1
|
Ray S, McCall JL, Tian JB, Jeon J, Douglas A, Tyler K, Liu S, Berry K, Nicewarner B, Hall C, Groschner K, Bacsa B, Geldenhuys W, Zhu MX, Blair HC, Barnett JB, Soboloff J. Targeting TRPC channels for control of arthritis-induced bone erosion. SCIENCE ADVANCES 2025; 11:eabm9843. [PMID: 39813349 PMCID: PMC11734723 DOI: 10.1126/sciadv.abm9843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca2+-selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels. While ELP-004 minimally affected physiological RANKL-induced osteoclast maturation in murine bone marrow- and spleen-derived myeloid cells (BMSMCs) and human PBMC-derived cells, it potently interfered with osteoclast maturation driven by TNFα or LTB4. The contribution of TRPC channels to osteoclastogenesis was examined using BMSMCs derived from TRPC4-/- or TRPC(1-7)-/- mice, again revealing preferential interference with osteoclastogenesis driven by proinflammatory cytokines. ELP-004 also reduced bone erosion in a mouse model of rheumatoid arthritis. These investigations reveal TRPC channels as critical mediators of inflammatory bone erosion and provide insight into the major target of ELP-004, a drug currently in preclinical testing as a therapeutic for inflammatory arthritis.
Collapse
Affiliation(s)
- Suravi Ray
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Jin Bin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Jaepyo Jeon
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Aidan Douglas
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kendall Tyler
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Siyao Liu
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Kendyl Berry
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | | | - Casey Hall
- ExesaLibero Pharma, Morgantown, WV 26505, USA
| | - Klaus Groschner
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Bernadett Bacsa
- Medical University of Graz, Division of Medical Physics and Biophysics, Neue Stiftingtalstrasse 6/H03, 8010 Graz, Austria
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston TX 77030, USA
| | - Harry C. Blair
- Research Service, VA Medical Centre, Departments of Pathology and of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
- ExesaLibero Pharma, Morgantown, WV 26505, USA
- West Virginia University Cancer Institute, Morgantown, WV 26506, USA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine, Department of Cancer & Cellular Biology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
McCall JL, Geldenhuys WJ, Robinson LJ, Witt MR, Gannett PM, Söderberg BCG, Blair HC, Soboloff J, Barnett JB. Preclinical evaluation of ELP-004 in mice. Pharmacol Res Perspect 2024; 12:e1230. [PMID: 38940379 PMCID: PMC11212004 DOI: 10.1002/prp2.1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 06/29/2024] Open
Abstract
This study provides a detailed understanding of the preclinical pharmacokinetics and metabolism of ELP-004, an osteoclast inhibitor in development for the treatment of bone erosion. Current treatments for arthritis, including biological disease-modifying antirheumatic drugs, are not well-tolerated in a substantial subset of arthritis patients and are expensive; therefore, new treatments are needed. Pharmacokinetic parameters of ELP-004 were tested with intravenous, oral, and subcutaneous administration and found to be rapidly absorbed and distributed. We found that ELP-004 was non-mutagenic, did not induce chromosome aberrations, non-cardiotoxic, and had minimal off-target effects. Using in vitro hepatic systems, we found that ELP-004 is primarily metabolized by CYP1A2 and CYP2B6 and predicted metabolic pathways were identified. Finally, we show that ELP-004 inhibits osteoclast differentiation without suppressing overall T-cell function. These preclinical data will inform future development of an oral compound as well as in vivo efficacy studies in mice.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- ExesaLibero Pharma, Inc.MorgantownWest VirginiaUSA
| | - Werner J. Geldenhuys
- Department of Pharmaceutical SciencesWest Virginia University School of PharmacyMorgantownWest VirginiaUSA
| | - Lisa J. Robinson
- Department of PathologyWest Virginia School of MedicineMorgantownWest VirginiaUSA
- Present address:
Department of Pathology, Microbiology, and ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Michelle R. Witt
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- Department of PathologyWest Virginia School of MedicineMorgantownWest VirginiaUSA
| | - Peter M. Gannett
- College of PharmacyNova Southeastern UniversityFt. LauderdaleFloridaUSA
| | - Björn C. G. Söderberg
- C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownWest VirginiaUSA
| | - Harry C. Blair
- Departments of Pathology and Cell BiologyThe Pittsburgh VA Medical Center and the University of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Jonathan Soboloff
- Fels Cancer Institute for Personalized Medicine and Department of Cancer and Cellular BiologyLewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - John B. Barnett
- Department of Microbiology, Immunology, and Cell BiologyWest Virginia University School of MedicineMorgantownWest VirginiaUSA
- ExesaLibero Pharma, Inc.MorgantownWest VirginiaUSA
| |
Collapse
|
3
|
Schafer R, Ognibene TJ, Malfatti MA, Turteltaub KW, Barnett JB. Comparative Pharmacokinetics of High and Low Doses of the Herbicide Propanil in Mice. Chem Res Toxicol 2018; 31:1080-1085. [PMID: 30230318 DOI: 10.1021/acs.chemrestox.8b00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have documented that the herbicide propanil is immunotoxic in mice, and our in vitro tissue culture experiments largely recapitulate the in vivo studies. Laboratory studies on environmental contaminants are the most meaningful when these studies are conducted using concentrations that approximate levels in the environment. Many techniques to measure the distribution and pharmacokinetics (PK) on compounds rely on techniques, such as liquid scintillation counting (LSC) of radio-labeled starting compound, that require concentrations higher than environmental levels. The aim of this study was to compare tissue PK after exposure to propanil concentrations more relevant to levels of exposure to agricultural workers and the general population to concentrations previously reported for laboratory studies. To this end, we conducted a study to measure propanil distribution in three immune organs, using ultrasensitive accelerator mass spectrometry (AMS). We used two doses: the lower dose modeled levels expected in the environment or long-term occupational exposure to low doses, while the higher dose was to model the effects of an accidental exposure. Our results showed that the distribution and PK profiles from these two different concentrations was markedly different. The profile of the high dose (concentration) exposure was indicative of saturation of the detoxifying capability of the animal. In contrast, at the lower environmentally relevant concentration, in vivo concentrations of propanil in spleen, liver, and blood dropped to a very low level by 720 min. In conclusion, these studies highlight the differences in PK of propanil at these two doses, which suggests that the toxicity of this chemical should be re-investigated to obtain better data on toxic effects at doses relevant for humans.
Collapse
Affiliation(s)
- Rosana Schafer
- Department of Microbiology, Immunology, and Cell Biology , West Virginia University , Morgantown , West Virginia 26506-9177 , United States
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry , Lawrence Livermore National Laboratory , Livermore , California 94551-0808 , United States
| | - Michael A Malfatti
- Center for Accelerator Mass Spectrometry , Lawrence Livermore National Laboratory , Livermore , California 94551-0808 , United States
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry , Lawrence Livermore National Laboratory , Livermore , California 94551-0808 , United States
| | - John B Barnett
- Department of Microbiology, Immunology, and Cell Biology , West Virginia University , Morgantown , West Virginia 26506-9177 , United States
| |
Collapse
|