1
|
Bargary G, Bosten JM, Lawrance-Owen AJ, Goodbourn PT, Mollon JD. Evidence for an Association Between a pH-Dependent Potassium Channel, TWIK-1, and the Accuracy of Smooth Pursuit Eye Movements. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 39012638 PMCID: PMC11257018 DOI: 10.1167/iovs.65.8.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/06/2024] [Indexed: 07/17/2024] Open
Abstract
Purpose Within the healthy population there is a large variation in the ability to perform smooth pursuit eye movements. Our purpose was to investigate the genetic and physiological bases for this variation. Methods We carried out a whole-genome association study, recording smooth pursuit movements for 1040 healthy volunteers by infrared oculography. The primary phenotypic measure was root mean square error (RMSE) of eye position relative to target position. Secondary measures were pursuit gain, frequency of catch-up saccades, and frequency of anticipatory saccades. Ten percent of participants, chosen randomly, were tested twice, giving estimates of test-retest reliability. Results No significant association was found with three genes previously identified as candidate genes for variation in smooth pursuit: DRD3, COMT, NRG1. A strong association (P = 3.55 × 10-11) was found between RMSE and chromosomal region 1q42.2. The most strongly associated marker (rs701232) lies in an intron of KCNK1, which encodes a two-pore-domain potassium ion channel TWIK-1 (or K2P1) that affects cell excitability. Each additional copy of the A allele decreased RMSE by 0.29 standard deviation. When a psychophysical test of visually perceived motion was used as a covariate in the regression analysis, the association with rs701232 did not weaken (P = 5.38 × 10-12). Conclusions Variation in the sequence or the expression of the pH-dependent ion channel TWIK-1 is a likely source of variance in smooth pursuit. The variance associated with TWIK-1 appears not to arise from sensory mechanisms, because the use of a perceptual covariate left the association intact.
Collapse
Affiliation(s)
- Gary Bargary
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, United Kingdom
- Department of Optometry and Visual Science, City University London, Northampton Square, London, United Kingdom
| | - Jenny M. Bosten
- School of Psychology, University of Sussex, Falmer, United Kingdom
| | - Adam J. Lawrance-Owen
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Patrick T. Goodbourn
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, United Kingdom
- School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - John D. Mollon
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, United Kingdom
| |
Collapse
|
2
|
Shizu R, Makida N, Sobe K, Ishimura M, Takeshita A, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Interaction with YAP underlies the species differences between humans and rodents in CAR-dependent hepatocyte proliferation. Toxicol Sci 2024; 198:101-112. [PMID: 38128062 DOI: 10.1093/toxsci/kfad129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Constitutive androstane receptor (CAR), a nuclear receptor predominantly expressed in the liver, is activated by diverse chemicals and induces hepatocyte proliferation and hepatocarcinogenesis in rodents. However, the underlying mechanism responsible for CAR-dependent hepatocyte proliferation remains unclear. Importantly, this phenomenon has not been observed in the human liver. This study aimed to investigate the molecular mechanism underlying CAR-induced hepatocyte proliferation and to explore the species differences in hepatocyte proliferation between humans and rodents. Treatment of mice with the CAR activator TCPOBOP induced hepatocyte proliferation and nuclear accumulation of yes-associated protein (YAP), a known liver cancer inducer. This induction was abolished in CAR-knockout mice. Exogenously expressed YAP in cultured cells was accumulated in the nucleus by the coexpression with mouse CAR but not human CAR. Pull-down analysis of recombinant proteins revealed that mouse CAR interacted with YAP, whereas human CAR did not. Further investigations using YAP deletion mutants identified the WW domain of YAP as essential for interacting with CAR and showed that the PY motif (PPAY) in mouse CAR was crucial for binding to the WW domain, whereas human CAR with its mutated motif (PPAH) failed to interact with YAP. A mouse model harboring the Y150H mutation (PPAY to PPAH) in CAR displayed drastically attenuated TCPOBOP-induced hepatocyte proliferation and nuclear accumulation of YAP. CAR induces the nuclear accumulation of YAP through the PY motif-WW domain interaction to promote hepatocyte proliferation. The absence of this interaction in human CAR contributes to the lack of CAR-dependent hepatocyte proliferation in human livers.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Natsuki Makida
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Keiichiro Sobe
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mai Ishimura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Aki Takeshita
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuichiro Kanno
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
3
|
AEG-1 Regulates TWIK-1 Expression as an RNA-Binding Protein in Astrocytes. Brain Sci 2021; 11:brainsci11010085. [PMID: 33440655 PMCID: PMC7827766 DOI: 10.3390/brainsci11010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
AEG-1, also called MTDH, has oncogenic potential in numerous cancers and is considered a multifunctional modulator because of its involvement in developmental processes and inflammatory and degenerative brain diseases. However, the role of AEG-1 in astrocytes remains unknown. This study aimed to investigate proteins directly regulated by AEG-1 by analyzing their RNA expression patterns in astrocytes transfected with scramble shRNA and AEG-1 shRNA. AEG-1 knockdown down-regulated TWIK-1 mRNA. Real-time quantitative PCR (qPCR) and immunocytochemistry assays confirmed that AEG-1 modulates TWIK-1 mRNA and protein expression. Electrophysiological experiments further revealed that AEG-1 further regulates TWIK-1-mediated potassium currents in normal astrocytes. An RNA immunoprecipitation assay to determine how AEG-1 regulates the expression of TWIK-1 revealed that AEG-1 binds directly to TWIK-1 mRNA. Furthermore, TWIK-1 mRNA stability was significantly increased upon overexpression of AEG-1 in cultured astrocytes (p < 0.01). Our findings show that AEG-1 serves as an RNA-binding protein to regulate TWIK-1 expression in normal astrocytes.
Collapse
|
4
|
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer. Rev Physiol Biochem Pharmacol 2020; 181:129-222. [PMID: 32875386 DOI: 10.1007/112_2020_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.
Collapse
|
5
|
Fashe M, Hashiguchi T, Negishi M, Sueyoshi T. Ser100-Phosphorylated ROR α Orchestrates CAR and HNF4 α to Form Active Chromatin Complex in Response to Phenobarbital to Regulate Induction of CYP2B6. Mol Pharmacol 2020; 97:191-201. [PMID: 31924695 PMCID: PMC6978708 DOI: 10.1124/mol.119.118273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/16/2019] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that the retinoid-related orphan receptor alpha (RORα) phosphorylation plays a pivotal role in sulfotransferase 1E1 gene regulation within mouse liver. Here, we found serine 100-phosphorylated RORα orchestrates constitutive androstane receptor (CAR) and hepatocyte nuclear factor 4 alpha (HNF4α) to induce CYP2B6 by phenobarbital (PB) in human primary hepatocytes (HPHs). RORα knockdown using small interfering RNAs suppressed CYP2B6 mRNAs in HPH, whereas transient expression of RORα in COS-1 cells activated CYP2B6 promoter activity in reporter assays. Through chromatin immunoprecipitation (IP) and gel shift assays, we found that RORα in the form of phosphorylated (p-) S100 directly bound to a newly identified RORα response element (RORα response element on CYP2B6 promoter, -660/-649) within the CYP2B6 promoter in untreated or treated HPH. In PB-treated HPH, p-Ser100 RORα was both enriched in the distal phenobarbital response element module (PBREM) and the proximal okadaic acid response element (OARE), a known HNF4α binding site. Chromatin conformation capture assay revealed direct contact between the PBREM and OARE only in PB-treated HPH. Moreover, CAR preferably interacted with phosphomimetically mutated RORα at Ser100 residue in co-IP assay. A gel shift assay with a radiolabeled OARE module and nuclear extracts prepared from PB-treated mouse liver confirmed that HNF4α formed a complex with Ser 100-phosphorylated RORα, as shown by supershifted complexes with anti-p-Ser100 RORα and anti-HNF4α antibodies. Altogether, the results established that p-Ser100 RORα bridging the PBREM and OARE orchestrates CAR and HNF4α to form active chromatin complex during PB-induced CYP2B6 expression in human primary hepatocytes. SIGNIFICANCE STATEMENT: CYP2B6 is a vital enzyme for the metabolic elimination of xenobiotics, and it is prone to induction by xenobiotics, including phenobarbital via constitutive androstane receptor (CAR) and hepatocyte nuclear factor 4 alpha (HNF4α). Here, we show that retinoid-related orphan receptor alpha (RORα), through phosphorylated S100 residue, orchestrated CAR-HNF4α interaction on the CYP2B6 promoter in human primary hepatocyte cultures. These results signify not only the role of RORα in the molecular process of CYP2B6 induction, but it also reveals the importance of conserved phosphorylation sites within the DNA-binding domain of the receptor.
Collapse
Affiliation(s)
- Muluneh Fashe
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Takuyu Hashiguchi
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Tatsuya Sueyoshi
- Pharmacogenetics section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
6
|
Touloupi K, Küblbeck J, Magklara A, Molnár F, Reinisalo M, Konstandi M, Honkakoski P, Pappas P. The Basis for Strain-Dependent Rat Aldehyde Dehydrogenase 1A7 ( ALDH1A7) Gene Expression. Mol Pharmacol 2019; 96:655-663. [PMID: 31575620 DOI: 10.1124/mol.119.117424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/06/2019] [Indexed: 11/22/2022] Open
Abstract
Aldehyde hydrogenases (ALDHs) belong to a large gene family involved in oxidation of both endogenous and exogenous compounds in mammalian tissues. Among ALDHs, the rat ALDH1A7 gene displays a curious strain dependence in phenobarbital (PB)-induced hepatic expression: the responsive RR strains exhibit induction of both ALDH1A7 and CYP2B mRNAs and activities, whereas the nonresponsive rr strains show induction of CYP2B only. Here, we investigated the responsiveness of ALDH1A1, ALDH1A7, CYP2B1, and CYP3A23 genes to prototypical P450 inducers, expression of nuclear receptors CAR and pregnane X receptor, and structure of the ALDH1A7 promoter in both rat strains. ALDH1A7 mRNA, associated protein and activity were strongly induced by PB and modestly induced by pregnenolone 16α-carbonitrile in the RR strain but negligibly in the rr strain, whereas induction of ALDH1A1 and P450 mRNAs was similar between the strains. Reporter gene and chromatin immunoprecipitation assays indicated that the loss of ALDH1A7 inducibility in the rr strain is profoundly linked with a 16-base pair deletion in the proximal promoter and inability of the upstream DNA sequences to recruit constitutive androstane receptor-retinoid X receptor heterodimers. SIGNIFICANCE STATEMENT: Genetic variation in rat ALDH1A7 promoter sequences underlie the large strain-dependent differences in expression and inducibility by phenobarbital of the aldehyde dehydrogenase activity. This finding has implications for the design and interpretation of pharmacological and toxicological studies on the effects and disposition of aldehydes.
Collapse
Affiliation(s)
- Katerina Touloupi
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Jenni Küblbeck
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Angeliki Magklara
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Ferdinand Molnár
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Mika Reinisalo
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Maria Konstandi
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Paavo Honkakoski
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| | - Periklis Pappas
- Departments of Pharmacology (K.T., M.K., P.P.) and Clinical Chemistry (A.M.), Faculty of Medicine, School of Health Sciences, University of Ioannina, and Department of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology (A.M.), Ioannina, Greece; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland (J.K., F.M., M.R., P.H.);Department of Biology, School of Science and Technology, Nazarbayev University, Nur-Sultan City, Kazakhstan (F.M.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.H.)
| |
Collapse
|
7
|
Hori T, Saito K, Moore R, Flake GP, Negishi M. Nuclear Receptor CAR Suppresses GADD45B-p38 MAPK Signaling to Promote Phenobarbital-induced Proliferation in Mouse Liver. Mol Cancer Res 2018; 16:1309-1318. [PMID: 29716964 DOI: 10.1158/1541-7786.mcr-18-0118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 11/16/2022]
Abstract
Phenobarbital, a nongenotoxic hepatocarcinogen, induces hepatic proliferation and promotes development of hepatocellular carcinoma (HCC) in rodents. Nuclear receptor constitutive active/androstane receptor (NR1I3/CAR) regulates the induction and promotion activities of phenobarbital. Here, it is demonstrated that phenobarbital treatment results in dephosphorylation of a tumor suppressor p38 MAPK in the liver of C57BL/6 and C3H/HeNCrlBR mice. The molecular mechanism entails CAR binding and inhibition of the growth arrest and DNA-damage-inducible 45 beta (GADD45B)-MAPK kinase 6 (MKK6) scaffold to repress phosphorylation of p38 MAPK. Phenobarbital-induced hepatocyte proliferation, as determined by BrdUrd incorporation, was significantly reduced in both male and female livers of GADD45B knockout (KO) mice compared with the wild-type mice. The phenobarbital-induced proliferation continued until 48 hours after phenobarbital injection in only the C57BL/6 males, but neither in males of GADD45B KO mice nor in females of C57BL/6 and GADD45B KO mice. Thus, these data reveal nuclear receptor CAR interacts with GADD45B to repress p38 MAPK signaling and elicit hepatocyte proliferation in male mice.Implications: This GADD45B-regulated male-predominant proliferation can be expanded as a phenobarbital promotion signal of HCC development in future studies.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/8/1309/F1.large.jpg Mol Cancer Res; 16(8); 1309-18. ©2018 AACR.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Kosuke Saito
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Gordon P Flake
- Cellular and Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina.
| |
Collapse
|
8
|
Li L, Bao X, Zhang QY, Negishi M, Ding X. Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice. Drug Metab Dispos 2017; 45:977-981. [PMID: 28546505 PMCID: PMC5518717 DOI: 10.1124/dmd.117.076406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/23/2017] [Indexed: 11/22/2022] Open
Abstract
Phenobarbital (PB) promotes liver tumorigenesis in rodents, in part through activation of the constitutive androstane receptor (CAR) and the consequent changes in hepatic gene expression and increases in hepatocyte proliferation. A typical effect of CAR activation by PB is a marked induction of Cyp2b10 expression in the liver; the latter has been suspected to be vital for PB-induced hepatocellular proliferation. This hypothesis was tested here by using a Cyp2a(4/5)bgs-null (null) mouse model in which all Cyp2b genes are deleted. Adult male and female wild-type (WT) and null mice were treated intraperitoneally with PB at 50 mg/kg once daily for 5 successive days and tested on day 6. The liver-to-body weight ratio, an indicator of liver hypertrophy, was increased by 47% in male WT mice, but by only 22% in male Cyp2a(4/5)bgs-null mice, by the PB treatment. The fractions of bromodeoxyuridine-positive hepatocyte nuclei, assessed as a measure of the rate of hepatocyte proliferation, were also significantly lower in PB-treated male null mice compared with PB-treated male WT mice. However, whereas few proliferating hepatocytes were detected in saline-treated mice, many proliferating hepatocytes were still detected in PB-treated male null mice. In contrast, female WT mice were much less sensitive than male WT mice to PB-induced hepatocyte proliferation, and PB-treated female WT and PB-treated female null mice did not show significant difference in rates of hepatocyte proliferation. These results indicate that CYP2B induction plays a significant, but partial, role in PB-induced hepatocyte proliferation in male mice.
Collapse
Affiliation(s)
- Lei Li
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Xiaochen Bao
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Qing-Yu Zhang
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Masahiko Negishi
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| | - Xinxin Ding
- College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York (L.L., X.D.); Wadsworth Center, New York State Department of Health, and School of Public Health, University at Albany, Albany, New York (L.L., X.B., Q.Z., X.D.); and National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina (M.N.)
| |
Collapse
|
9
|
Hori T, Moore R, Negishi M. p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38. Drug Metab Dispos 2016; 44:871-6. [PMID: 27074912 PMCID: PMC4885487 DOI: 10.1124/dmd.116.070235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor constitutive androstane receptor (CAR, NR1I3), which regulates hepatic drug and energy metabolisms as well as cell growth and death, is sequestered in the cytoplasm as its inactive form phosphorylated at threonine 38. CAR activators elicit dephosphorylation, and nonphosphorylated CAR translocates into the nucleus to activate its target genes. CAR was previously found to require p38 mitogen-activated protein kinase (MAPK) to transactivate the cytochrome P450 2B (CYP2B) genes. Here we have demonstrated that p38 MAPK forms a complex with CAR, enables it to bind to the response sequence, phenobarbital-responsive enhancer module (PBREM), within the CYP2B promoter, and thus recruits RNA polymerase II to activate transcription. Subsequently, p38 MAPK elicited rephosphorylation of threonine 38 to inactivate CAR and exclude it from the nucleus. Thus, nuclear p38 MAPK exerted dual regulation by sequentially activating and inactivating CAR-mediated transcription through phosphorylation of threonine 38.
Collapse
Affiliation(s)
- Takeshi Hori
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
10
|
Ohno M, Kanayama T, Moore R, Ray M, Negishi M. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS One 2014; 9:e115663. [PMID: 25542016 PMCID: PMC4277317 DOI: 10.1371/journal.pone.0115663] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic constitutive active/androstane receptor (CAR) retention protein (CCRP and also known as DNAJC7) is a co-chaperone previously characterized to retain nuclear receptor CAR in the cytoplasm of HepG2 cells. Here we have produced CCRP knockout (KO) mice and demonstrated that CCRP regulates CAR at multiple steps in activation of the cytochrome (Cyp) 2b10 gene in liver: nuclear accumulation, RNA polymerase II recruitment and epigenetic modifications. Phenobarbital treatment greatly increased nuclear CAR accumulation in the livers of KO males as compared to those of wild type (WT) males. Despite this accumulation, phenobarbital-induced activation of the Cyp2b10 gene was significantly attenuated. In ChIP assays, a CAR/retinoid X receptor-α (RXRα) heterodimer binding to the Cyp2b10 promoter was already increased before phenobarbital treatment and further pronounced after treatment. However, RNA polymerase II was barely recruited to the promoter even after phenobarbital treatment. Histone H3K27 on the Cyp2b10 promoter was de-methylated only after phenobarbital treatment in WT but was fully de-methylated before treatment in KO males. Thus, CCRP confers phenobarbital-induced de-methylation capability to the promoter as well as the phenobarbital responsiveness of recruiting RNA polymerase II, but is not responsible for the binding between CAR and its cognate sequence, phenobarbital responsive element module. In addition, KO males developed steatotic livers and increased serum levels of total cholesterol and high density lipoprotein in response to fasting. CCRP appears to be involved in various hepatic regulations far beyond CAR-mediated drug metabolism.
Collapse
Affiliation(s)
- Marumi Ohno
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Tomohiko Kanayama
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Rick Moore
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Manas Ray
- Knockout Core, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
The role of K₂p channels in anaesthesia and sleep. Pflugers Arch 2014; 467:907-16. [PMID: 25482669 PMCID: PMC4428837 DOI: 10.1007/s00424-014-1654-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/20/2022]
Abstract
Tandem two-pore potassium channels (K2Ps) have widespread expression in the central nervous system and periphery where they contribute to background membrane conductance. Some general anaesthetics promote the opening of some of these channels, enhancing potassium currents and thus producing a reduction in neuronal excitability that contributes to the transition to unconsciousness. Similarly, these channels may be recruited during the normal sleep-wake cycle as downstream effectors of wake-promoting neurotransmitters such as noradrenaline, histamine and acetylcholine. These transmitters promote K2P channel closure and thus an increase in neuronal excitability. Our understanding of the roles of these channels in sleep and anaesthesia has been largely informed by the study of mouse K2P knockout lines and what is currently predicted by in vitro electrophysiology and channel structure and gating.
Collapse
|
12
|
Luisier R, Lempiäinen H, Scherbichler N, Braeuning A, Geissler M, Dubost V, Müller A, Scheer N, Chibout SD, Hara H, Picard F, Theil D, Couttet P, Vitobello A, Grenet O, Grasl-Kraupp B, Ellinger-Ziegelbauer H, Thomson JP, Meehan RR, Elcombe CR, Henderson CJ, Wolf CR, Schwarz M, Moulin P, Terranova R, Moggs JG. Phenobarbital induces cell cycle transcriptional responses in mouse liver humanized for constitutive androstane and pregnane x receptors. Toxicol Sci 2014; 139:501-11. [PMID: 24690595 DOI: 10.1093/toxsci/kfu038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are closely related nuclear receptors involved in drug metabolism and play important roles in the mechanism of phenobarbital (PB)-induced rodent nongenotoxic hepatocarcinogenesis. Here, we have used a humanized CAR/PXR mouse model to examine potential species differences in receptor-dependent mechanisms underlying liver tissue molecular responses to PB. Early and late transcriptomic responses to sustained PB exposure were investigated in liver tissue from double knock-out CAR and PXR (CAR(KO)-PXR(KO)), double humanized CAR and PXR (CAR(h)-PXR(h)), and wild-type C57BL/6 mice. Wild-type and CAR(h)-PXR(h) mouse livers exhibited temporally and quantitatively similar transcriptional responses during 91 days of PB exposure including the sustained induction of the xenobiotic response gene Cyp2b10, the Wnt signaling inhibitor Wisp1, and noncoding RNA biomarkers from the Dlk1-Dio3 locus. Transient induction of DNA replication (Hells, Mcm6, and Esco2) and mitotic genes (Ccnb2, Cdc20, and Cdk1) and the proliferation-related nuclear antigen Mki67 were observed with peak expression occurring between 1 and 7 days PB exposure. All these transcriptional responses were absent in CAR(KO)-PXR(KO) mouse livers and largely reversible in wild-type and CAR(h)-PXR(h) mouse livers following 91 days of PB exposure and a subsequent 4-week recovery period. Furthermore, PB-mediated upregulation of the noncoding RNA Meg3, which has recently been associated with cellular pluripotency, exhibited a similar dose response and perivenous hepatocyte-specific localization in both wild-type and CAR(h)-PXR(h) mice. Thus, mouse livers coexpressing human CAR and PXR support both the xenobiotic metabolizing and the proliferative transcriptional responses following exposure to PB.
Collapse
Affiliation(s)
- Raphaëlle Luisier
- Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Saito K, Negishi M, James Squires E. Sexual dimorphisms in zonal gene expression in mouse liver. Biochem Biophys Res Commun 2013; 436:730-5. [PMID: 23791742 DOI: 10.1016/j.bbrc.2013.06.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/08/2013] [Indexed: 02/08/2023]
Abstract
Many of the metabolic functions of the liver are localized either in the pericentral region (zone 3) or in the periportal region (zone 1). However, a systematic analysis of the heterogeneity and sexual dimorphism of gene expression in the liver is lacking. Our objective was to obtain sections of intact tissue from zone 1 and zone 3 from both male and female mouse liver, and to measure the patterns of gene expression in these sections. Zone 1 and zone 3 areas were isolated by laser capture microdissection of liver sections, total RNA was isolated and microarray analysis was conducted using Agilent Whole Mouse Genome oligo arrays. To investigate functional characteristics as well as upstream regulators of specific gene lists, we used Ingenuity Pathway Analysis. We identified more than 925 genes in zone 1 and more than 450 genes in zone 3 of both male and female mice. Sexual dimorphism in metabolic functions was present in zone 1 but not zone 3. In zone 1, canonical pathways related to gluconeogenesis were male predominant, while canonical pathways related to hepatic progenitor cells were female predominant. In addition, we also analyzed the upstream regulators of zone-specific genes. SREBF1 was male-specific in zone 1, while TRIM24 was female-specific in zone 3. These results demonstrate the heterogeneity and sexually dimorphic differences in gene expression in the liver.
Collapse
Affiliation(s)
- Kosuke Saito
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|