COPD. Int Immunopharmacol 2024; 139:112680. [PMID: 39018689 DOI: 10.1016/j.intimp.2024.112680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/15/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common disease with high global morbidity and mortality. Macrophages release IL-1β and orchestrate airway inflammation in COPD. Previously, we explored the role of a new lncRNA, LincR-PPP2R5C, in regulating Th2 cells in asthma. Here, we established a murine model of COPD and explored the roles and mechanisms by which LincR-PPP2R5C regulates IL-1β in macrophages. LincR-PPP2R5C was highly expressed in pulmonary macrophages from COPD-like mice. LincR-PPP2R5C deficiency ameliorated emphysema and pulmonary inflammation, as characterized by reduced IL-1β in macrophages. Unexpectedly, in both lung tissues and macrophages, LincR-PPP2R5C deficiency decreased the expression of the IL-1β protein but not the IL-1β mRNA. Furthermore, we found that LincR-PPP2R5C deficiency increased the level of ubiquitinated IL-1β in macrophages, which was mediated by PP2A activity. Targeting PP2A with FTY720 decreased IL-1β and improved COPD. In conclusion, LincR-PPP2R5C regulates IL-1β ubiquitination by affecting PP2A activity in macrophages, contributing to the airway inflammation and emphysema in a murine model of COPD. PP2A and IL-1β ubiquitination in macrophages might be new therapeutic avenues for COPD therapy.
Collapse
Affiliation(s)
- Min Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Manni Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Jia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
7
|
Pillai M, Lafortune P, Dabo A, Yu H, Park SS, Taluru H, Ahmed H, Bobrow D, Sattar Z, Jundi B, Reece J, Ortega RR, Soto B, Yewedalsew S, Foronjy R, Wyman A, Geraghty P, Ohlmeyer M. Small-Molecule Activation of Protein Phosphatase 2A Counters Bleomycin-Induced Fibrosis in Mice. ACS Pharmacol Transl Sci 2023; 6:1659-1672. [PMID: 37974628 PMCID: PMC10644462 DOI: 10.1021/acsptsci.3c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Indexed: 11/19/2023]
Abstract
The activity of protein phosphatase 2A (PP2A), a serine-threonine phosphatase, is reduced in the lung fibroblasts of idiopathic pulmonary fibrosis (IPF) patients. The objective of this study was to determine whether the reactivation of PP2A could reduce fibrosis and preserve the pulmonary function in a bleomycin (BLM) mouse model. Here, we present a new class of direct small-molecule PP2A activators, diarylmethyl-pyran-sulfonamide, exemplified by ATUX-1215. ATUX-1215 has improved metabolic stability and bioavailability compared to our previously described PP2A activators. Primary human lung fibroblasts were exposed to ATUX-1215 and an older generation PP2A activator in combination with TGFβ. ATUX-1215 treatment enhanced the PP2A activity, reduced the phosphorylation of ERK and JNK, and reduced the TGFβ-induced expression of ACTA2, FN1, COL1A1, and COL3A1. C57BL/6J mice were administered 5 mg/kg ATUX-1215 daily following intratracheal instillation of BLM. Three weeks later, forced oscillation and expiratory measurements were performed using the Scireq Flexivent System. ATUX-1215 prevented BLM-induced lung physiology changes, including the preservation of normal PV loop, compliance, tissue elastance, and forced vital capacity. PP2A activity was enhanced with ATUX-1215 and reduced collagen deposition within the lungs. ATUX-1215 also prevented the BLM induction of Acta2, Ccn2, and Fn1 gene expression. Treatment with ATUX-1215 reduced the phosphorylation of ERK, p38, JNK, and Akt and the secretion of IL-12p70, GM-CSF, and IL1α in BLM-treated animals. Delayed treatment with ATUX-1215 was also observed to slow the progression of lung fibrosis. In conclusion, our study indicates that the decrease in PP2A activity, which occurs in fibroblasts from the lungs of IPF subjects, could be restored with ATUX-1215 administration as an antifibrotic agent.
Collapse
Affiliation(s)
- Meshach Pillai
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Pascale Lafortune
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Abdoulaye Dabo
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Howard Yu
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Sangmi S. Park
- Department
of Cell Biology, The State University of
New York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Harsha Taluru
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Huma Ahmed
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Dylan Bobrow
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Zeeshan Sattar
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Bakr Jundi
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Joshua Reece
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Romy Rodriguez Ortega
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Brian Soto
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Selome Yewedalsew
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Robert Foronjy
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Anne Wyman
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | - Patrick Geraghty
- Department
of Medicine, The State University of New
York Downstate Health Sciences University, Brooklyn, New York 11203, United States
- Department
of Cell Biology, The State University of
New York Downstate Health Sciences University, Brooklyn, New York 11203, United States
| | | |
Collapse
|
8
|
Soto B, Ahmed H, Pillai M, Park SS, Ploszaj M, Reece J, Taluru H, Bobrow D, Yu H, Lafortune P, Jundi B, Costanzo L, Dabo AJ, Foronjy RF, Mueller C, Ohlmeyer M, Geraghty P. Evaluating Novel Protein Phosphatase 2A Activators as Therapeutics for Emphysema. Am J Respir Cell Mol Biol 2023; 69:533-544. [PMID: 37526463 PMCID: PMC10633843 DOI: 10.1165/rcmb.2023-0105oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
The activity of PP2A (protein phosphatase 2A), a serine-threonine phosphatase, is reduced by chronic cigarette smoke (SM) exposure and α-1 antitrypsin (AAT) deficiency, and chemical activation of PP2A reduces the loss of lung function in SM-exposed mice. However, the previously studied PP2A-activator tricyclic sulfonamide compound DBK-1154 has low stability to oxidative metabolism, resulting in fast clearance and low systemic exposure. Here we compare the utility of a new more stable PP2A activator, ATUX-792, versus DBK-1154 for the treatment of SM-induced emphysema. ATUX-792 was also tested in human bronchial epithelial cells and a mouse model of AAT deficiency, Serpina1a-e-knockout mice. Human bronchial epithelial cells were treated with ATUX-792 or DBK-1154, and cell viability, PP2A activity, and MAP (mitogen-activated protein) kinase phosphorylation status were examined. Wild-type mice received vehicle, DBK-1154, or ATUX-792 orally in the last 2 months of 4 months of SM exposure, and 8-month-old Serpina1a-e-knockout mice received ATUX-792 daily for 4 months. Forced oscillation and expiratory measurements and histology analysis were performed. Treatment with ATUX-792 or DBK-1154 resulted in PP2A activation, reduced MAP kinase phosphorylation, immune cell infiltration, reduced airspace enlargements, and preserved lung function. Using protein arrays and multiplex assays, PP2A activation was observed to reduce AAT-deficient and SM-induced release of CXCL5, CCL17, and CXCL16 into the airways, which coincided with reduced neutrophil lung infiltration. Our study indicates that suppression of the PP2A activity in two models of emphysema could be restored by next-generation PP2A activators to impact lung function.
Collapse
Affiliation(s)
| | | | | | - Sangmi S Park
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | | | | | | | | | | | | | | | | | - Abdoulaye J Dabo
- Department of Medicine and
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Robert F Foronjy
- Department of Medicine and
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| | - Christian Mueller
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
- Cummings School of Veterinary Medicine, Tufts University, Grafton, Massachusetts; and
| | | | - Patrick Geraghty
- Department of Medicine and
- Department of Cell Biology, State University of New York Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
9
|
Yu H, Zaveri S, Sattar Z, Schaible M, Perez Gandara B, Uddin A, McGarvey LR, Ohlmeyer M, Geraghty P. Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1552. [PMID: 37763671 PMCID: PMC10535831 DOI: 10.3390/medicina59091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung.
Collapse
Affiliation(s)
- Howard Yu
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Sahil Zaveri
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Zeeshan Sattar
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Michael Schaible
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Brais Perez Gandara
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Anwar Uddin
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | - Lucas R. McGarvey
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| | | | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Health Sciences University, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; (H.Y.); (S.Z.); (Z.S.); (M.S.); (B.P.G.); (A.U.); (L.R.M.)
| |
Collapse
|
10
|
Han B, Liu Q, Su X, Zhou L, Zhang B, Kang H, Ning J, Li C, Zhao B, Niu Y, Chen W, Chen L, Zhang R. The role of PP2A /NLRP3 signaling pathway in ambient particulate matter 2.5 induced lung injury. CHEMOSPHERE 2022; 307:135794. [PMID: 35926746 DOI: 10.1016/j.chemosphere.2022.135794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter 2.5 (PM2.5) exposure has been linked to pulmonary fibrosis. However, the key signaling pathways remained unclear. In the present study, we applied a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit) to identify the key signaling pathways involved in PM2.5-induced pulmonary fibrosis. PP2A Aα-/- homozygote mice and matched wild-type (WT) littermates were exposed to filtered air (FA), unfiltered air (UA), and concentrated PM2.5 (CA) in a real-ambient PM exposure system for 8 weeks and 16 weeks, respectively. The mice exposed to PM2.5 displayed a progressive inflammation and pulmonary fibrosis. Moreover, the expressions of NLRP3, pro-caspase-1, caspase-1, ASC and IL-1β were increased in mice lung following PM2.5 exposure, indicating PM2.5 exposure caused pulmonary inflammation by the NLRP3 pathways activation. Furthermore, the effects of PM exposure on pulmonary inflammation, pulmonary fibrosis, oxidative stress, and pulmonary function damage were significantly enhanced in PP2A-/- mice compared to WT mice, indicating the role of PP2A in the regulation of pulmonary injury induced by PM exposure. In vitro study confirmed that PP2A was involved in the PM2.5-induced inflammation response and NLRP3 inflammasome activation. Importantly, we identified PP2A regulated the activation of NLRP3 pathways by direct dephosphorylating IRE1α in response to PM2.5 exposure. Taken together, our results demonstrated that PP2A-IRE1α-NLRP3 signaling pathway played a crucial role in regulating the inflammation response, triggering the lung fibrogenesis upon PM2.5 exposure. Our findings provide new insights into regulatory role of PP2A in human diseases upon the PM exposure.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Hui Kang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
11
|
Kashani E, Vassella E. Pleiotropy of PP2A Phosphatases in Cancer with a Focus on Glioblastoma IDH Wildtype. Cancers (Basel) 2022; 14:5227. [PMID: 36358647 PMCID: PMC9654311 DOI: 10.3390/cancers14215227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Serine/Threonine protein phosphatase 2A (PP2A) is a heterotrimeric (or occasionally, heterodimeric) phosphatase with pleiotropic functions and ubiquitous expression. Despite the fact that they all contribute to protein dephosphorylation, multiple PP2A complexes exist which differ considerably by their subcellular localization and their substrate specificity, suggesting diverse PP2A functions. PP2A complex formation is tightly regulated by means of gene expression regulation by transcription factors, microRNAs, and post-translational modifications. Furthermore, a constant competition between PP2A regulatory subunits is taking place dynamically and depending on the spatiotemporal circumstance; many of the integral subunits can outcompete the rest, subjecting them to proteolysis. PP2A modulation is especially important in the context of brain tumors due to its ability to modulate distinct glioma-promoting signal transduction pathways, such as PI3K/Akt, Wnt, Ras, NF-κb, etc. Furthermore, PP2A is also implicated in DNA repair and survival pathways that are activated upon treatment of glioma cells with chemo-radiation. Depending on the cancer cell type, preclinical studies have shown some promise in utilising PP2A activator or PP2A inhibitors to overcome therapy resistance. This review has a special focus on "glioblastoma, IDH wild-type" (GBM) tumors, for which the therapy options have limited efficacy, and tumor relapse is inevitable.
Collapse
Affiliation(s)
- Elham Kashani
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
12
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Meng Y, Li X, Guan J. Network-based pharmacology to predict the mechanism of Ginger and Forsythia combined treatment of viral pneumonia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:964-971. [PMID: 34646414 PMCID: PMC8493261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Viral pneumonia (VP) is a common inflammatory disease caused by a virus in the upper respiratory tract. However, current treatment options for pneumonia are limited because of the strong infectivity and lack of research. METHOD Based on various databases, the mechanisms of Ginger and Forsythia were predicted by network pharmacology. The possible active ingredients of Ginger and Forsythia were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and screened by pharmacokinetic parameters. Their possible targets were predicted by the TCMSP database. The VP-related targets were collected from the GeneCards and OMIM databases. The compound-target-disease network was visualized by Cytoscape 3.7.1. In addition, the protein functional annotation and identification of signalling pathways of possible targets were performed with Gene Ontology (GO) and KEGG enrichment analysis. Molecular docking was finally employed for in silico simulation matching between representative Ginger and Forsythia compounds and their core genes. RESULTS Twenty-eight active ingredients of Ginger and Forsythia were found and 30 common targets for the combined treatment of VP were obtained. The enrichment analysis of GO functions and KEGG pathways included 186 GO function entries and 56 KEGG pathways. Molecular docking showed that the main ingredients can closely bind three targets (CASP3, JUN, and ESR1). Thus, Ginger and Forsythia play significant roles in the prevention and treatment of VP, and this study showed their mechanism was "multicomponent, multitarget, and multipathway" for the prevention and treatment of VP. CONCLUSION We successfully predicted the active components and targets of Ginger and Forsythia for prevention and treatment of VP. This may systematically clarify its mechanism of action and provide a direction for future research.
Collapse
Affiliation(s)
- Yuxiao Meng
- Department of Medicine, Zhejiang Chinese Medical University Hangzhou 310053, Zhejiang, China
| | - Xiaojun Li
- Department of Medicine, Zhejiang Chinese Medical University Hangzhou 310053, Zhejiang, China
| | - Jiaqi Guan
- Department of Medicine, Zhejiang Chinese Medical University Hangzhou 310053, Zhejiang, China
| |
Collapse
|
14
|
Qu S, Song C, Tan X, Wang G, Ling F. Comparative proteomic analysis provides insight into the key proteins as potential targets underlying the effect of malachite green against Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2021; 44:881-892. [PMID: 33560558 DOI: 10.1111/jfd.13346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Target identification is important for drug discovery. Unfortunately, no drug targets have been found in Ichthyophthirius multifiliis until now and further limited development of the novel drug for Ichthyophthiriasis. In this study, an iTRAQ-based quantitative proteomic analysis was used to find the target of malachite green (MG), exhibiting greater efficacy than the existing drugs, against I. multifiliis trophonts in situ. We also verified the proteomic results by RT-qPCR, TEM and cell apoptosis assay. Our results showed that major variations in protein abundance were found among many of the ribosome proteins, indicating ribosome might be a candidate target. Furthermore, GO and KEGG pathway analyses of differentially expressed proteins (DEPs) revealed that ribosome and PI3K-Akt signalling pathway were remarkably enriched. Taken together, the above DEPs were also verified by RT-qPCR and morphological observations. This study provides insights into the key proteins enriched in PI3K-Akt signal pathway and ribosome pathway as potential targets of MG killing I. multifiliis, which could be served as targets for other less toxic drugs and be tested as potential treatments for I. multifiliis.
Collapse
Affiliation(s)
- Shenye Qu
- Northwest A&F University, Yangling, Shaanxi, China
| | - Chenguang Song
- Northwest A&F University, Yangling, Shaanxi, China
- National Fishery Technology Extension Center, China Society of Fisheries, Peking, China
| | - Xiaoping Tan
- Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Ling
- Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Mestareehi A, Zhang X, Seyoum B, Msallaty Z, Mallisho A, Burghardt KJ, Kowluru A, Yi Z. Metformin Increases Protein Phosphatase 2A Activity in Primary Human Skeletal Muscle Cells Derived from Lean Healthy Participants. J Diabetes Res 2021; 2021:9979234. [PMID: 34368369 PMCID: PMC8342103 DOI: 10.1155/2021/9979234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate if PP2A plays a role in metformin-induced insulin sensitivity improvement in human skeletal muscle cells. Participants. Eight lean insulin-sensitive nondiabetic participants (4 females and 4 males; age: 21.0 ± 1.0 years; BMI: 22.0 ± 0.7 kg/m2; 2-hour OGTT: 97.0 ± 6.0 mg/dl; HbA1c: 5.3 ± 0.1%; fasting plasma glucose: 87.0 ± 2.0 mg/dl; M value; 11.0 ± 1.0 mg/kgBW/min). DESIGN A hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity in human subjects, and skeletal muscle biopsy samples were obtained. Primary human skeletal muscle cells (shown to retain metabolic characteristics of donors) were cultured from these muscle biopsies that included 8 lean insulin-sensitive participants. Cultured cells were expanded, differentiated into myotubes, and treated with 50 μM metformin for 24 hours before harvesting. PP2Ac activity was measured by a phosphatase activity assay kit (Millipore) according to the manufacturer's protocol. RESULTS The results indicated that metformin significantly increased the activity of PP2A in the myotubes for all 8 lean insulin-sensitive nondiabetic participants, and the average fold increase is 1.54 ± 0.11 (P < 0.001). CONCLUSIONS These results provided the first evidence that metformin can activate PP2A in human skeletal muscle cells derived from lean healthy insulin-sensitive participants and may help to understand metformin's action in skeletal muscle in humans.
Collapse
Affiliation(s)
- Aktham Mestareehi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Xiangmin Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Berhane Seyoum
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Zaher Msallaty
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Abdullah Mallisho
- Division of Endocrinology, Wayne State University School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Kyle Jon Burghardt
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy/Health Sciences, Wayne State University, Detroit, MI, USA
| | - Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Program for Translational Research in Diabetes, Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA
| | - Zhengping Yi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
16
|
Okrit F, Chantranuwatana P, Werawatganon D, Chayanupatkul M, Sanguanrungsirikul S. Changes of vitamin D receptors (VDR) and MAPK activation in cytoplasmic and nuclear fractions following exposure to cigarette smoke with or without filter in rats. Heliyon 2021; 7:e05927. [PMID: 33553726 PMCID: PMC7851787 DOI: 10.1016/j.heliyon.2021.e05927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/22/2019] [Accepted: 01/06/2021] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke (CS) is a major cause of obstructive lung disease which is associated with significant disability and mortality. Vitamin D receptor (VDR) together with, mitogen activated protein kinases (MAPKs; ERK, JNK and p38) are the cellular transmission signals that mechanistically respond to CS and are recently found to have a role in lung pathogenesis. There are a few in vitro studies on subcellular VDR distribution involved MAPK but in vivo effects of cigarette smoke exposure with and without filter on this complex remain unclear. This study investigated subcellular VDR distribution and MAPK expression at early stages of both types of cigarette smoke exposure (CSE) in a rat model. Male Wistar rats were randomly divided into no-filter, filter and control groups. After 7 and 14 days of CSE, lung tissues were obtained to determine histopathology and protein expression. Cytoplasmic and nuclear VDR distribution significantly decreased on both CSE groups and corresponded with immunohistochemistry detection. The ratio of phosphorylated ERK to total ERK significantly increased in cytoplasm of both CSE on day 7. In particular, nuclear ERK MAPK significantly escalated in the filter group on day 14. In consistent with changes in intracellular markers, histopathological examination in both CSE groups showed significant increases in tracheal and peribronchiolar epithelial proliferation, alveolar macrophages and an increased trend of parenchymal infiltration. In summary, the evidence of lung injuries along with VDR depletion and MAPK activation observed in both CSE types indicated that there was no benefit of using cigarette filter to prevent protein damage or protect cells against cigarette smoke exposure in this model.
Collapse
Affiliation(s)
- Fatist Okrit
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Duangporn Werawatganon
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Maneerat Chayanupatkul
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | | |
Collapse
|
17
|
Brown R, Nath S, Lora A, Samaha G, Elgamal Z, Kaiser R, Taggart C, Weldon S, Geraghty P. Cathepsin S: investigating an old player in lung disease pathogenesis, comorbidities, and potential therapeutics. Respir Res 2020; 21:111. [PMID: 32398133 PMCID: PMC7216426 DOI: 10.1186/s12931-020-01381-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression and activity of cathepsin S (CTSS), a lysosomal protease and a member of the cysteine cathepsin protease family, is linked to the pathogenesis of multiple diseases, including a number of conditions affecting the lungs. Extracellular CTSS has potent elastase activity and by processing cytokines and host defense proteins, it also plays a role in the regulation of inflammation. CTSS has also been linked to G-coupled protein receptor activation and possesses an important intracellular role in major histocompatibility complex class II antigen presentation. Modulated CTSS activity is also associated with pulmonary disease comorbidities, such as cancer, cardiovascular disease, and diabetes. CTSS is expressed in a wide variety of immune cells and is biologically active at neutral pH. Herein, we review the significance of CTSS signaling in pulmonary diseases and associated comorbidities. We also discuss CTSS as a plausible therapeutic target and describe recent and current clinical trials examining CTSS inhibition as a means for treatment.
Collapse
Affiliation(s)
- Ryan Brown
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Alnardo Lora
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ghassan Samaha
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ziyad Elgamal
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Ryan Kaiser
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA
| | - Clifford Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Sinéad Weldon
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, NY, USA.
| |
Collapse
|
18
|
PP2ACα of Alveolar Macrophages Is a Novel Protective Factor for LPS-Induced Acute Respiratory Distress Syndrome. Inflammation 2019; 42:1004-1014. [PMID: 30684253 DOI: 10.1007/s10753-019-00962-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein phosphatase 2A (PP2A) is one main serine/threonine phosphatase in eukaryotes, and its activation changes have been linked to modulation of numerous pathological processes, such as cancer, inflammation, fibrosis, and neurodegenerative diseases. Acute respiratory distress syndrome (ARDS), the major cause of respiratory failure, remains with limited therapies available up to now. Alveolar macrophages (AMs) are essential to innate immunity and host defense, participating in the pathogenesis of ARDS. As a result, AMs are considered as a potential therapeutic target for ARDS. In our study, we firstly found that PP2A activity was significantly decreased in the lipopolysaccharide (LPS)-stimulated AMs. Furthermore, adoptive transfer of AMs with enhanced PP2A enzyme activity that was improved by C2-ceramide prior to LPS exposure alleviated acute lung inflammation. Conversely, AM-specific ablation of PP2ACα exacerbated inflammatory responses to LPS. Mechanistically, PP2ACα negatively regulates LPS-induced cytokine secretion of AMs by NF-κB and MAPK pathways. Together, these findings provide the evidence to guide the development of novel therapeutic options targeting PP2ACα for ARDS/acute lung injury.
Collapse
|
19
|
Hussain T, Zhao D, Shah SZA, Sabir N, Wang J, Liao Y, Song Y, Hussain Mangi M, Yao J, Dong H, Yang L, Zhou X. PP2Ac Modulates AMPK-Mediated Induction of Autophagy in Mycobacterium bovis-Infected Macrophages. Int J Mol Sci 2019; 20:ijms20236030. [PMID: 31795474 PMCID: PMC6928646 DOI: 10.3390/ijms20236030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/16/2019] [Accepted: 11/28/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis in cattle population across the world. Human beings are at equal risk of developing tuberculosis beside a wide range of M. bovis infections in animal species. Autophagic sequestration and degradation of intracellular pathogens is a major innate immune defense mechanism adopted by host cells for the control of intracellular infections. It has been reported previously that the catalytic subunit of protein phosphatase 2A (PP2Ac) is crucial for regulating AMP-activated protein kinase (AMPK)-mediated autophagic signaling pathways, yet its role in tuberculosis is still unclear. Here, we demonstrated that M. bovis infection increased PP2Ac expression in murine macrophages, while nilotinib a tyrosine kinase inhibitor (TKI) significantly suppressed PP2Ac expression. In addition, we observed that TKI-induced AMPK activation was dependent on PP2Ac regulation, indicating the contributory role of PP2Ac towards autophagy induction. Furthermore, we found that the activation of AMPK signaling is vital for the regulating autophagy during M. bovis infection. Finally, the transient inhibition of PP2Ac expression enhanced the inhibitory effect of TKI-nilotinib on intracellular survival and multiplication of M. bovis in macrophages by regulating the host’s immune responses. Based on these observations, we suggest that PP2Ac should be exploited as a promising molecular target to intervene in host–pathogen interactions for the development of new therapeutic strategies towards the control of M. bovis infections in humans and animals.
Collapse
Affiliation(s)
- Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Syed Zahid Ali Shah
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Jie Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Haodi Dong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.H.); (D.Z.); (S.Z.A.S.); (N.S.); (J.W.); (Y.L.); (Y.S.); (M.H.M.); (J.Y.); (H.D.); (L.Y.)
- Correspondence: ; Tel.: +86-10-6273-4618
| |
Collapse
|
20
|
Nader CP, Cidem A, Verrills NM, Ammit AJ. Protein phosphatase 2A (PP2A): a key phosphatase in the progression of chronic obstructive pulmonary disease (COPD) to lung cancer. Respir Res 2019; 20:222. [PMID: 31623614 PMCID: PMC6798356 DOI: 10.1186/s12931-019-1192-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lung cancer (LC) has the highest relative risk of development as a comorbidity of chronic obstructive pulmonary disease (COPD). The molecular mechanisms that mediate chronic inflammation and lung function impairment in COPD have been identified in LC. This suggests the two diseases are more linked than once thought. Emerging data in relation to a key phosphatase, protein phosphatase 2A (PP2A), and its regulatory role in inflammatory and tumour suppression in both disease settings suggests that it may be critical in the progression of COPD to LC. In this review, we uncover the importance of the functional and active PP2A holoenzyme in the context of both diseases. We describe PP2A inactivation via direct and indirect means and explore the actions of two key PP2A endogenous inhibitors, cancerous inhibitor of PP2A (CIP2A) and inhibitor 2 of PP2A (SET), and the role they play in COPD and LC. We explain how dysregulation of PP2A in COPD creates a favourable inflammatory micro-environment and promotes the initiation and progression of tumour pathogenesis. Finally, we highlight PP2A as a druggable target in the treatment of COPD and LC and demonstrate the potential of PP2A re-activation as a strategy to halt COPD disease progression to LC. Although further studies are required to elucidate if PP2A activity in COPD is a causal link for LC progression, studies focused on the potential of PP2A reactivating agents to reduce the risk of LC formation in COPD patients will be pivotal in improving clinical outcomes for both COPD and LC patients in the future.
Collapse
Affiliation(s)
- Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole M Verrills
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Research Centre for Cancer Research, Innovation & Translation, Faculty of Health & Medicine, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Phosphorylation-dependent modulation of CFTR macromolecular signalling complex activity by cigarette smoke condensate in airway epithelia. Sci Rep 2019; 9:12706. [PMID: 31481727 PMCID: PMC6722123 DOI: 10.1038/s41598-019-48971-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Genetic and acquired loss-of-function defect of the cystic fibrosis transmembrane conductance regulator (CFTR) compromise airway surface liquid homeostasis and mucociliary clearance (MCC), culminating in recurrent lung inflammation/infection. While chronic cigarette smoke (CS), CS extract (CSE; water-soluble compounds) and CS condensate (CSC; particulate, organic fraction) exposure inhibit CFTR activity at transcriptional, biochemical, and functional levels, the acute impact of CSC remains incompletely understood. We report that CSC transiently activates CFTR chloride secretion in airway epithelia. The comparable CFTR phospho-occupancy after CSC- and forskolin-exposure, determined by affinity-enriched tandem mass spectrometry and pharmacology, suggest that localised cAMP-dependent protein kinase (PKA) stimulation by CSC causes the channel opening. Due to the inhibition of the MRP4/ABCC4, a cAMP-exporter confined to the CFTR macromolecular signalling-complex, PKA activation is accomplished by the subcompartmentalised elevation of cytosolic cAMP. In line, MRP4 inhibition results in CFTR activation and phospho-occupancy similar to that by forskolin. In contrast, acute CSC exposure reversibly inhibits the phosphorylated CFTR both in vivo and in phospholipid bilayers, without altering its cell surface density and phospho-occupancy. We propose that components of CSC elicit both a transient protective CFTR activation, as well as subsequent channel block in airway epithelia, contributing to the subacute MCC defect in acquired CF lung diseases.
Collapse
|
22
|
Doherty DF, Nath S, Poon J, Foronjy RF, Ohlmeyer M, Dabo AJ, Salathe M, Birrell M, Belvisi M, Baumlin N, Kim MD, Weldon S, Taggart C, Geraghty P. Protein Phosphatase 2A Reduces Cigarette Smoke-induced Cathepsin S and Loss of Lung Function. Am J Respir Crit Care Med 2019; 200:51-62. [PMID: 30641028 PMCID: PMC6603057 DOI: 10.1164/rccm.201808-1518oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022] Open
Abstract
Rationale: CTSS (cathepsin S) is a cysteine protease that is observed at higher concentrations in BAL fluid and plasma of subjects with chronic obstructive pulmonary disease (COPD). Objectives: To investigate whether CTSS is involved in the pathogenesis of cigarette smoke-induced COPD and determine whether targeting upstream signaling could prevent the disease. Methods: CTSS expression was investigated in animal and human tissue and cell models of COPD. Ctss-/- mice were exposed to long-term cigarette smoke and forced oscillation and expiratory measurements were recorded. Animals were administered chemical modulators of PP2A (protein phosphatase 2A) activity. Measurements and Main Results: Here we observed enhanced CTSS expression and activity in mouse lungs after exposure to cigarette smoke. Ctss-/- mice were resistant to cigarette smoke-induced inflammation, airway hyperresponsiveness, airspace enlargements, and loss of lung function. CTSS expression was negatively regulated by PP2A in human bronchial epithelial cells isolated from healthy nonsmokers and COPD donors and in monocyte-derived macrophages. Modulating PP2A expression or activity, with silencer siRNA or a chemical inhibitor or activator, during acute smoke exposure in mice altered inflammatory responses and CTSS expression and activity in the lung. Enhancement of PP2A activity prevented chronic smoke-induced COPD in mice. Conclusions: Our study indicates that the decrease in PP2A activity that occurs in COPD contributes to elevated CTSS expression in the lungs and results in impaired lung function. Enhancing PP2A activity represents a feasible therapeutic approach to reduce CTSS activity and counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Declan F. Doherty
- Airway Innate Immunity Research Group, Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sridesh Nath
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Justin Poon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Robert F. Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, New York
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, New York
- Atux Iskay LLC, Plainsboro, New Jersey
| | - Abdoulaye J. Dabo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, New York
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida
| | - Mark Birrell
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; and
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, London, United Kingdom
| | - Maria Belvisi
- Respiratory Pharmacology Group, Airway Disease Section, National Heart and Lung Institute, Imperial College, London, United Kingdom; and
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, London, United Kingdom
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida
| | - Michael D. Kim
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Clifford Taggart
- Airway Innate Immunity Research Group, Centre for Experimental Medicine, Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Cell Biology, State University of New York Downstate Medical Centre, Brooklyn, New York
| |
Collapse
|
23
|
Poon J, Campos M, Foronjy RF, Nath S, Gupta G, Railwah C, Dabo AJ, Baumlin N, Salathe M, Geraghty P. Cigarette smoke exposure reduces leukemia inhibitory factor levels during respiratory syncytial viral infection. Int J Chron Obstruct Pulmon Dis 2019; 14:1305-1315. [PMID: 31417248 PMCID: PMC6592033 DOI: 10.2147/copd.s196658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Viral infections are considered a major driving factor of chronic obstructive pulmonary disease (COPD) exacerbations and thus contribute to disease morbidity and mortality. Respiratory syncytial virus (RSV) is a frequently detected pathogen in the respiratory tract of COPD patients during an exacerbation. We previously demonstrated in a murine model that leukemia inhibitory factor (LIF) expression was increased in the lungs during RSV infection. Subduing LIF signaling in this model enhanced lung injury and airway hypersensitivity. In this study, we investigated lung LIF levels in COPD patient samples to determine the impact of disease status and cigarette smoke exposure on LIF expression. Materials and methods: Bronchoalveolar lavage fluid (BALF) was obtained from healthy never smokers, smokers, and COPD patients, by written informed consent. Human bronchial epithelial (HBE) cells were isolated from healthy never smokers and COPD patients, grown at the air-liquid interface and infected with RSV or stimulated with polyinosinic:polycytidylic acid (poly (i:c)). Mice were exposed to cigarette smoke daily for 6 months and were subsequently infected with RSV. LIF expression was profiled in all samples. Results: In human BALF, LIF protein was significantly reduced in both smokers and COPD patients compared to healthy never smokers. HBE cells isolated from COPD patients produced less LIF compared to never smokers during RSV infection or poly (i:c) stimulation. Animals exposed to cigarette smoke had reduced lung levels of LIF and its corresponding receptor, LIFR. Smoke-exposed animals had reduced LIF expression during RSV infection. Two possible factors for reduced LIF levels were increased LIF mRNA instability in COPD epithelia and proteolytic degradation of LIF protein by serine proteases. Conclusions: Cigarette smoke is an important modulator for LIF expression in the lungs. Loss of LIF expression in COPD could contribute to a higher degree of lung injury during virus-associated exacerbations.
Collapse
Affiliation(s)
- Justin Poon
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Michael Campos
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Robert F Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Sridesh Nath
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Gayatri Gupta
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Christopher Railwah
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Abdoulaye J Dabo
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
24
|
Sun L, Hult EM, Cornell TT, Kim KK, Shanley TP, Wilke CA, Agarwal M, Gurczynski SJ, Moore BB, Dahmer MK. Loss of myeloid-specific protein phosphatase 2A enhances lung injury and fibrosis and results in IL-10-dependent sensitization of epithelial cell apoptosis. Am J Physiol Lung Cell Mol Physiol 2019; 316:L1035-L1048. [PMID: 30838865 DOI: 10.1152/ajplung.00299.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein phosphatase 2A (PP2A), a ubiquitously expressed Ser/Thr phosphatase is an important regulator of cytokine signaling and cell function. We previously showed that myeloid-specific deletion of PP2A (LysMcrePP2A-/-) increased mortality in a murine peritoneal sepsis model. In the current study, we assessed the role of myeloid PP2A in regulation of lung injury induced by lipopolysaccharide (LPS) or bleomycin delivered intratracheally. LysMcrePP2A-/- mice experienced increased lung injury in response to both LPS and bleomycin. LysMcrePP2A-/- mice developed more exuberant fibrosis in response to bleomycin, elevated cytokine responses, and chronic myeloid inflammation. Bone marrow-derived macrophages (BMDMs) from LysMcrePP2A-/- mice showed exaggerated inflammatory cytokine release under conditions of both M1 and M2 activation. Notably, secretion of IL-10 was elevated under all stimulation conditions, including activation of BMDMs by multiple Toll-like receptor ligands. Supernatants collected from LPS-stimulated LysMcrePP2A-/- BMDMs induced epithelial cell apoptosis in vitro but this effect was mitigated when IL-10 was also depleted from the BMDMs by crossing LysMcrePP2A-/- mice with systemic IL-10-/- mice (LysMcrePP2A-/- × IL-10-/-) or when IL-10 was neutralized. Despite these findings, IL-10 did not directly induce epithelial cell apoptosis but sensitized epithelial cells to other mediators from the BMDMs. Taken together our results demonstrate that myeloid PP2A regulates production of multiple cytokines but that its effect is most pronounced on IL-10 production. Furthermore, IL-10 sensitizes epithelial cells to apoptosis in response to myeloid-derived mediators, which likely contributes to the pathogenesis of lung injury and fibrosis in this model.
Collapse
Affiliation(s)
- Lei Sun
- Department of Pediatrics and Critical Care, University of Michigan , Ann Arbor, Michigan
| | - Elissa M Hult
- Molecular and Integrative Physiology Graduate Program, University of Michigan , Ann Arbor, Michigan
| | - Timothy T Cornell
- Department of Pediatrics and Critical Care, University of Michigan , Ann Arbor, Michigan
| | - Kevin K Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan
| | - Thomas P Shanley
- Department of Pediatrics, Northwestern University Feinberg School of Medicine and Stanley Manne Children's Research Institute at Lurie Children's Hospital , Chicago, Illinois
| | - Carol A Wilke
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan
| | - Manisha Agarwal
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan
| | - Stephen J Gurczynski
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| | - Mary K Dahmer
- Department of Pediatrics and Critical Care, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
25
|
Nath S, Ohlmeyer M, Salathe MA, Poon J, Baumlin N, Foronjy RF, Geraghty P. Chronic Cigarette Smoke Exposure Subdues PP2A Activity by Enhancing Expression of the Oncogene CIP2A. Am J Respir Cell Mol Biol 2018; 59:695-705. [PMID: 30011381 PMCID: PMC12057641 DOI: 10.1165/rcmb.2018-0173oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Abstract
Phosphatase activity of the major serine threonine phosphatase, protein phosphatase 2A (PP2A), is blunted in the airways of individuals with chronic obstructive pulmonary disease (COPD), which results in heightened inflammation and proteolytic responses. The objective of this study was to investigate how PP2A activity is modulated in COPD airways. PP2A activity and endogenous inhibitors of PP2A were investigated in animal and cell models of COPD. In primary human bronchial epithelial (HBE) cells isolated from smokers and donors with COPD, we observed enhanced expression of cancerous inhibitor of PP2A (CIP2A), an oncoprotein encoded by the KIAA1524 gene, compared with cells from nonsmokers. CIP2A expression was induced by chronic cigarette smoke exposure in mice that coincided with a reduction in PP2A activity, airspace enlargements, and loss of lung function, as determined by PP2A phosphatase activity, mean linear intercept analysis, and forced expiratory volume in 0.05 second/forced vital capacity. Modulating CIP2A expression in HBE cells by silencing RNA or chemically with erlotinib enhanced PP2A activity, reduced extracellular-signal-regulated kinase phosphorylation, and reduced the responses of matrix metalloproteinases 1 and 9 in HBE cells isolated from subjects with COPD. Enhanced epithelial growth factor receptor responses in cells from subjects with COPD were observed to modulate CIP2A expression levels. Our study indicates that chronic cigarette smoke induction of epithelial growth factor receptor signaling and CIP2A expression can impair PP2A responses that are associated with loss of lung function and enhancement of proteolytic responses. Augmenting PP2A activity by manipulating CIP2A expression may represent a feasible therapeutic approach to counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Sridesh Nath
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Matthias A Salathe
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida; and
- 4 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Justin Poon
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nathalie Baumlin
- 3 Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miami, Florida; and
- 4 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert F Foronjy
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 5 Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Patrick Geraghty
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- 5 Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
26
|
Apopa PL, Alley L, Penney RB, Arnaoutakis K, Steliga MA, Jeffus S, Bircan E, Gopalan B, Jin J, Patumcharoenpol P, Jenjaroenpun P, Wongsurawat T, Shah N, Boysen G, Ussery D, Nookaew I, Fagan P, Bebek G, Orloff MS. PARP1 Is Up-Regulated in Non-small Cell Lung Cancer Tissues in the Presence of the Cyanobacterial Toxin Microcystin. Front Microbiol 2018; 9:1757. [PMID: 30127774 PMCID: PMC6087756 DOI: 10.3389/fmicb.2018.01757] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the major form of lung cancer, with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being its major subtypes. Smoking alone cannot completely explain the lung cancer etiology. We hypothesize that altered lung microbiome and chronic inflammatory insults in lung tissues contribute to carcinogenesis. Here we explore the microbiome composition of LUAD samples, compared to LUSC and normal samples. Extraction of microbiome DNA in formalin-fixed, paraffin-embedded (FFPE) lung tumor and normal adjacent tissues was meticulously performed. The 16S rRNA product from extracted microbiota was subjected to microbiome amplicon sequencing. To assess the contribution of the host genome, CD36 expression levels were analyzed then integrated with altered NSCLC subtype-specific microbe sequence data. Surprisingly phylum Cyanobacteria was consistently observed in LUAD samples. Across the NSCLC subtypes, differential abundance across four phyla (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes) was identified based on the univariate analysis (p-value < 6.4e-4 to 3.2e-2). In silico metagenomic and pathway analyses show that presence of microcystin correlates with reduced CD36 and increased PARP1 levels. This was confirmed in microcystin challenged NSCLC (A427) cell lines and Cyanobacteria positive LUAD tissues. Controlling the influx of Cyanobacteria-like particles or microcystin and the inhibition of PARP1 can provide a potential targeted therapy and prevention of inflammation-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Patrick L Apopa
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Lisa Alley
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rosalind B Penney
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Konstantinos Arnaoutakis
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mathew A Steliga
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan Jeffus
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Emine Bircan
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Jing Jin
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Nishi Shah
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - David Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Pebbles Fagan
- Department of Health Behavior and Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gurkan Bebek
- Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, United States.,Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States.,Department of Nutrition, Case Western Reserve University, Cleveland, OH, United States
| | - Mohammed S Orloff
- Department of Epidemiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
27
|
Microcystins: Synthesis and structure–activity relationship studies toward PP1 and PP2A. Bioorg Med Chem 2018; 26:1118-1126. [DOI: 10.1016/j.bmc.2017.08.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 11/19/2022]
|
28
|
Ezegbunam W, Foronjy R. Posttranscriptional control of airway inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29071794 DOI: 10.1002/wrna.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA-binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
29
|
Obeidat M, Nie Y, Chen V, Shannon CP, Andiappan AK, Lee B, Rotzschke O, Castaldi PJ, Hersh CP, Fishbane N, Ng RT, McManus B, Miller BE, Rennard S, Paré PD, Sin DD. Network-based analysis reveals novel gene signatures in peripheral blood of patients with chronic obstructive pulmonary disease. Respir Res 2017; 18:72. [PMID: 28438154 PMCID: PMC5404332 DOI: 10.1186/s12931-017-0558-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/20/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death and there is a huge unmet clinical need to identify disease biomarkers in peripheral blood. Compared to gene level differential expression approaches to identify gene signatures, network analyses provide a biologically intuitive approach which leverages the co-expression patterns in the transcriptome to identify modules of co-expressed genes. METHODS A weighted gene co-expression network analysis (WGCNA) was applied to peripheral blood transcriptome from 238 COPD subjects to discover co-expressed gene modules. We then determined the relationship between these modules and forced expiratory volume in 1 s (FEV1). In a second, independent cohort of 381 subjects, we determined the preservation of these modules and their relationship with FEV1. For those modules that were significantly related to FEV1, we determined the biological processes as well as the blood cell-specific gene expression that were over-represented using additional external datasets. RESULTS Using WGCNA, we identified 17 modules of co-expressed genes in the discovery cohort. Three of these modules were significantly correlated with FEV1 (FDR < 0.1). In the replication cohort, these modules were highly preserved and their FEV1 associations were reproducible (P < 0.05). Two of the three modules were negatively related to FEV1 and were enriched in IL8 and IL10 pathways and correlated with neutrophil-specific gene expression. The positively related module, on the other hand, was enriched in DNA transcription and translation and was strongly correlated to CD4+, CD8+ T cell-specific gene expression. CONCLUSIONS Network based approaches are promising tools to identify potential biomarkers for COPD. TRIAL REGISTRATION The ECLIPSE study was funded by GlaxoSmithKline, under ClinicalTrials.gov identifier NCT00292552 and GSK No. SCO104960.
Collapse
Affiliation(s)
- Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | - Yunlong Nie
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Virginia Chen
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Casey P Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | | | - Bernett Lee
- Singapore Immunology Network, 8A Biomedical Grove, Singapore, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network, 8A Biomedical Grove, Singapore, Singapore
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA
- Pulmonary and Critical Care Division, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Nick Fishbane
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
| | - Raymond T Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Bruce McManus
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | | | - Stephen Rennard
- Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Clinical Discovery Unit, Early Clinical Development, AstraZeneca, Cambridge, UK
| | - Peter D Paré
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
Geraghty P, Baumlin N, Salathe MA, Foronjy RF, D'Armiento JM. Glutathione Peroxidase-1 Suppresses the Unfolded Protein Response upon Cigarette Smoke Exposure. Mediators Inflamm 2016; 2016:9461289. [PMID: 28070146 PMCID: PMC5187475 DOI: 10.1155/2016/9461289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress provokes endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) in the lungs of chronic obstructive pulmonary (COPD) subjects. The antioxidant, glutathione peroxidase-1 (GPx-1), counters oxidative stress induced by cigarette smoke exposure. Here, we investigate whether GPx-1 expression deters the UPR following exposure to cigarette smoke. Expression of ER stress markers was investigated in fully differentiated normal human bronchial epithelial (NHBE) cells isolated from nonsmoking, smoking, and COPD donors and redifferentiated at the air liquid interface. NHBE cells from COPD donors expressed heightened ATF4, XBP1, GRP78, GRP94, EDEM1, and CHOP compared to cells from nonsmoking donors. These changes coincided with reduced GPx-1 expression. Reintroduction of GPx-1 into NHBE cells isolated from COPD donors reduced the UPR. To determine whether the loss of GPx-1 expression has a direct impact on these ER stress markers during smoke exposure, Gpx-1-/- mice were exposed to cigarette smoke for 1 year. Loss of Gpx-1 expression enhanced cigarette smoke-induced ER stress and apoptosis. Equally, induction of ER stress with tunicamycin enhanced antioxidant expression in mouse precision-cut lung slices. Smoke inhalation also exacerbated the UPR response during respiratory syncytial virus infection. Therefore, ER stress may be an antioxidant-related pathophysiological event in COPD.
Collapse
Affiliation(s)
- Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Nathalie Baumlin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Matthias A. Salathe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Miami, Miami, FL, USA
| | - Robert F. Foronjy
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jeanine M. D'Armiento
- Center for Pulmonary Disease, Department of Anesthesiology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
31
|
Abstract
SMYD3 is a member of the SET and MYND-domain family of methyl-transferases, the increased expression of which correlates with poor prognosis in various types of cancer. In liver and colon tumors, SMYD3 is localized in the nucleus, where it interacts with RNA Pol II and H3K4me3 and functions as a selective transcriptional amplifier of oncogenes and genes that control cell proliferation and metastatic spread. Smyd3 expression has a high discriminative power for the characterization of liver tumors and positively correlates with poor prognosis. In lung and pancreatic cancer, SMYD3 acts in the cytoplasm, potentiating oncogenic Ras/ERK signaling through the methylation of the MAP3K2 kinase and the subsequent release from its inhibitor. A clinico-pathological analysis of lung cancer patients uncovers prognostic significance of SMYD3 only for first progression survival. However, stratification of patients according to their smoking history significantly expands the prognostic value of SMYD3 to overall survival and other features, suggesting that smoking-related effects saturate the clinical analysis and mask the function of SMYD3 as an oncogenic potentiator.
Collapse
|
32
|
Sangodkar J, Farrington C, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J 2016; 283:1004-24. [PMID: 26507691 PMCID: PMC4803620 DOI: 10.1111/febs.13573] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/29/2015] [Accepted: 10/21/2015] [Indexed: 12/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase involved in the regulation of many cellular processes. A confirmed tumor suppressor protein, PP2A is genetically altered or functionally inactivated in many cancers highlighting a need for its therapeutic reactivation. In this review we discuss recent literature on PP2A: the elucidation of its structure and the functions of its subunits, and the identification of molecular lesions and post-translational modifications leading to its dysregulation in cancer. A final section will discuss the proteins and small molecules that modulate PP2A and how these might be used to target dysregulated forms of PP2A to treat cancers and other diseases.
Collapse
Affiliation(s)
- Jaya Sangodkar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Caroline Farrington
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly McClinch
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Galsky
- Department of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David B. Kastrinsky
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goutham Narla
- Department of Medicine and Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
Crotty Alexander LE, Shin S, Hwang JH. Inflammatory Diseases of the Lung Induced by Conventional Cigarette Smoke: A Review. Chest 2016; 148:1307-1322. [PMID: 26135024 DOI: 10.1378/chest.15-0409] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Smoking-induced lung diseases were extremely rare prior to the 20th century. With commercialization and introduction of machine-made cigarettes, worldwide use skyrocketed and several new pulmonary diseases have been recognized. The majority of pulmonary diseases caused by cigarette smoke (CS) are inflammatory in origin. Airway epithelial cells and alveolar macrophages have altered inflammatory signaling in response to CS, which leads to recruitment of lymphocytes, eosinophils, neutrophils, and mast cells to the lungs-depending on the signaling pathway (nuclear factor-κB, adenosine monophosphate-activated protein kinase, c-Jun N-terminal kinase, p38, and signal transducer and activator of transcription 3) activated. Multiple proteins are upregulated and secreted in response to CS exposure, and many of these have immunomodulatory activities that contribute to disease pathogenesis. In particular, metalloproteases 9 and 12, surfactant protein D, antimicrobial peptides (LL-37 and human β defensin 2), and IL-1, IL-6, IL-8, and IL-17 have been found in higher quantities in the lungs of smokers with ongoing inflammation. However, many underlying mechanisms of smoking-induced inflammatory diseases are not yet known. We review here the known cellular and molecular mechanisms of CS-induced diseases, including COPD, respiratory bronchiolitis-interstitial lung disease, desquamative interstitial pneumonia, acute eosinophilic pneumonia, chronic rhinosinusitis, pulmonary Langerhans cell histiocytosis, and chronic bacterial infections. We also discuss inflammation induced by secondhand and thirdhand smoke exposure and the pulmonary diseases that result. New targeted antiinflammatory therapeutic options are currently under investigation and hopefully will yield promising results for the treatment of these highly prevalent smoking-induced diseases.
Collapse
Affiliation(s)
- Laura E Crotty Alexander
- Veterans Affairs San Diego Healthcare System; and University of California, San Diego, La Jolla, CA..
| | - Stephanie Shin
- Veterans Affairs San Diego Healthcare System; and University of California, San Diego, La Jolla, CA
| | - John H Hwang
- Veterans Affairs San Diego Healthcare System; and University of California, San Diego, La Jolla, CA
| |
Collapse
|
34
|
Geraghty P, Eden E, Pillai M, Campos M, McElvaney NG, Foronjy RF. α1-Antitrypsin activates protein phosphatase 2A to counter lung inflammatory responses. Am J Respir Crit Care Med 2014; 190:1229-42. [PMID: 25341065 PMCID: PMC4315812 DOI: 10.1164/rccm.201405-0872oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/25/2014] [Indexed: 12/26/2022] Open
Abstract
RATIONALE α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease. OBJECTIVES Given their common effects, this study investigated whether A1AT acts via PP2A to alter tumor necrosis factor (TNF) signaling, inflammation, and proteolytic responses in this disease. METHODS PP2A activity was measured in peripheral blood neutrophils from A1AT-deficient (PiZZ) and healthy (PiMM) individuals and in alveolar macrophages from normal (60 mg/kg) and high-dose (120 mg/kg) A1AT-treated PiZZ subjects. PP2A activation was assessed in human neutrophils, airway epithelial cells, and peripheral blood monocytes treated with plasma purified A1AT protein. Similarly, lung PP2A activity was measured in mice administered intranasal A1AT. PP2A was silenced in lung epithelial cells treated with A1AT and matrix metalloproteinase and cytokine production was then measured following TNF-α stimulation. MEASUREMENTS AND MAIN RESULTS PP2A was significantly lower in neutrophils isolated from PiZZ compared with PiMM subjects. A1AT protein activated PP2A in human alveolar macrophages, monocytes, neutrophils, airway epithelial cells, and in mouse lungs. This activation required functionally active A1AT protein and protein tyrosine phosphatase 1B expression. A1AT treatment acted via PP2A to prevent p38 and IκBα phosphorylation and matrix metalloproteinase and cytokine induction in TNF-α-stimulated epithelial cells. CONCLUSIONS Together, these data indicate that A1AT modulates PP2A to counter inflammatory and proteolytic responses induced by TNF signaling in the lung.
Collapse
Affiliation(s)
- Patrick Geraghty
- 1 Division of Pulmonary and Critical Care Medicine, Mount Sinai Roosevelt Hospital, New York, New York
| | | | | | | | | | | |
Collapse
|
35
|
Palomäki J, Sund J, Vippola M, Kinaret P, Greco D, Savolainen K, Puustinen A, Alenius H. A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes. Nanotoxicology 2014; 9:719-28. [PMID: 25325160 DOI: 10.3109/17435390.2014.969346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Certain types of carbon nanotubes (CNT) can evoke inflammation, fibrosis and mesothelioma in vivo, raising concerns about their potential health effects. It has been recently postulated that NLRP3 inflammasome activation is important in the CNT-induced toxicity. However, more comprehensive studies of the protein secretion induced by CNT can provide new information about their possible pathogenic mechanisms. Here, we studied protein secretion from human macrophages with a proteomic approach in an unbiased way. Human monocyte-derived macrophages (MDM) were exposed to tangled or rigid, long multi-walled CNT (MWCNT) or crocidolite asbestos for 6 h. The growth media was concentrated and secreted proteins were analyzed using 2D-DIGE and DeCyder software. Subsequently, significantly up- or down-regulated protein spots were in-gel digested and identified with an LC-MS/MS approach. Bioinformatics analysis was performed to reveal the different patterns of protein secretion induced by these materials. The results show that both long rigid MWCNT and asbestos elicited ample and highly similar protein secretion. In contrast, exposure to long tangled MWCNT induced weaker protein secretion with a more distinct profile. Secretion of lysosomal proteins followed the exposure to all materials, suggesting lysosomal damage. However, only long rigid MWCNT was associated with apoptosis. This analysis suggests that the CNT toxicity in human MDM is mediated via vigorous secretion of inflammation-related proteins and apoptosis. This study provides new insights into the mechanisms of toxicity of high aspect ratio nanomaterials and indicates that not all types of CNT are as hazardous as asbestos fibers.
Collapse
Affiliation(s)
- Jaana Palomäki
- Nanosafety Research Centre, Finnish Institute of Occupational Health , Helsinki , Finland
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Foronjy RF, Dabo AJ, Taggart CC, Weldon S, Geraghty P. Respiratory syncytial virus infections enhance cigarette smoke induced COPD in mice. PLoS One 2014; 9:e90567. [PMID: 24587397 PMCID: PMC3938768 DOI: 10.1371/journal.pone.0090567] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/03/2014] [Indexed: 12/02/2022] Open
Abstract
Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.
Collapse
Affiliation(s)
- Robert F. Foronjy
- St. Luke’s Roosevelt Hospital, Mount Sinai Health System, Division of Pulmonary and Critical Care Medicine, New York, New York, United States of America
| | - Abdoulaye J. Dabo
- St. Luke’s Roosevelt Hospital, Mount Sinai Health System, Division of Pulmonary and Critical Care Medicine, New York, New York, United States of America
| | - Clifford C. Taggart
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Sinead Weldon
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Patrick Geraghty
- St. Luke’s Roosevelt Hospital, Mount Sinai Health System, Division of Pulmonary and Critical Care Medicine, New York, New York, United States of America
| |
Collapse
|
37
|
Brehm A, Geraghty P, Campos M, Garcia-Arcos I, Dabo AJ, Gaffney A, Eden E, Jiang XC, D'Armiento J, Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J 2014; 28:2318-31. [PMID: 24532668 DOI: 10.1096/fj.13-246843] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phospholipid transfer protein (PLTP) regulates phospholipid transport in the circulation and is highly expressed within the lung epithelium, where it is secreted into the alveolar space. Since PLTP expression is increased in chronic obstructive pulmonary disease (COPD), this study aimed to determine how PLTP affects lung signaling and inflammation. Despite its increased expression, PLTP activity decreased by 80% in COPD bronchoalveolar lavage fluid (BALF) due to serine protease cleavage, primarily by cathepsin G. Likewise, PLTP BALF activity levels decreased by 20 and 40% in smoke-exposed mice and in the media of smoke-treated small airway epithelial (SAE) cells, respectively. To assess how PLTP affected inflammatory responses in a lung injury model, PLTP siRNA or recombinant protein was administered to the lungs of mice prior to LPS challenge. Silencing PLTP at baseline caused a 68% increase in inflammatory cell infiltration, a 120 and 340% increase in ERK and NF-κB activation, and increased MMP-9, IL1β, and IFN-γ levels after LPS treatment by 39, 140, and 190%, respectively. Conversely, PLTP protein administration countered these effects in this model. Thus, these findings establish a novel anti-inflammatory function of PLTP in the lung and suggest that proteolytic cleavage of PLTP by cathepsin G may enhance the injurious inflammatory responses that occur in COPD.
Collapse
Affiliation(s)
- Anthony Brehm
- 2Department of Medicine, St. Luke's Roosevelt, Mt. Sinai Health System, Antenucci Bldg., 432 West 58th St., Rm. 311, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hatchwell L, Girkin J, Dun MD, Morten M, Verrills N, Toop HD, Morris JC, Johnston SL, Foster PS, Collison A, Mattes J. Salmeterol attenuates chemotactic responses in rhinovirus-induced exacerbation of allergic airways disease by modulating protein phosphatase 2A. J Allergy Clin Immunol 2014; 133:1720-7. [PMID: 24388637 DOI: 10.1016/j.jaci.2013.11.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND β-Agonists are used for relief and control of asthma symptoms by reversing bronchoconstriction. They might also have anti-inflammatory properties, but the underpinning mechanisms remain poorly understood. Recently, a direct interaction between formoterol and protein phosphatase 2A (PP2A) has been described in vitro. OBJECTIVE We sought to elucidate the molecular mechanisms by which β-agonists exert anti-inflammatory effects in allergen-driven and rhinovirus 1B-exacerbated allergic airways disease (AAD). METHODS Mice were sensitized and then challenged with house dust mite to induce AAD while receiving treatment with salmeterol, formoterol, or salbutamol. Mice were also infected with rhinovirus 1B to exacerbate lung inflammation and therapeutically administered salmeterol, dexamethasone, or the PP2A-activating drug (S)-2-amino-4-(4-[heptyloxy]phenyl)-2-methylbutan-1-ol (AAL[S]). RESULTS Systemic or intranasal administration of salmeterol protected against the development of allergen- and rhinovirus-induced airway hyperreactivity and decreased eosinophil recruitment to the lungs as effectively as dexamethasone. Formoterol and salbutamol also showed anti-inflammatory properties. Salmeterol, but not dexamethasone, increased PP2A activity, which reduced CCL11, CCL20, and CXCL2 expression and reduced levels of phosphorylated extracellular signal-regulated kinase 1 and active nuclear factor κB subunits in the lungs. The anti-inflammatory effect of salmeterol was blocked by targeting the catalytic subunit of PP2A with small RNA interference. Conversely, increasing PP2A activity with AAL(S) abolished rhinovirus-induced airway hyperreactivity, eosinophil influx, and CCL11, CCL20, and CXCL2 expression. Salmeterol also directly activated immunoprecipitated PP2A in vitro isolated from human airway epithelial cells. CONCLUSIONS Salmeterol exerts anti-inflammatory effects by increasing PP2A activity in AAD and rhinovirus-induced lung inflammation, which might potentially account for some of its clinical benefits.
Collapse
Affiliation(s)
- Luke Hatchwell
- Experimental & Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Jason Girkin
- Experimental & Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Matthew D Dun
- Medical Biochemistry Department, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, Cancer Research Program and Hunter Cancer Research Alliance, Newcastle, Australia
| | - Matthew Morten
- Experimental & Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Nicole Verrills
- Medical Biochemistry Department, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia; Hunter Medical Research Institute, Cancer Research Program and Hunter Cancer Research Alliance, Newcastle, Australia
| | - Hamish D Toop
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Jonathan C Morris
- School of Chemistry, University of New South Wales, Sydney, Australia
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Paul S Foster
- Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Adam Collison
- Experimental & Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Joerg Mattes
- Experimental & Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Priority Research Centre for Asthma and Respiratory Diseases, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Paediatric Respiratory and Sleep Medicine Unit, Newcastle Children's Hospital, Kaleidoscope, Newcastle, Australia.
| |
Collapse
|
39
|
Geraghty P, Hardigan AA, Wallace AM, Mirochnitchenko O, Thankachen J, Arellanos L, Thompson V, D'Armiento JM, Foronjy RF. The glutathione peroxidase 1-protein tyrosine phosphatase 1B-protein phosphatase 2A axis. A key determinant of airway inflammation and alveolar destruction. Am J Respir Cell Mol Biol 2013; 49:721-30. [PMID: 23590304 DOI: 10.1165/rcmb.2013-0026oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Protein phosphatase-2A (PP2A) is a primary serine-threonine phosphatase that modulates inflammatory responses in asthma and chronic obstructive pulmonary disease (COPD). Despite its importance, the mechanisms that regulate lung PP2A activity remain to be determined. The redox-sensitive enzyme protein tyrosine phosphatase-1B (PTP1B) activates PP2A by dephosphorylating the catalytic subunit of the protein at tyrosine 307. This study aimed to identify how the interaction between the intracellular antioxidant glutathione peroxidase-1 (GPx-1) and PTP1B affected lung PP2A activity and airway inflammation. Experiments using gene silencing techniques in mouse lung or human small airway epithelial cells determined that knocking down PTP1B expression blocked GPx-1's activation of PP2A and negated the anti-inflammatory effects of GPx-1 protein in the lung. Similarly, the expression of human GPx-1 in transgenic mice significantly increased PP2A and PTP1B activities and prevented chronic cigarette smoke-induced airway inflammation and alveolar destruction. GPx-1 knockout mice, however, exhibited an exaggerated emphysema phenotype, correlating with a nonresponsive PP2A pathway. Importantly, GPx-1-PTP1B-PP2A signaling becomes inactivated in advanced lung disease. Indeed, PTP1B protein was oxidized in the lungs of subjects with advanced emphysema, and cigarette smoke did not increase GPx-1 or PTP1B activity within epithelial cells isolated from subjects with COPD, unlike samples of healthy lung epithelial cells. In conclusion, these findings establish that the GPx-1-PTP1B-PP2A axis plays a critical role in countering the inflammatory and proteolytic responses that result in lung-tissue destruction in response to cigarette smoke exposure.
Collapse
|
40
|
Liang D, Zeng Q, Xu Z, Zhang H, Gui L, Xu C, Chen S, Zhang S, Huang S, Chen L. BAFF activates Erk1/2 promoting cell proliferation and survival by Ca2+-CaMKII-dependent inhibition of PP2A in normal and neoplastic B-lymphoid cells. Biochem Pharmacol 2013; 87:332-43. [PMID: 24269630 DOI: 10.1016/j.bcp.2013.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/25/2023]
Abstract
B-cell activating factor (BAFF) is involved in not only the physiology of normal B cells, but also the pathophysiology of aggressive B cells related to malignant and autoimmune diseases. However, how excessive BAFF promotes aggressive B-cell proliferation and survival is not well understood. Here we show that excessive human soluble BAFF (hsBAFF) enhanced cell proliferation and survival in normal and B-lymphoid (Raji) cells, which was associated with suppression of PP2A, resulting in activation of Erk1/2. This is supported by the findings that pretreatment with U0126 or PD98059, expression of dominant negative MKK1, or overexpression of PP2A prevented hsBAFF-induced activation of Erk1/2 and cell proliferation/viability in the cells. It appears that hsBAFF-mediated PP2A-Erk1/2 pathway and B-cell proliferation/viability was Ca(2+)-dependent, as pretreatment with BAPTA/AM, EGTA or 2-APB significantly attenuated these events. Furthermore, we found that inhibiting CaMKII with KN93 or silencing CaMKII also attenuated hsBAFF-mediated PP2A-Erk1/2 signaling and B-cell proliferation/viability. The results indicate that BAFF activates Erk1/2, in part through Ca(2+)-CaMKII-dependent inhibition of PP2A, increasing cell proliferation/viability in normal and neoplastic B-lymphoid cells. Our data suggest that inhibitors of CaMKII and Erk1/2, activator of PP2A or manipulation of intracellular Ca(2+) may be exploited for prevention of excessive BAFF-induced aggressive B-cell malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Dingfang Liang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Qingyu Zeng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Zhigang Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Hai Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Lin Gui
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Chong Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Sujuan Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shuangquan Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA; Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA.
| | - Long Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
41
|
Chen YS, Li XQ, Li HR, Miao Y, Lian SQ, Lu FF, Yu XL, Lin YH, Liu T. Risk factors for small airway obstruction among Chinese island residents: a case-control study. PLoS One 2013; 8:e68556. [PMID: 23874670 PMCID: PMC3715483 DOI: 10.1371/journal.pone.0068556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We investigated the prevalence of and risk factors for small airway obstruction (SAO) among Chinese island residents to establish means to prevent and treat SAO. METHODS From October 17, 2011 to November 1, 2011, a total of 2,873 residents aged >20 years who lived on the Huangqi Peninsula of Fujian were recruited by random cluster sampling. They were asked to complete a Burden of Obstructive Lung Disease (BOLD) questionnaire and underwent physical examinations and lung function evaluations. SAO was defined as a forced expiratory flow at 50% of vital capacity, Vmax50%, of less than 70% of predicted. Risk factors for SAO were assessed from among demographic and anthropometric variables, blood chemistry results, and questionnaire response items. RESULTS A total of 216 (7.52%) Chinese island residents were identified as having SAO (95 males; 121 females). Their survey and test results were compared with 432 age and sex-matched healthy controls (192 males; 240 females) for SAO risk factors. Among numerous factors investigated, only diabetes mellitus (p = 0.039), smoking index (SI, p<0.001 for SI>600), second hand smoke (p = 0.002), and lack of regular exercise (p<0.001) were significant risk factors for SAO. CONCLUSIONS The risk factors for SAO among Chinese island residents appeared to be similar to those among people who live in high-density urban environments and impoverished rural areas. Public health policies and medical practices directed toward improving respiratory health for island residents should be comparable to those used for urban and rural dwellers.
Collapse
Affiliation(s)
- Yu-sheng Chen
- Department of Respiratory Medicine, Fujian Provincial Hospital, Provincial Clinic College of Fujian Medical University, Fuzhou, Fujian Province, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Increasing protein expression enables researchers to better understand the functional role of that protein in regulating key biological processes(1). In the lung, this has been achieved typically through genetic approaches that utilize transgenic mice(2,3) or viral or non-viral vectors that elevate protein levels via increased gene expression(4). Transgenic mice are costly and time-consuming to generate and the random insertion of a transgene or chronic gene expression can alter normal lung development and thus limit the utility of the model(5). While conditional transgenics avert problems associated with chronic gene expression(6), the reverse tetracycline-controlled transactivator (rtTA) mice, which are used to generate conditional expression, develop spontaneous air space enlargement(7). As with transgenics, the use of viral and non-viral vectors is expensive(8) and can provoke dose-dependent inflammatory responses that confound results(9) and hinder expression(10). Moreover, the efficacy of repeated doses are limited by enhanced immune responses to the vector(11,12). Researchers are developing adeno-associated viral (AAV) vectors that provoke less inflammation and have longer expression within the lung(13). Using β-galactosidase, we present a method for rapidly and effectively increasing protein expression within the lung using a direct protein transfection technique. This protocol mixes a fixed amount of purified protein with 20 μl of a lipid-based transfection reagent (Pro-Ject, Pierce Bio) to allow penetration into the lung tissue itself. The liposomal protein mixture is then injected into the lungs of the mice via the trachea using a microsprayer (Penn Century, Philadelphia, PA). The microsprayer generates a fine plume of liquid aerosol throughout the lungs. Using the technique we have demonstrated uniform deposition of the injected protein throughout the airways and the alveoli of mice(14). The lipid transfection technique allows the use of a small amount of protein to achieve effect. This limits the inflammatory response that otherwise would be provoked by high protein administration. Indeed, using this technique we published that we were able to significantly increase PP2A activity in the lung without affecting lung lavage cellularity(15). Lung lavage cellularity taken 24 hr after challenge was comparable to controls (27 ± 4 control vs. 31 ± 5 albumin transfected; N=6 per group). Moreover, it increases protein levels without inducing lung developmental changes or architectural changes that can occur in transgenic models. However, the need for repeated administrations may make this technique less favorable for studies examining the effects of long-term increases in protein expression. This would be particularly true for proteins with short half-lives.
Collapse
|
43
|
Goldklang MP, Marks SM, D'Armiento JM. Second hand smoke and COPD: lessons from animal studies. Front Physiol 2013; 4:30. [PMID: 23450717 PMCID: PMC3583033 DOI: 10.3389/fphys.2013.00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 02/07/2013] [Indexed: 12/25/2022] Open
Abstract
Exposure to second hand smoke is a major cause of chronic obstructive pulmonary disease (COPD) in the non-smoker. In this review we explore the use of animal smoke exposure models and their insight into disease pathogenesis. The methods of smoke exposure, including exposure delivery systems, are described. Key findings from the acute and chronic smoke exposure models are outlined, including descriptions of the inflammation processes, proteases involved, oxidative stress, and apoptosis. Finally, alternatives to rodent models of lung disease are presented.
Collapse
|
44
|
A comparison of the inflammatory and proteolytic effects of dung biomass and cigarette smoke exposure in the lung. PLoS One 2012; 7:e52889. [PMID: 23285217 PMCID: PMC3527613 DOI: 10.1371/journal.pone.0052889] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Rationale Biomass is the energy source for cooking and heating for billions of people worldwide. Despite their prevalent use and their potential impact on global health, the effects of these fuels on lung biology and function remain poorly understood. Methods We exposed human small airway epithelial cells and C57BL/6 mice to dung biomass smoke or cigarette smoke to compare how these exposures impacted lung signaling and inflammatory and proteolytic responses that have been linked with disease pathogenesis. Results The in vitro exposure and siRNA studies demonstrated that biomass and cigarette smoke activated ERK to up regulate IL-8 and MMP-1 expression in human airway epithelial cells. In contrast to cigarette smoke, biomass also activated p38 and JNK within these lung cells and lowered the expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1). Similarly, in the lungs of mice, both biomass and cigarette smoke exposure increased macrophages, activated ERK and p38 and up regulated MMP-9 and MMP-12 expression. The main differences seen in the exposure studies was that mice exposed to biomass exhibited more perivascular inflammation and had higher G-CSF and GM-CSF lavage fluid levels than mice exposed identically to cigarette smoke. Conclusion Biomass activates similar pathogenic processes seen in cigarette smoke exposure that are known to result in the disruption of lung structure. These findings provide biological evidence that public health interventions are needed to address the harm associated with the use of this fuel source.
Collapse
|