1
|
Kundnani NR, Passini V, Stefania Carlogea I, Dumitrescu P, Meche V, Buzas R, Duda-Seiman DM. Overview of Oncology: Drug-Induced Cardiac Toxicity. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:709. [PMID: 40283000 PMCID: PMC12028728 DOI: 10.3390/medicina61040709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Cancer medications can cause cardiac issues, which are difficult to treat in oncologic patients because of the risk of complications. In some cases, this may significantly impact their well-being and treatment outcomes. Overall, these complications fall under the term "drug induced cardiotoxicity", mainly due to chemotherapy drugs being specifically toxic to the heart, causing a decrease in the heart's capacity to pump blood efficiently and leading to a reduction in the left ventricular ejection fraction (LVEF), and subsequently possibly leading to heart failure. Anthracyclines, alkylating agents, and targeted therapies for cancer hold the potential of causing harmful effects on the heart. The incidence of heart-related issues varies from patient to patient and depends on multiple factors, including the type of medication, dosage, duration of the treatment, and pre-existing heart conditions. The underlying mechanism leading to oncologic-drug-induced cardiovascular harmful effects is quite complex. One particular group of drugs, called anthracyclines, have garnered attention due to their impact on oxidative stress and their ability to cause direct harm to heart muscle cells. Reactive oxygen species (ROS) cause harm by inducing damage and programmed cell death in heart cells. Conventional biomarkers alone can only indicate some degree of damage that has already occurred and, therefore, early detection is key. Novel methods like genetic profiling are being developed to detect individuals at risk, prior to the onset of clinical symptoms. Key management strategies-including early detection, personalized medicine approaches, and the use of novel biomarkers-play a crucial role in mitigating cardiotoxicity and improving patient outcomes. Identification of generated genetic alterations and the association to an increased likelihood of cardiotoxicity will allow treatment in a more personalized approach, aiming at decreasing rates of cardiac events while maintaining high oncological efficacy. Oncology drug-induced cardiotoxicity is managed through a combination of preventive strategies and therapeutic interventions from the union of cardiac and oncological knowledge.
Collapse
Affiliation(s)
- Nilima Rajpal Kundnani
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Vincenzo Passini
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Iulia Stefania Carlogea
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.)
| | - Patrick Dumitrescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Vlad Meche
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Roxana Buzas
- 1st Medical Semiology, Internal Medicine, Department V, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
- Center for Advanced Research in Cardiovascular Pathology and in Hemostaseology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Daniel Marius Duda-Seiman
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| |
Collapse
|
2
|
Nagai H, Amanuma M, Mukozu T, Kobayashi K, Nagumo H, Mohri K, Watanabe G, Yoshimine N, Ogino Y, Daido Y, Matsukiyo Y, Matsui T, Wakui N, Momiyama K, Higai K, Matsuda T, Igarashi Y. Effects of Lenvatinib on Skeletal Muscle Volume and Cardiac Function in Patients with Hepatocellular Carcinoma. Oncology 2023; 101:634-644. [PMID: 37364546 DOI: 10.1159/000531562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
INTRODUCTION Previously, we reported that the tyrosine kinase inhibitor (TKI) sorafenib decreases serum levels of carnitine and reduces skeletal muscle volume. Moreover, others reported that TKIs might lead to cardiomyopathy or heart failure. Therefore, this study aimed to evaluate the effects of lenvatinib (LEN) on skeletal muscle volume and cardiac function in patients with hepatocellular carcinoma (HCC). METHODS This retrospective study included 58 adult Japanese patients with chronic liver diseases and HCC treated with LEN. Blood samples were collected before and after 4 weeks of treatment, and serum carnitine fraction and myostatin levels were measured. Before and after 4-6 weeks of treatment, the skeletal muscle index (SMI) was evaluated from computed tomography images and cardiac function was assessed by ultrasound cardiography. RESULTS After treatment, SMI, serum levels of total carnitine, and global longitudinal strain were significantly lower, but serum levels of myostatin were significantly higher. Left ventricular ejection fraction showed no significant change. CONCLUSION In patients with HCC, LEN decreases serum levels of carnitine, skeletal muscle volume, and worsens cardiac function.
Collapse
Affiliation(s)
- Hidenari Nagai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Makoto Amanuma
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Takanori Mukozu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kojiro Kobayashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hideki Nagumo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Kunihide Mohri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Go Watanabe
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Naoyuki Yoshimine
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yu Ogino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yasuko Daido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yasushi Matsukiyo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Teppei Matsui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Noritaka Wakui
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Koichi Momiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Koji Higai
- Department of Medical Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Chiba, Japan
| | - Takahisa Matsuda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Yoshinori Igarashi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine (Omori), School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
3
|
Song C, Li D, Zhang J, Zhao X. Berberine hydrochloride alleviates imatinib mesylate - induced cardiotoxicity through the inhibition of Nrf2-dependent ferroptosis. Food Funct 2023; 14:1087-1098. [PMID: 36594456 DOI: 10.1039/d2fo03331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Imatinib mesylate (IMA) belonging to the selective tyrosine kinase inhibitor family has been proven to induce cardiotoxic effects along with therapeutic strategies. Nrf2-dependent ferroptosis has been implicated in the cardiotoxicity induced by IMA. The present study was designed to investigate the protective effects of berberine hydrochloride (Ber) on cardiac injuries induced by IMA and to explore its potential mechanisms. In H9c2 cells, cell viability, the generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and labile iron pool (LIP) levels were measured. In a mouse model of IMA-induced cardiomyopathy, serum biomarkers and cardiac tissues were examined. A western blot assay was performed to evaluate the expression of ferroptosis-related proteins in vitro and in vivo. Our results indicated that Ber increased cell viability and MMP and decreased cellular ROS and iron levels in comparison to the IMA group of H9c2 cells. In mice, Ber significantly improved cardiac status and attenuated the level of ferroptosis biomarkers including malonaldehyde (MDA) and iron content. Additionally, Ber downregulated the expression of transferrin receptor (TfR) and P53 and upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase-1 (NQO1), ferritin heavy chain-1 (FTH1), and glutathione peroxidase 4 (GPX4) in H9c2 cells and mice. The present data indicated that Ber has the potential to protect against IMA-induced cardiotoxicity, partly via inhibiting Nrf2-dependent ferroptosis.
Collapse
Affiliation(s)
- Chengzhu Song
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Dongning Li
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| | - Xiaoyan Zhao
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China. .,Engineering Research Center of Coptis Development & Utilization, Ministry of Education
| |
Collapse
|
4
|
Song C, Li D, Zhang J, Zhao X. Role of ferroptosis in promoting cardiotoxicity induced by Imatinib Mesylate via down-regulating Nrf2 pathways in vitro and in vivo. Toxicol Appl Pharmacol 2022; 435:115852. [PMID: 34973290 DOI: 10.1016/j.taap.2021.115852] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 01/20/2023]
Abstract
Imatinib Mesylate (IMA) has been widely used to treat with chronic myeloid leukemia (CML). However, cardiotoxicity associated with IMA is included among the therapeutic strategies. The present study was aimed to discover whether ferroptosis, a programmed iron-dependent cell death, is involved in IMA-induced cardiotoxicity. In vivo, mouse model was established after treated with 25 mg/kg, 50 mg/kg and 100 mg/kg IMA. Serum CK, LDH, AST activities were determined. Cardiac tissues were examined by H&E and Oil Red O staining. MDA was measured to assess production of lipid peroxide. Tissue iron and GSH content were measured. In vitro, cell viability, mitochondria membrane potential, generation of reactive oxygen species (ROS) and cellular iron levels were performed to explore the mechanism of IMA. The in vivo results revealed that IMA treatment significantly increased serum CK, LDH and AST. H&E staining showed that IMA caused cardiac structural injuries. The dose-dependent decrease of GSH and increase of tissue iron and MDA were observed in IMA-treated groups. Oil Red O staining suggested obvious cardiac lipid accumulation after treated with IMA. In H9c2 cardiomyocytes, IMA significantly inhibited cell proliferation in a dose-dependent manner. Mitochondria membrane potential assay showed that IMA destroyed the mitochondrial function. Additionally, IMA increased the cellular ROS and iron levels. Furthermore, IMA down-regulated the expression of Nrf2 and up-regulated the expression of P53 and TfR. These results provided compelling evidence that ferroptosis participates in IMA-induced cardiotoxicity. Ferroptosis could be regarded as a target to protect against cardiotoxicity in IMA-exposed patients.
Collapse
Affiliation(s)
- Chengzhu Song
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Dongning Li
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China.
| | - Xiaoyan Zhao
- Institute of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
5
|
Welsh N. Are off-target effects of imatinib the key to improving beta-cell function in diabetes? Ups J Med Sci 2022; 127:8841. [PMID: 36187072 PMCID: PMC9487420 DOI: 10.48101/ujms.v127.8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022] Open
Abstract
The small tyrosine kinase (TK) inhibitor imatinib mesylate (Gleevec, STI571) protects against both type 1 and type 2 diabetes, but as it inhibits many TKs and other proteins, it is not clear by which mechanisms it acts. This present review will focus on the possibility that imatinib acts, at least in part, by improving beta-cell function and survival via off-target effects on beta-cell signaling/metabolic flow events. Particular attention will be given to the possibility that imatinib and other TK inhibitors function as inhibitors of mitochondrial respiration. A better understanding of how imatinib counteracts diabetes will possibly help to clarify the pathogenic role of beta-cell signaling events and mitochondrial function, and hopefully leading to improved treatment of the disease.
Collapse
Affiliation(s)
- Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Mughal MN, Grevelding CG, Haeberlein S. The anticancer drug imatinib induces autophagy in Schistosoma mansoni. Int J Parasitol 2021; 52:211-215. [PMID: 34838573 DOI: 10.1016/j.ijpara.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
Schistosomiasis, caused by schistosome parasites, is a neglected tropical disease affecting humans and animals. There is no vaccine available yet, and fear of upcoming resistance against the only widely used drug, praziquantel, is omnipresent. Previously, we showed that imatinib (Gleevec), an anticancer drug, affected schistosome physiology and caused the death of adult Schistosoma mansoni in vitro. Here, we present the first known evidence that one effect of imatinib is the induction of autophagy in S. mansoni. Furthermore, worms co-treated with imatinib and bafilomycin A1, a late-phase autophagy inhibitor, reversed imatinib-induced autophagy and its antischistosomal effects as revealed by phenotypic and molecular analyses.
Collapse
Affiliation(s)
- Mudassar N Mughal
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany.
| |
Collapse
|
7
|
McMullen CJ, Chalmers S, Wood R, Cunningham MR, Currie S. Sunitinib and Imatinib Display Differential Cardiotoxicity in Adult Rat Cardiac Fibroblasts That Involves a Role for Calcium/Calmodulin Dependent Protein Kinase II. Front Cardiovasc Med 2021; 7:630480. [PMID: 33598481 PMCID: PMC7882511 DOI: 10.3389/fcvm.2020.630480] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 01/13/2023] Open
Abstract
Background: Tyrosine kinase inhibitors (TKIs) have dramatically improved cancer treatment but are known to cause cardiotoxicity. The pathophysiological consequences of TKI therapy are likely to manifest across different cell types of the heart, yet there is little understanding of the differential adverse cellular effects. Cardiac fibroblasts (CFs) play a pivotal role in the repair and remodeling of the heart following insult or injury, yet their involvement in anti-cancer drug induced cardiotoxicity has been largely overlooked. Here, we examine the direct effects of sunitinib malate and imatinib mesylate on adult rat CF viability, Ca2+ handling and mitochondrial function that may contribute to TKI-induced cardiotoxicity. In particular, we investigate whether Ca2+/calmodulin dependent protein kinase II (CaMKII), may be a mediator of TKI-induced effects. Methods: CF viability in response to chronic treatment with both drugs was assessed using MTT assays and flow cytometry analysis. Calcium mobilization was assessed in CFs loaded with Fluo4-AM and CaMKII activation via oxidation was measured via quantitative immunoblotting. Effects of both drugs on mitochondrial function was determined by live mitochondrial imaging using MitoSOX red. Results: Treatment of CFs with sunitinib (0.1-10 μM) resulted in concentration-dependent alterations in CF phenotype, with progressively significant cell loss at higher concentrations. Flow cytometry analysis and MTT assays revealed increased cell apoptosis and necrosis with increasing concentrations of sunitinib. In contrast, equivalent concentrations of imatinib resulted in no significant change in cell viability. Both sunitinib and imatinib pre-treatment increased Angiotensin II-induced intracellular Ca2+ mobilization, with only sunitinib resulting in a significant effect and also causing increased CaMKII activation via oxidation. Live cell mitochondrial imaging using MitoSOX red revealed that both sunitinib and imatinib increased mitochondrial superoxide production in a concentration-dependent manner. This effect in response to both drugs was suppressed in the presence of the CaMKII inhibitor KN-93. Conclusions: Sunitinib and imatinib showed differential effects on CFs, with sunitinib causing marked changes in cell viability at concentrations where imatinib had no effect. Sunitinib caused a significant increase in Angiotensin II-induced intracellular Ca2+ mobilization and both TKIs caused increased mitochondrial superoxide production. Targeted CaMKII inhibition reversed the TKI-induced mitochondrial damage. These findings highlight a new role for CaMKII in TKI-induced cardiotoxicity, particularly at the level of the mitochondria, and confirm differential off-target toxicity in CFs, consistent with the differential selectivity of sunitinib and imatinib.
Collapse
Affiliation(s)
| | | | | | | | - Susan Currie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
8
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
9
|
Angaroni F, Graudenzi A, Rossignolo M, Maspero D, Calarco T, Piazza R, Montangero S, Antoniotti M. An Optimal Control Framework for the Automated Design of Personalized Cancer Treatments. Front Bioeng Biotechnol 2020; 8:523. [PMID: 32548108 PMCID: PMC7270334 DOI: 10.3389/fbioe.2020.00523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
One of the key challenges in current cancer research is the development of computational strategies to support clinicians in the identification of successful personalized treatments. Control theory might be an effective approach to this end, as proven by the long-established application to therapy design and testing. In this respect, we here introduce the Control Theory for Therapy Design (CT4TD) framework, which employs optimal control theory on patient-specific pharmacokinetics (PK) and pharmacodynamics (PD) models, to deliver optimized therapeutic strategies. The definition of personalized PK/PD models allows to explicitly consider the physiological heterogeneity of individuals and to adapt the therapy accordingly, as opposed to standard clinical practices. CT4TD can be used in two distinct scenarios. At the time of the diagnosis, CT4TD allows to set optimized personalized administration strategies, aimed at reaching selected target drug concentrations, while minimizing the costs in terms of toxicity and adverse effects. Moreover, if longitudinal data on patients under treatment are available, our approach allows to adjust the ongoing therapy, by relying on simplified models of cancer population dynamics, with the goal of minimizing or controlling the tumor burden. CT4TD is highly scalable, as it employs the efficient dCRAB/RedCRAB optimization algorithm, and the results are robust, as proven by extensive tests on synthetic data. Furthermore, the theoretical framework is general, and it might be applied to any therapy for which a PK/PD model can be estimated, and for any kind of administration and cost. As a proof of principle, we present the application of CT4TD to Imatinib administration in Chronic Myeloid leukemia, in which we adopt a simplified model of cancer population dynamics. In particular, we show that the optimized therapeutic strategies are diversified among patients, and display improvements with respect to the current standard regime.
Collapse
Affiliation(s)
- Fabrizio Angaroni
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
| | - Alex Graudenzi
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
| | - Marco Rossignolo
- Center for Integrated Quantum Science and Technologies, Institute for Quantum Optics, Universitat Ulm, Ulm, Germany
- Istituto Nazionale di Fisica Nucleare (INFN), Padova, Italy
| | - Davide Maspero
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche (IBFM-CNR), Segrate, Milan, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Tommaso Calarco
- Forschungszentrum Jülich, Institute of Quantum Control (PGI-8), Jülich, Germany
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Simone Montangero
- Istituto Nazionale di Fisica Nucleare (INFN), Padova, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova, Italy
| | - Marco Antoniotti
- Department of Informatics, Systems and Communication, University of Milan-Bicocca, Milan, Italy
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, Milan, Italy
| |
Collapse
|
10
|
Li M, Russo M, Pirozzi F, Tocchetti CG, Ghigo A. Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118493. [DOI: 10.1016/j.bbamcr.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/31/2019] [Accepted: 06/15/2019] [Indexed: 11/25/2022]
|
11
|
Mechanisms of Cardiovascular Toxicity of BCR-ABL1 Tyrosine Kinase Inhibitors in Chronic Myelogenous Leukemia. Curr Hematol Malig Rep 2020; 15:20-30. [DOI: 10.1007/s11899-020-00560-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Leong ZP, Hikasa Y. Effects of masitinib compared with tadalafil for the treatment of monocrotaline-induced pulmonary arterial hypertension in rats. Vascul Pharmacol 2019; 122-123:106599. [PMID: 31629919 DOI: 10.1016/j.vph.2019.106599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/20/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Targeting vascular remodeling in pulmonary arterial hypertension (PAH) remains a challenge given the lack of potent anti-remodeling abilities of the therapeutic drugs. Although sildenafil has been shown to ameliorate cardiopulmonary remodeling, that of tadalafil is questionable. Masitinib, a tyrosine kinase inhibitor appears safer and more potent than imatinib for treatment of malignancies, but its efficacy on PAH is unknown. Therefore, we investigated the anti-remodeling properties of masitinib (5, 15, 50 mg/kg) and tadalafil (5, 10 mg/kg) using a monocrotaline-induced rat model of PAH. The 14-day treatment with masitinib (15, 50 mg/kg) resulted in significantly decreased right ventricular (RV) systolic pressure (RVSP) and hypertrophy (RVH), and pulmonary vascular remodeling, whereas tadalafil showed weaker anti-remodeling properties. Besides, masitinib significantly blocked the mitogen-associated protein kinase (MAPK) pathway, and reduced phosphodiesterase (PDE)-5 mRNA expression in the lungs. By contrast, tadalafil did not significantly inhibit the MAPK pathway. Further, the 28-day treatment extension revealed that masitinib-treated rats (15 mg/kg) had significantly lower RVSP, and higher heart rate and serum cyclic guanosine monophosphate (cGMP) level, whereas those treated with tadalafil (10 mg/kg) showed insignificantly lower RVSP and higher cGMP level. Moreover, the RVH indices, heart rates, body weight gains, and survival rates of rats in both groups were comparable. Collectively, these results suggest that the treatment with a low-dose masitinib was non-inferior than tadalafil. A lower dose of masitinib may represent a novel approach to target both the cardiopulmonary remodeling and the dysregulated vasoconstriction in PAH.
Collapse
Affiliation(s)
- Zi Ping Leong
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Yoshiaki Hikasa
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan; Joint Department of Veterinary Medicine, Laboratory of Veterinary Internal Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan.
| |
Collapse
|
13
|
Imatinib mesylate effects on zebrafish reproductive success: Gonadal development, gamete quality, fertility, embryo-larvae viability and development, and related genes. Toxicol Appl Pharmacol 2019; 379:114645. [PMID: 31278918 DOI: 10.1016/j.taap.2019.114645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/24/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
Imatinib (IM) is a tyrosine kinase (TK) inhibitor (TKI) used to treat chronic myeloid leukemia. Clinical case reports and a few laboratory mammal studies provide inconclusive evidence about its deleterious effects on reproduction. The aim of the current study was to evaluate the potential of zebrafish to characterize IM-induced effects on reproduction and clarify IM effects on reproductive success. To this end, we exposed adult zebrafish to four concentrations of IM for 30 days followed by a 30-day depuration period. IM exposure caused a concentration-dependent, irreversible, suppression of folliculogenesis, reversible decrease in sperm density and motility, decreased fecundity and fertility, but no significant change in atretic follicle abundance. We also observed IM-induced premature hatching, but no significant change in embryo-larvae survivability. However, we found significant IM-induced morphometric malformations. IM decreased expression of vegfaa and igf2a (two reproductive-, angiogenic-, and growth-related genes) in testes and ovaries. The results demonstrate IM can induce significant changes in critical reproductive endpoints and zebrafish as a suitable model organism to show effects of IM on reproduction. The findings suggest that TKI effects on reproductive success should be considered.
Collapse
|
14
|
Burkey BF, Hoglen NC, Inskeep P, Wyman M, Hughes TE, Vath JE. Preclinical Efficacy and Safety of the Novel Antidiabetic, Antiobesity MetAP2 Inhibitor ZGN-1061. J Pharmacol Exp Ther 2018; 365:301-313. [PMID: 29491038 DOI: 10.1124/jpet.117.246272] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/23/2018] [Indexed: 01/12/2023] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) inhibition is a promising approach to treating diabetes, obesity, and associated metabolic disorders. Beloranib, a MetAP2 inhibitor previously investigated for treatment of Prader-Willi syndrome, was associated with venous thrombotic adverse events likely resulting from drug effects on vascular endothelial cells (ECs). Here, we report the pharmacological characterization of ZGN-1061, a novel MetAP2 inhibitor being investigated for treatment of diabetes and obesity. Four weeks of subcutaneous administration of ZGN-1061 to diet-induced obese (DIO) insulin-resistant mice produced a 25% reduction in body weight, primarily due to reduced fat mass, that was comparable to beloranib. ZGN-1061 also produced improvements in metabolic parameters, including plasma glucose and insulin, and, in HepG2 cells, initiated gene changes similar to beloranib that support observed in vivo pharmacodynamics. In vitro studies in ECs demonstrated that ZGN-1061 effects on EC proliferation and coagulation proteins were greatly attenuated, or absent, relative to beloranib, due to lower intracellular drug concentrations, shorter half-life of inhibitor-bound MetAP2 complex, and reduced cellular enzyme inhibition. In dogs, ZGN-1061 was more rapidly absorbed and cleared, with a shorter half-life than beloranib. Unlike beloranib, ZGN-1061 did not increase coagulation markers in dogs, and ZGN-1061 had a greatly improved safety profile in rats relative to beloranib. In conclusion, ZGN-1061 and beloranib demonstrated similar efficacy in a mouse model of obesity, while ZGN-1061 had a markedly improved safety profile in multiple in vitro and in vivo models. The lower duration of exposure characteristic of ZGN-1061 is expected to provide a meaningfully enhanced clinical safety profile.
Collapse
Affiliation(s)
- Bryan F Burkey
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Niel C Hoglen
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Philip Inskeep
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Margaret Wyman
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Thomas E Hughes
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - James E Vath
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| |
Collapse
|
15
|
Hasinoff BB, Patel D, Wu X. The Myocyte-Damaging Effects of the BCR-ABL1-Targeted Tyrosine Kinase Inhibitors Increase with Potency and Decrease with Specificity. Cardiovasc Toxicol 2018; 17:297-306. [PMID: 27696211 DOI: 10.1007/s12012-016-9386-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Five clinically approved BCR-ABL1-targeted tyrosine kinase inhibitors (bosutinib, dasatinib, imatinib, nilotinib, and ponatinib) used for treating chronic myelogenous leukemia have been studied in a neonatal rat myocyte model for their relative ability to induce myocyte damage. This was done in order to determine if kinase inhibitor-induced myocyte damage was a consequence of inhibiting ABL1 (on-target effects), or due to a lack of kinase selectivity (off-target effects) since previous studies have come up with conflicting conclusions about whether imatinib-induced cardiotoxicity results directly from inhibition of ABL1. The most specific and least potent inhibitors, imatinib and nilotinib, induced the least myocyte damage, while the least specific and most potent inhibitors, ponatinib and dasatinib, induced the most damage. Inhibitor-induced myocyte damage also correlated with clinically observed cardiovascular toxicity. Growth inhibition of the erythroleukemic K562 human cell line with a constitutively active BCR-ABL1 kinase was negatively correlated with inhibitor-induced myocyte damage, which suggests that inhibition of ABL1 causes myocyte damage. Myocyte damage was also negatively correlated with inhibitor dissociation binding constants and with inhibition of enzymatic ABL1 kinase activity. Myocyte damage was also positively correlated with two measures of inhibitor selectivity, which suggests that a lack of inhibitor selectivity is responsible for myocyte damage. In conclusion, myocyte damage, and thus the cardiovascular toxicity of the BCR-ABL1-targeted tyrosine kinase inhibitors, is due to direct inhibition of ABL1 and/or their lack of inhibitor selectivity.
Collapse
Affiliation(s)
- Brian B Hasinoff
- College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.
| | - Daywin Patel
- College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Xing Wu
- College of Pharmacy, Apotex Centre, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| |
Collapse
|
16
|
Overview of experimental and computational methods for the determination of the pKa values of 5-fluorouracil, cyclophosphamide, ifosfamide, imatinib and methotrexate. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Patras de Campaigno E, Bondon‐Guitton E, Laurent G, Montastruc F, Montastruc J, Lapeyre‐Mestre M, Despas F. Identification of cellular targets involved in cardiac failure caused by PKI in oncology: an approach combining pharmacovigilance and pharmacodynamics. Br J Clin Pharmacol 2017; 83:1544-1555. [PMID: 28098949 PMCID: PMC5465347 DOI: 10.1111/bcp.13238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS The aims of the present study were to evaluate the risk of cardiac failure (CF) associated with 15 anticancer protein kinase inhibitors (PKIs) through a case/noncase analysis and to identify which PK(s) and pathways are involved in PKI-induced CF. METHODS In order to evaluate the risk of CF, adjusted reporting odds ratios (aRORs) were calculated for the 15 anticancer PKIs in the World Health Organization safety report database (VigiBase®). We realised a literature review to identify 21 protein kinases (PKs) that were possibly involved in CF caused by PKIs. Pearson correlation coefficients (r) between aRORs and affinity data of the 15 PKIs for the 21 PKs were calculated to identify the cellular target most likely to be involved in PKI-induced CF. RESULTS A total of 141 601 individual case safety reports (ICSRs) were extracted from VigiBase® for the following PKIs: afatinib, axitinib, bosutinib, crizotinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, ruxolitinib, sorafenib, sunitinib and vandetanib. Among them, 2594 ICSRs concerned CF. The disproportionality analysis revealed that, for dasatinib, imatinib, bosutinib, sunitinib and nilotinib, disproportionality for CF was significantly higher than for other PKIs, with aRORs of 2.52 [95% CI 2.26, 2.82], 1.79 (95% CI 1.57, 2.03), 1.73 (95% CI 1.18, 2.54), 1.67 (95% CI 1.51, 1.84) and 1.38 (95% CI 1.18, 1.61), respectively. Significant values for correlation coefficients between the product of dissociation constant (pKd) and aROR were observed for two non-receptor protein kinases: ABL1 (non-phosphorylated and phosphorylated forms) and ABL2 protein kinases, with values of r = 0.83 (P = 0.0001), r = 0.75 (P = 0.0014) and r = 0.78 (P = 0.0006), respectively. CONCLUSION We observed a higher disproportionality for CF with dasatinib, imatinib, bosutinib, sunitinib and nilotinib than with other PKIs. In addition, the study highlighted the role of ABL tyrosine kinases in CF caused by anticancer PKIs.
Collapse
Affiliation(s)
- Emilie Patras de Campaigno
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
| | - Emmanuelle Bondon‐Guitton
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- Centre Midi‐Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d'Informations sur le MédicamentCentre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Guy Laurent
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Département d'Hématologie et de médecine InterneInstitut Universitaire du Cancer‐Oncopole1 Avenue Irène Joliot‐CurieToulouseFrance
| | - Francois Montastruc
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- Centre Midi‐Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d'Informations sur le MédicamentCentre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Jean‐Louis Montastruc
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- Centre Midi‐Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d'Informations sur le MédicamentCentre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Maryse Lapeyre‐Mestre
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- INSERM CIC 1436 Toulouse, Centre d'Investigation Clinique de ToulouseCentre Hospitalier Universitaire de ToulouseFrance
| | - Fabien Despas
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- INSERM CIC 1436 Toulouse, Centre d'Investigation Clinique de ToulouseCentre Hospitalier Universitaire de ToulouseFrance
| |
Collapse
|
18
|
Lawana V, Singh N, Sarkar S, Charli A, Jin H, Anantharam V, Kanthasamy AG, Kanthasamy A. Involvement of c-Abl Kinase in Microglial Activation of NLRP3 Inflammasome and Impairment in Autolysosomal System. J Neuroimmune Pharmacol 2017; 12:624-660. [PMID: 28466394 DOI: 10.1007/s11481-017-9746-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022]
Abstract
A growing body of evidence suggests that excessive microglial activation and pesticide exposure may be linked to the etiology of PD; however, the mechanisms involved remain elusive. Emerging evidence indicates that intracellular inflammasome complex namely NLRP3 complex is involved in the recognition and execution of host inflammatory response. Thus, in the present study, we investigated the hypothesis that NLRP3 inflammasome activation is linked to rotenone (ROT)-induced microglial activation which is dependent upon a priming stimulus by a pathogen-associated molecular pattern (PAMP) or damage associated molecular pattern (DAMP), respectively. Herein using both BV2 cells and primary microglial cells, we show that LPS priming and subsequent ROT stimulation enhanced NLRP3 inflammasome activation, c-Abl and PKCδ activation, mitochondrial dysfunction, NF-κB activation, and autophagic markers, while TFEB levels were decreased dramatically. Mechanistic studies revealed c-Abl acts as a proximal signal that exacerbated the activation of the afore mentioned markers. Intriguingly, siRNA-mediated depletion or pharmacological inhibition of c-Abl via dasatinib abrogated LPS and ROT-induced microglial activation response via attenuation of NLRP3 inflammasome activation, mitochondrial oxidative stress, and ALS dysfunction. Moreover, mitoTEMPO, a mitochondrial antioxidant, attenuated NLRP3 inflammasome activation effects via blockade of c-Abl and PKCδ activation. In LPS treated mice, dasatinib attenuated NLRP3 inflammasome activation, c-Abl and PKCδ activation; and sickness behavior. Together our findings identify an exaggerated ROS/c-Abl/NLRP3 signaling axis in the heightened microglial activation response evidenced in LPS-primed ROT-stimulated microglial cells and suggest that targeting c-Abl-regulated NLRP3 inflammasome signaling offers a novel therapeutic strategy for PD treatment. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Vivek Lawana
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Neeraj Singh
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Souvarish Sarkar
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Adhithiya Charli
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Huajun Jin
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Anumantha G Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA
| | - Arthi Kanthasamy
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA, 50011, USA. .,Parkinson Disorders Research Laboratory, Department of Biomedical Sciences, 2016 Veterinary Medicine Building, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Fu HY, Mukai M, Awata N, Sakata Y, Hori M, Minamino T. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. Cardiovasc Drugs Ther 2017; 31:109-117. [PMID: 28120277 DOI: 10.1007/s10557-016-6709-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular complications, including heart failure, hypertension, ischemic syndromes and venous thromboembolism, have been identified in patients treated with anti-cancer drugs. Oxidative stress, mitochondrial dysfunction and DNA synthesis inhibition are considered to be responsible for the cardiotoxicity induced by these agents. Protein quality control (PQC) has 3 major components, including the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, and participates in protein folding and degradation to maintain protein homeostasis. We have demonstrated that PQC dysfunction is a new causal mechanism for the development of cardiac hypertrophy and failure. Increasing evidence shows that anti-cancer drugs, such as tyrosine kinase inhibitors, proteasome inhibitors, anthracyclines and autophagy inhibitors, cause PQC dysfunction. Here, we provide an overview of the potential role of PQC dysfunction in the development of cardiovascular complications induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mikio Mukai
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Nobuhisa Awata
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Hori
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Mikicho, Kita-gun, Kagawa Prefecture, 761-0793, Japan.
| |
Collapse
|
20
|
Chambers TP, Santiesteban L, Gomez D, Chambers JW. Sab mediates mitochondrial dysfunction involved in imatinib mesylate-induced cardiotoxicity. Toxicology 2017; 382:24-35. [PMID: 28315715 DOI: 10.1016/j.tox.2017.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 01/05/2023]
Abstract
Imatinib mesylate is an effective treatment for chronic myelogenous leukemia and gastrointestinal stromal tumors. Although imatinib mesylate is highly tolerable, it has been implicated in severe congestive heart failure in mouse models and patients. A hallmark of imatinib mesylate-induced cardiotoxicity is mitochondrial dysfunction. The mitochondrial scaffold Sab has been implicated in facilitating signaling responsible for mitochondrial dysfunction in a c-Jun N-terminal Kinase (JNK)-dependent manner. We examined the impact of Sab-mediated signaling on imatinib mesylate cardiotoxicity in H9c2 rat cardiomyocyte-like cells. Silencing Sab increased the LD50 of imatinib mesylate 4-fold in H9c2 cells. Disrupting Sab-mediated signaling prevented imatinib mesylate-induced apoptosis as well. Knockdown of Sab or inhibition with a small peptide prevented oxidative stress, which was indicated by decreased reactive oxygen species production, lipid peroxidation, and protein carbonylation. Further, inhibition of Sab-related signaling partially rescued deficits in mitochondrial respiration, ATP production, and membrane potential in imatinib mesylate-treated H9c2 cells. Conversely, over-expression of Sab in H9c2 cells increased the cardiotoxicity of imatinib mesylate in vitro decreasing the LD50 over 4-fold. Sab expression was induced in H9c2 cells following cardiovascular-like stress in an AP-1 dependent manner. These data demonstrate that imatinib mesylate influences mitochondrial signaling leading to mitochondrial dysfunction and cardiotoxicity.
Collapse
Affiliation(s)
- Tara P Chambers
- Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, United States; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States
| | - Luis Santiesteban
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, United States
| | - David Gomez
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, United States
| | - Jeremy W Chambers
- Department of Cellular Biology and Pharmacology, Florida International University, Miami, FL 33199, United States; Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, United States; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
21
|
Jacob F, Yonis AY, Cuello F, Luther P, Schulze T, Eder A, Streichert T, Mannhardt I, Hirt MN, Schaaf S, Stenzig J, Force T, Eschenhagen T, Hansen A. Analysis of Tyrosine Kinase Inhibitor-Mediated Decline in Contractile Force in Rat Engineered Heart Tissue. PLoS One 2016; 11:e0145937. [PMID: 26840448 PMCID: PMC4740402 DOI: 10.1371/journal.pone.0145937] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Introduction Left ventricular dysfunction is a frequent and potentially severe side effect of many tyrosine kinase inhibitors (TKI). The mode of toxicity is not identified, but may include impairment of mitochondrial or sarcomeric function, autophagy or angiogenesis, either as an on-target or off-target mechanism. Methods and Results We studied concentration-response curves and time courses for nine TKIs in three-dimensional, force generating engineered heart tissue (EHT) from neonatal rat heart cells. We detected a concentration- and time-dependent decline in contractile force for gefitinib, lapatinib, sunitinib, imatinib, sorafenib, vandetanib and lestaurtinib and no decline in contractile force for erlotinib and dasatinib after 96 hours of incubation. The decline in contractile force was associated with an impairment of autophagy (LC3 Western blot) and appearance of autophagolysosomes (transmission electron microscopy). Conclusion This study demonstrates the feasibility to study TKI-mediated force effects in EHTs and identifies an association between a decline in contractility and inhibition of autophagic flux.
Collapse
Affiliation(s)
- Fabian Jacob
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Amina Y. Yonis
- Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Friederike Cuello
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Pradeep Luther
- Molecular Medicine Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marc N. Hirt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sebastian Schaaf
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Force
- Center for Translational Medicine, Cardiology Division, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, United States of America
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Maharsy W, Aries A, Mansour O, Komati H, Nemer M. Ageing is a risk factor in imatinib mesylate cardiotoxicity. Eur J Heart Fail 2015; 16:367-76. [PMID: 24504921 PMCID: PMC4238824 DOI: 10.1002/ejhf.58] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 01/27/2023] Open
Abstract
AIMS Chemotherapy-induced heart failure is increasingly recognized as a major clinical challenge. Cardiotoxicity of imatinib mesylate, a highly selective and effective anticancer drug belonging to the new class of tyrosine kinase inhibitors, is being reported in patients, some progressing to congestive heart failure. This represents an unanticipated challenge that could limit effective drug use. Understanding the mechanisms and risk factors of imatinib mesylate cardiotoxicity is crucial for prevention of cardiovascular complications in cancer patients. METHODS AND RESULTS We used genetically engineered mice and primary rat neonatal cardiomyocytes to analyse the action of imatinib on the heart. We found that treatment with imatinib (200 mg/kg/day for 5 weeks) leads to mitochondrial-dependent myocyte loss and cardiac dysfunction, as confirmed by electron microscopy, RNA analysis, and echocardiography. Imatinib cardiotoxicity was more severe in older mice, in part due to an age-dependent increase in oxidative stress. Mechanistically, depletion of the transcription factor GATA4 resulting in decreased levels of its prosurvival targets Bcl-2 and Bcl-XL was an underlying cause of imatinib toxicity. Consistent with this, GATA4 haploinsufficient mice were more susceptible to imatinib, and myocyte-specific up-regulation of GATA4 or Bcl-2 protected against drug-induced cardiotoxicity. CONCLUSION The results indicate that imatinib action on the heart targets cardiomyocytes and involves mitochondrial impairment and cell death that can be further aggravated by oxidative stress. This in turn offers a possible explanation for the current conflicting data regarding imatinib cardiotoxicity in cancer patients and suggests that cardiac monitoring of older patients receiving imatinib therapy may be especially warranted.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Benzamides/toxicity
- Cardiotoxicity
- Echocardiography
- GATA4 Transcription Factor/metabolism
- Imatinib Mesylate
- In Situ Nick-End Labeling
- Mice
- Mice, Transgenic
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/ultrastructure
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Oxidative Stress/drug effects
- Piperazines/toxicity
- Protein Kinase Inhibitors/toxicity
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pyrimidines/toxicity
- Rats
- Risk Factors
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Wael Maharsy
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Anne Aries
- Institut de recherches cliniques de Montréal
(IRCM)Montreal, Canada
- Institut de Recherche en Hématologie et
Transplantation (IRHT)Mulhouse, France
| | - Omar Mansour
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Hiba Komati
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
| | - Mona Nemer
- Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa, Department of Biochemistry, Microbiology and ImmunologyOttawa, Canada
- Institut de recherches cliniques de Montréal
(IRCM)Montreal, Canada
- Corresponding author. Molecular Genetics and Cardiac Regeneration Laboratory,
University of Ottawa Department of Biochemistry, Microbiology and Immunology, 550 Cumberland (246),
Ottawa, Ontario, Canada, K1N 6N5. Tel: +1 613 562 5270, Fax: +1 613 562 5271,
| |
Collapse
|
23
|
Burger H, den Dekker AT, Segeletz S, Boersma AWM, de Bruijn P, Debiec-Rychter M, Taguchi T, Sleijfer S, Sparreboom A, Mathijssen RHJ, Wiemer EAC. Lysosomal Sequestration Determines Intracellular Imatinib Levels. Mol Pharmacol 2015; 88:477-487. [PMID: 26108972 DOI: 10.1124/mol.114.097451] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/24/2015] [Indexed: 11/22/2022] Open
Abstract
The intracellular uptake and retention (IUR) of imatinib is reported to be controlled by the influx transporter SLC22A1 (organic cation transporter 1). We recently hypothesized that alternative uptake and/or retention mechanisms exist that determine intracellular imatinib levels. Here, we systematically investigate the nature of these mechanisms. Imatinib uptake in cells was quantitatively determined by liquid chromatography-tandem mass spectrometry. Fluorescent microscopy was used to establish subcellular localization of imatinib. Immunoblotting, cell cycle analyses, and apoptosis assays were performed to evaluate functional consequences of imatinib sequestration. Uptake experiments revealed high intracellular imatinib concentrations in HEK293, the leukemic cell lines K562 and SD-1, and a gastrointestinal stromal tumor cell line GIST-T1. We demonstrated that imatinib IUR is time-, dose-, temperature-, and energy-dependent and provide evidence that SLC22A1 and other potential imatinib transporters do not substantially contribute to the IUR of imatinib. Prazosin, amantadine, NH4Cl, and the vacuolar ATPase inhibitor bafilomycin A1 significantly decreased the IUR of imatinib and likely interfere with lysosomal retention and accumulation of imatinib. Costaining experiments with LysoTracker Red confirmed lysosomal sequestration of imatinib. Inhibition of the lysosomal sequestration had no effect on the inhibition of c-Kit signaling and imatinib-mediated cell cycle arrest but significantly increased apoptosis in imatinib-sensitive GIST-T1 cells. We conclude that intracellular imatinib levels are primarily determined by lysosomal sequestration and do not depend on SLC22A1 expression.
Collapse
Affiliation(s)
- Herman Burger
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Alexander T den Dekker
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Sandra Segeletz
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Antonius W M Boersma
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Maria Debiec-Rychter
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Takahiro Taguchi
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Alex Sparreboom
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands (H.B., A.T.D., S.Se., A.W.M.B., P.B., S.Sl., R.H.J.M., E.A.C.W.); Department of Human Genetics, Catholic University Leuven and University Hospitals, Leuven, Belgium (M.D.-R.); Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Kochi, Japan (T.T.); and Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee (A.S.)
| |
Collapse
|
24
|
Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, Paolocci N, Aon MA, Nagane M, Kuppusamy P, Steenbergen C, Gabrielson K. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1271-80. [PMID: 26254336 DOI: 10.1152/ajpheart.00517.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.
Collapse
Affiliation(s)
- Frances Belmonte
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Vidhya Sivakumaran
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Brian Stanley
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Masaki Nagane
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
25
|
Kaushik G, Spenlehauer A, Sessions AO, Trujillo AS, Fuhrmann A, Fu Z, Venkatraman V, Pohl D, Tuler J, Wang M, Lakatta EG, Ocorr K, Bodmer R, Bernstein SI, Van Eyk JE, Cammarato A, Engler AJ. Vinculin network-mediated cytoskeletal remodeling regulates contractile function in the aging heart. Sci Transl Med 2015; 7:292ra99. [PMID: 26084806 PMCID: PMC4507505 DOI: 10.1126/scitranslmed.aaa5843] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human heart is capable of functioning for decades despite minimal cell turnover or regeneration, suggesting that molecular alterations help sustain heart function with age. However, identification of compensatory remodeling events in the aging heart remains elusive. We present the cardiac proteomes of young and old rhesus monkeys and rats, from which we show that certain age-associated remodeling events within the cardiomyocyte cytoskeleton are highly conserved and beneficial rather than deleterious. Targeted transcriptomic analysis in Drosophila confirmed conservation and implicated vinculin as a unique molecular regulator of cardiac function during aging. Cardiac-restricted vinculin overexpression reinforced the cortical cytoskeleton and enhanced myofilament organization, leading to improved contractility and hemodynamic stress tolerance in healthy and myosin-deficient fly hearts. Moreover, cardiac-specific vinculin overexpression increased median life span by more than 150% in flies. A broad array of potential therapeutic targets and regulators of age-associated modifications, specifically for vinculin, are presented. These findings suggest that the heart has molecular mechanisms to sustain performance and promote longevity, which may be assisted by therapeutic intervention to ameliorate the decline of function in aging patient hearts.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alice Spenlehauer
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ayla O Sessions
- Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriana S Trujillo
- Department of Biology, Heart Institute, and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Alexander Fuhrmann
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zongming Fu
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Danielle Pohl
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeremy Tuler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Karen Ocorr
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Rolf Bodmer
- Development and Aging Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Sanford I Bernstein
- Department of Biology, Heart Institute, and Molecular Biology Institute, San Diego State University, San Diego, CA 92182, USA
| | - Jennifer E Van Eyk
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA. Advanced Clinical Biosystems Research Institute, Barbra Streisand Women's Heart Center, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA. Biomedical Sciences Program, University of California, San Diego, La Jolla, CA 92093, USA. Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.
| |
Collapse
|
26
|
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide, despite the significant advances in medicine. Autophagy, a process of self-cannibalization employed by mammalian cells for the recycling of cellular contents, is altered not only in a number of CVDs, but in other diseases, as well. Many FDA-approved drugs are known to induce autophagy-mediated side effects in the cardiovascular system. In some cases, such drug-induced autophagy could be harnessed and used for treating CVD, greatly reducing the duration and cost of CVD treatments. However, because the induction of autophagy in cardiovascular targets can be both adaptive and maladaptive under specific settings, the challenge is to determine whether the changes stimulated by drug-induced autophagy are, in fact, beneficial. In this review, we surveyed a number of CVDs in which autophagy is known to occur, and we also address the role of FDA-approved drugs for which autophagy-mediated side effects occur within the cardiovascular system. The therapeutic potential of using small molecule modulators of autophagy in the management of CVD progression is discussed.
Collapse
|
27
|
Ashoor R, Yafawi R, Jessen B, Lu S. The contribution of lysosomotropism to autophagy perturbation. PLoS One 2013; 8:e82481. [PMID: 24278483 PMCID: PMC3838419 DOI: 10.1371/journal.pone.0082481] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/02/2013] [Indexed: 11/18/2022] Open
Abstract
Autophagy refers to the catabolic process in eukaryotic cells that delivers cytoplasmic material to lysosomes for degradation. This highly conserved process is involved in the clearance of long-lived proteins and damaged organelles. Consequently, autophagy is important in providing nutrients to maintain cellular function under starvation, maintaining cellular homeostasis, and promoting cell survival under certain conditions. Several pathways, including mTOR, have been shown to regulate autophagy. However, the impact of lysosomal function impairment on the autophagy process has not been fully explored. Basic lipophilic compounds can accumulate in lysosomes via pH partitioning leading to perturbation of lysosomal function. Our hypothesis is that these types of compounds can disturb the autophagy process. Eleven drugs previously shown to accumulate in lysosomes were selected and evaluated for their effects on cytotoxicity and autophagy using ATP depletion and LC3 assessment, respectively. All eleven drugs induced increased staining of endogenous LC3 and exogenous GFP-LC3, even at non toxic dose levels. In addition, an increase in the abundance of SQSTM1/p62 by all tested compounds denotes that the increase in LC3 is due to autophagy perturbation rather than enhancement. Furthermore, the gene expression profile resulting from in vitro treatment with these drugs revealed the suppression of plentiful long-lived proteins, including structural cytoskeletal and associated proteins, and extracellular matrix proteins. This finding indicates a retardation of protein turnover which further supports the notion of autophagy inhibition. Interestingly, upregulation of genes containing antioxidant response elements, e.g. glutathione S transferase and NAD(P)H dehydrogenase quinone 1 was observed, suggesting activation of Nrf2 transcription factor. These gene expression changes could be related to an increase in SQSTM1/p62 resulting from autophagy deficiency. In summary, our data indicate that lysosomal accumulation due to the basic lipophilic nature of xenobiotics could be a general mechanism contributing to the perturbation of the autophagy process.
Collapse
Affiliation(s)
- Roshan Ashoor
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Rolla Yafawi
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Bart Jessen
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
| | - Shuyan Lu
- Drug Safety Research and Development, Pfizer Inc., San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Li DL, Hill JA. Cardiomyocyte autophagy and cancer chemotherapy. J Mol Cell Cardiol 2013; 71:54-61. [PMID: 24239608 DOI: 10.1016/j.yjmcc.2013.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
Autophagy, an evolutionally conserved process of controlled cellular cannibalization, plays a vital role in cardiac physiology. Perturbations in cardiomyocyte autophagy contribute to the pathogenesis of a wide range of cardiac diseases, many of which culminate in heart failure. With recent advances in cancer chemotherapy and consequent improvements in cancer survival, drug-induced toxicity to the heart has assumed greater importance. As a number of prominent cellular pathways are critical to the survival of both tumor cells and heart cells, it comes as little surprise that therapies targeting those pathways have consequences in both tissues. Little is known presently about cardiomyocyte autophagy, a prominent cellular response to stress, in the setting of chemotherapy, but preliminary evidence suggests an important and context-dependent role. Dissecting the role of autophagy in "onco-cardiology" will likely yield insights into mechanisms underlying cardiomyopathy and may lead to novel means to protect the myocardium from chemotherapy-induced injury. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
Affiliation(s)
- Dan L Li
- Department of Internal Medicine Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
29
|
Heyen JR, Hu W, Jamieson J, Thibault S, Batugo M, Loi CM, Burns-Naas LA, McHarg AD, Jessen B. Cardiovascular differentiation of imatinib and bosutinib in the rat. Int J Hematol 2013; 98:597-607. [DOI: 10.1007/s12185-013-1453-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/13/2013] [Accepted: 10/06/2013] [Indexed: 12/23/2022]
|
30
|
Dy GK, Adjei AA. Understanding, recognizing, and managing toxicities of targeted anticancer therapies. CA Cancer J Clin 2013; 63:249-79. [PMID: 23716430 DOI: 10.3322/caac.21184] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Answer questions and earn CME/CNE Advances in genomics and molecular biology have identified aberrant proteins in cancer cells that are attractive targets for cancer therapy. Because these proteins are overexpressed or dysregulated in cancer cells compared with normal cells, it was assumed that their inhibitors will be narrowly targeted and relatively nontoxic. However, this hope has not been achieved. Current targeted agents exhibit the same frequency and severity of toxicities as traditional cytotoxic agents, with the main difference being the nature of the toxic effects. Thus, the classical chemotherapy toxicities of alopecia, myelosuppression, mucositis, nausea, and vomiting have been generally replaced by vascular, dermatologic, endocrine, coagulation, immunologic, ocular, and pulmonary toxicities. These toxicities need to be recognized, prevented, and optimally managed.
Collapse
Affiliation(s)
- Grace K Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | |
Collapse
|
31
|
Yang B, Papoian T. Tyrosine kinase inhibitor (TKI)-induced cardiotoxicity: approaches to narrow the gaps between preclinical safety evaluation and clinical outcome. J Appl Toxicol 2012; 32:945-51. [PMID: 22961481 DOI: 10.1002/jat.2813] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/29/2022]
Abstract
Although therapies targeted to inhibit the activity of certain tyrosine kinases (TK) have helped advance cancer therapy in recent years, reports of cardiac toxicity following treatment with tyrosine kinase inhibitors (TKIs) were unexpected and not well predicted by preclinical studies. Such clinical findings exposed gaps in current preclinical drug testing for predicting the development of cardiac toxicities in humans. These gaps included a lack of a comprehensive TKI mechanism of action determination and appropriate cardiac functional evaluation. New preclinical approaches are suggested to address these issues. In addition to tyrosine kinase inhibition, other factors that may play a role in drug-induced cardiac effects should be assessed, such as unintended secondary targets of TKIs, toxic drug metabolites and drug accumulation in the heart. Both on-target and off-target toxic effects of TKIs on cultured cardiac myocytes have now been shown to be detectable, providing a rationale for using cardiomyocytes as a screening tool to study potential TKI-mediated cardiotoxicity. Incorporating isolated perfused heart methodology to chronic/subchronic rodent studies or including echocardiography in chronic large animal toxicity studies may improve the detection of changes in cardiac function over current methods, and they may eventually become a routine tool for screening drugs with suspected cardiotoxic potential. Further, assessing drug toxicity and efficacy together in an animal model of disease is highly informative for candidate drug selection, and should be encouraged to assess specific safety endpoints, such as cardiovascular function. Together, these approaches will help better close the gaps between preclinical testing and clinical outcomes.
Collapse
Affiliation(s)
- Baichun Yang
- Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | | |
Collapse
|