1
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
2
|
Palak E, Lebiedzinska W, Lupu O, Pulawska K, Anisimowicz S, Mieczkowska AN, Sztachelska M, Niklinska GN, Milewska G, Lukasiewicz M, Ponikwicka-Tyszko D, Huhtaniemi I, Wolczynski S. Molecular insights underlying the adverse effects of bisphenol A on gonadal somatic cells' steroidogenic activity. Reprod Biol 2023; 23:100766. [PMID: 37084542 DOI: 10.1016/j.repbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Bisphenol A (BPA) exposure may impair gonadal steroidogenesis, although the underlying mechanism is not well known. Hereby, we assessed BPA action on human primary granulosa (hGC) and mouse Leydig cells (BLTK-1) proliferation, cytotoxicity, hormone secretion, and steroidogenic enzyme/receptor gene profile. hGC and BLTK-1 cells were stimulated with increasing concentrations of BPA (10-12 M to 10-4 M for cell proliferation assay, 10-8 M to 10-4 M for LDH-cytotoxicity assay, and 10-9 M to 10-5 M for hormone secretion and genes expression analysis). BPA at low concentrations (pM - nM) did not affect cell proliferation in either cell type, although was toxic at higher (µM) concentrations. BPA stimulation at low nM concentrations decreased the production of estradiol (E2) and testosterone (T) in BLTK-1, E2, and progesterone in hGCs. BPA down-regulated Star, Cyp11a1, and Hsd17b3, but up-regulated Cyp19a1, Esr1, Esr2, and Gpr30 expression in BLTK-1 cells. In hGC, BPA down-regulated STAR, CYP19A1, PGRMC1, and PAQR7 but up-regulated ESR2 expression. Estrogen receptor degrader fulvestrant (FULV) attenuated BPA inhibition of hormone production in both cell lines. FULV also blocked the BPA-induced Gpr30 up-regulation in BLTK-1 cells, whereas in hGC, failed to reverse the down-regulation of PGRMC1, STAR, and CYP19A1. Our findings provide novel mechanistic insights into environmentally-relevant doses of BPA action through both nuclear estrogen receptor-dependent and independent mechanisms affecting cultured granulosa and Leydig cell steroidogenesis.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Weronika Lebiedzinska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Oana Lupu
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | | | | | - Aleksandra N Mieczkowska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | | | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Monika Lukasiewicz
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Finland
| | - Ilpo Huhtaniemi
- Institute of Biomedicine, University of Turku, Finland; Department of Digestion, Metabolism and Reproduction, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Slawomir Wolczynski
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland.
| |
Collapse
|
3
|
Li J, Qi L, Chen Y, Lv H, Bi H. Bioinformatics analysis of the potential mechanisms of Alzheimer's disease induced by exposure to combined triazine herbicides. Ann Hum Biol 2023; 50:442-451. [PMID: 37819172 DOI: 10.1080/03014460.2023.2259242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The development of Alzheimer's disease (AD) is promoted by a combination of genetic and environmental factors. Notably, combined exposure to triazine herbicides atrazine (ATR), simazine (SIM), and propazine (PRO) may promote the development of AD, but the mechanism is unknown. AIM To study the molecular mechanism of AD induced by triazine herbicides. METHODS Differentially expressed genes (DEGs) of AD patients and controls were identified. The intersectional targets of ATR, SIM, and PRO for possible associations with AD were screened through network pharmacology and used for gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis. The binding potentials between the core targets and herbicides were validated by molecular docking and molecular dynamics. RESULTS A total of 1,062 DEGs were screened between the AD patients and controls, which identified 148 intersectional targets of herbicides causing AD that were screened by network pharmacology analysis. GO and KEGG enrichment analysis revealed that cell cycling and cellular senescence were important signalling pathways. Finally, the core targets EGFR, FN1, and TYMS were screened and validated by molecular docking and molecular dynamics. CONCLUSION Our results suggest that combined exposure to triazine herbicides might promote the development of AD, thereby providing new insights for the prevention of AD.
Collapse
Affiliation(s)
- Jianan Li
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ling Qi
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yuxin Chen
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoming Lv
- Department of Occupational and Environmental Health, College of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Haoran Bi
- Department of Biostatistics, College of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
New evidence for deleterious effects of environmental contaminants on the male gamete. Anim Reprod Sci 2022; 246:106886. [PMID: 34774338 DOI: 10.1016/j.anireprosci.2021.106886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
The decreasing trend in human and domestic animal fertility in recent decades has resulted in the question of whether reduced sperm quality is associated with changes in global climate and the environment. Proposed causes for reduced sperm quality include environmental contaminants, which enter into the body of animals through the food chain and are transported to the reproductive tract, where contaminating agents can have effects on fertilization capacities of gametes. In this review, there is a focus on various environmental contaminants and potential effects on male fertility. Human-derived contaminants, particularly endocrine-disrupting phthalates and the pesticide atrazine, are discussed. Naturally occurring toxins are also addressed, in particular mycotoxins such as aflatoxin which can be components in food consumed by humans and animals. Mechanisms by which environmental contaminants reduce male fertility are not clearly defined; however, are apparently multifactorial (i.e., direct and indirect effects) with there being diverse modes of action. Results from studies with humans, rodents and domestic animals indicate there are deleterious effects of contaminants on male gametes at various stages of spermatogenesis (i.e., in the testis) during passage through the epididymis, and in mature spermatozoa, after ejaculation and during capacitation. Considering there is never detection of a single contaminant, this review addresses synergistic or additive effects of combinations of contaminants. There is new evidence highlighted for the long-lasting effects of environmental contaminants on spermatozoa and developing embryos. Understanding the risk associated with environmental contaminants for animal reproduction may lead to new management strategies, thereby improving reproductive processes.
Collapse
|
5
|
Roth Z, Komsky-Elbaz A, Kalo D. Effect of environmental contamination on female and male gametes - A lesson from bovines. Anim Reprod 2020; 17:e20200041. [PMID: 33029217 PMCID: PMC7534576 DOI: 10.1590/1984-3143-ar2020-0041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) and foodborne contaminants are environmental pollutants that are considered reproductive toxicants due to their deleterious effects on female and male gametes. Among the EDCs, the phthalate plasticizers are of growing concern. In-vivo and in-vitro models indicate that the oocyte is highly sensitive to phthalates. This review summarizes the effects of di(2-ethylhexyl) phthalate and its major metabolite mono(2-ethyhexyl) phthalate (MEHP) on the oocyte. MEHP reduces the proportion of oocytes that fertilize, cleave and develop to the blastocyst stage. This is associated with negative effects on meiotic progression, and disruption of cortical granules, endoplasmic reticulum and mitochondrial reorganization. MEHP alters mitochondrial membrane polarity, increases reactive oxygen species levels and induces alterations in genes associated with oxidative phosphorylation. A carryover effect from the oocyte to the blastocyst is manifested by alterations in the transcriptomic profile of blastocysts developed from MEHP-treated oocytes. Among foodborne contaminants, the pesticide atrazine (ATZ) and the mycotoxin aflatoxin B1 (AFB1) are of high concern. The potential hazards associated with exposure of spermatozoa to these contaminants and their carryover effect to the blastocyst are described. AFB1 and ATZ reduce spermatozoa's viability, as reflected by a high proportion of cells with damaged plasma membrane; induce acrosome reaction, expressed as damage to the acrosomal membrane; and interfere with mitochondrial function, characterized by hyperpolarization of the membrane. ATZ and AFB1-treated spermatozoa show a high proportion of cells with fragmented DNA. Exposure of spermatozoa to AFB1 and ATZ reduces fertilization and cleavage rates, but not that of blastocyst formation. However, fertilization with AFB1- or ATZ-treated spermatozoa impairs transcript expression in the formed blastocysts, implying a carryover effect. Taken together, the review indicates the risk of exposing farm animals to environmental contaminants, and their deleterious effects on female and male gametes and the developing embryo.
Collapse
Affiliation(s)
- Zvi Roth
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alisa Komsky-Elbaz
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Dorit Kalo
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
6
|
Endocrine Disruptors in Water and Their Effects on the Reproductive System. Int J Mol Sci 2020; 21:ijms21061929. [PMID: 32178293 PMCID: PMC7139484 DOI: 10.3390/ijms21061929] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Anthropogenic contaminants in water can impose risks to reproductive health. Most of these compounds are known to be endocrine disrupting chemicals (EDCs). EDCs can impact the endocrine system and subsequently impair the development and fertility of non-human animals and humans. The source of chemical contamination in water is diverse, originating from byproducts formed during water disinfection processes, release from industry and livestock activity, or therapeutic drugs released into sewage. This review discusses the occurrence of EDCs in water such as disinfection byproducts, fluorinated compounds, bisphenol A, phthalates, pesticides, and estrogens, and it outlines their adverse reproductive effects in non-human animals and humans.
Collapse
|
7
|
Warner GR, Mourikes VE, Neff AM, Brehm E, Flaws JA. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110680. [PMID: 31838026 PMCID: PMC6942667 DOI: 10.1016/j.mce.2019.110680] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Agrochemicals represent a significant class of endocrine disrupting chemicals that humans and animals around the world are exposed to constantly. Agrochemicals can act as endocrine disrupting chemicals through a variety of mechanisms. Recent studies have shown that several mechanisms of action involve the ability of agrochemicals to mimic the interaction of endogenous hormones with nuclear receptors such as estrogen receptors, androgen receptors, peroxisome proliferator activated receptors, the aryl hydrocarbon receptor, and thyroid hormone receptors. Further, studies indicate that agrochemicals can exert toxicity through non-nuclear receptor-mediated mechanisms of action. Such non-genomic mechanisms of action include interference with peptide, steroid, or amino acid hormone response, synthesis and degradation as well as epigenetic changes (DNA methylation and histone modifications). This review summarizes the major mechanisms of action by which agrochemicals target the endocrine system.
Collapse
Affiliation(s)
- Genoa R Warner
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Vasiliki E Mourikes
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Alison M Neff
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, 61802, IL, United States.
| |
Collapse
|
8
|
Komsky-Elbaz A, Saktsier M, Biran D, Argov-Argaman N, Azaizeh H, Landau YS, Roth Z. Atrazine-induced toxicity in goat spermatozoa is alleviated to some extent by polyphenol-enriched feed. CHEMOSPHERE 2019; 236:124858. [PMID: 31549674 DOI: 10.1016/j.chemosphere.2019.124858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Atrazine (ATZ) is one of the most extensively used herbicides to control growth of broadleaf and grassy weeds in crops. ATZ and its metabolites have deleterious effect on sperm quality. ATZ is also known for its ability to induce oxidative stress. Pistacia lentiscus (PL) is an evergreen shrub, with a high content of polyphenols in leaf extracts, with a known anti-inflammatory and antioxidant properties. The protective effect of PL or its extracts against ATZ-induced damage have not been yet evaluated. We examined the harmful effects of atrazine (ATZ) exposure on male reproductive system, using goat (Capra hircus) model spermatozoa and the protective effects of PL and PL ethanolic extract (PLE). In in-vivo experiments, male goats were fed a standard ration or one supplemented with 15 mg ATZ/kg body weight daily, for 6 months. Exposure to ATZ impaired the spermatozoa's morphology, viability, mitochondrial membrane potential and cell lipid composition. These alterations may in turn lead to reduced fertilization competence of the exposed spermatozoa. In an ex-vivo experiment, spermatozoa from male goats fed a standard ration or one supplemented with PL or PLE for 90 days and then were exposed to 1 μM ATZ or 10 μM of its major metabolite diaminochlorotriazine (DACT) through in-vitro capacitation. Prefeeding with PL or PLE partially attenuated the harmful effects of ATZ and DACT. Dietary supplementation with polyphenol-enriched feed can protect, to a certain extent, spermatozoa in males exposed to environmental toxicants.
Collapse
Affiliation(s)
- Alisa Komsky-Elbaz
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel; Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel; Center of Excellence in Agriculture and Environmental Health, The Hebrew University of Jerusalem, Israel
| | - Moty Saktsier
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel; Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - David Biran
- Extension Services, Ministry of Agriculture and Rural Development, Bet Dagan, Israel
| | - Nurit Argov-Argaman
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel
| | - Hassan Azaizeh
- The Institute of Applied Research (affiliated with University of Haifa), The Galilee Society, Shefa-Amr, 20200, Israel; Tel-Hai College, Department of Environmental Sciences, Upper Galilee, 12208, Israel
| | - Yan S Landau
- Department of Natural Resources and Agronomy, Agricultural Research Organization, The Volcani Center, Bet-Dagan, Israel
| | - Zvi Roth
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel; Animal Sperm Research Center, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel; Center of Excellence in Agriculture and Environmental Health, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
9
|
Ma LY, Zhang N, Liu JT, Zhai XY, Lv Y, Lu FF, Yang H. Uptake of atrazine in a paddy crop activates an epigenetic mechanism for degrading the pesticide in plants and environment. ENVIRONMENT INTERNATIONAL 2019; 131:105014. [PMID: 31351384 DOI: 10.1016/j.envint.2019.105014] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/15/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
There is a rising public concern on accumulation of harmful pesticides in environment and crops. Epigenetic alteration caused by environmental contaminants is one of the key factors in the etiology of environmentally-associated diseases. Growing evidence shows that harmful pesticide atrazine (ATZ) has a profound effect on DNA methylation in human genome, however, little is known about the epigenetic mechanism underlying ATZ accumulation and degradation in plants, particularly in edible plants growing in the ATZ-contaminated areas. This study investigated the atrazine elimination that was mediated by DNA methylation and histone modification in the food crop rice. Studies with two mutant Osmet1-1/2 defective in the genomic CG DNA methylation show significantly lower accumulation of atrazine than its wild-types. Profiling methylome and transcriptome of ATZ-exposed Osmet1 and wild-type identified many differentially methylated loci (≥2 fold change, p < 0.05), which were associated with activation of genes responsible for atrazine degradation in plants. Three demethylated loci OsGTF, OsHPL1 and OsGLH were expressed in eukaryotic yeast cells and found to eliminate a marked proportion of ATZ in growth environments by 48%, 43% and 32%, respectively, whereas the increased ATZ-degraded products were characterized using UPLC/Q-TOF-MS/MS. These results suggest that activation of the loci mediated by ATZ-induced hypomethylation could be responsible for the removal of ATZ in rice. Our work helps understand a new regulatory mechanism underlying the atrazine degradation in crops which may potentially reduce the environmental risks to human health through food chain.
Collapse
Affiliation(s)
- Li Ya Ma
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Tong Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Yan Zhai
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Lv
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Fan Lu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Yang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Song X, Zhang F, Chen D, Bian Q, Zhang H, Liu X, Zhu B. Study on systemic and reproductive toxicity of acetochlor in male mice. Toxicol Res (Camb) 2019. [DOI: 10.1039/c8tx00178b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Acetochlor is one of the three most abundant herbicides used in China, which is a pre-emergence herbicide belonging to chloroacetanilides.
Collapse
Affiliation(s)
- Xianping Song
- Institute of Occupational Disease Prevention
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
- Kunshan Municipal Center for Disease Prevention and Control
| | - Feng Zhang
- Institute of Occupational Disease Prevention
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
| | - Dongya Chen
- Department of Toxicology and Function Assessment
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
| | - Qian Bian
- Department of Toxicology and Function Assessment
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
| | - Xin Liu
- Institute of Occupational Disease Prevention
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
| | - Baoli Zhu
- Institute of Occupational Disease Prevention
- Jiangsu Provincial Center for Disease Control and Prevention
- Nanjing
- China
| |
Collapse
|
11
|
Grasselli F, Bussolati S, Ramoni R, Grolli S, Basini G. Simazine, a triazine herbicide, disrupts swine granulosa cell functions. Anim Reprod 2018; 15:3-11. [PMID: 33365088 PMCID: PMC7746213 DOI: 10.21451/1984-3143-2017-ar960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The triazine herbicide simazine is a pesticide commonly detected in surface and ground waters,
although banned in most European countries since 2004. Concerns for humans and animal health
result from its potential endocrine disrupting action, that can lead to reproductive disorders.
The present in vitro study was undertaken to study simazine effects on
swine granulosa cell function, namely cell viability, proliferation, steroidogenesis
and NO production. Moreover, the ability of this substance to interfere with the angiogenetic
process, a crucial event in reproductive function, was taken into account. Our data document
that simazine treatment, at 0.1 or 10 μM concentration levels, stimulates granulosa
cell proliferation and viability and impairs steroidogenesis, increasing in particular
progesterone production. In addition, the in vitro angiogenesis bioassay
revealed a significant simazine stimulatory effect on immortalized porcine Aortic Endothelial
Cell proliferation. Collectively, these results show that simazine can display disruptive
effects on ovarian cell functional parameters, possibly resulting in reproductive dysfunction.
This hypothesis is also supported by the observed pro-angiogenetic properties of this herbicide,
as already suggested for different endocrine disruptors.
Collapse
|
12
|
Želježić D, Žunec S, Bjeliš M, Benković V, Mladinić M, Lovaković Tariba B, Pavičić I, Marjanović Čermak AM, Kašuba V, Milić M, Pizent A, Lucić Vrdoljak A, Kopjar N. Effects of the chloro-s-triazine herbicide terbuthylazine on DNA integrity in human and mouse cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19065-19081. [PMID: 29721798 DOI: 10.1007/s11356-018-2046-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Terbuthylazine belongs to the chloro-s-triazine group of herbicides and acts primarily as a photosynthesis inhibitor. The mechanisms of action related to its exposure, relevant both in animals and humans, are still insufficiently investigated. This comprehensive study focused on the outcomes of terbuthylazine exposure at cell level in vitro, and a mice model in vivo. Experiments in vitro were conducted on whole human peripheral blood, isolated lymphocytes, and HepG2 cells exposed for 4 h to terbuthylazine at 8.00, 0.80, and 0.58 ng/mL, which is comparable with current reference values set by the European Commission in 2011. Terbuthylazine cytotoxicity was evaluated using dual fluorescent staining with ethidium bromide and acridine orange on lymphocytes, and CCK-8 colorimetric assay on HepG2 cells. The levels of DNA damage were measured using alkaline and hOGG1-modified comet assays. The potency of terbuthlyazine regarding induction of oxidative stress in vitro was studied using a battery of standard oxidative stress biomarkers. The in vivo experiment was conducted on Swiss albino mice exposed to terbuthlyazine in the form of an active substance and its formulated commercial product Radazin TZ-50 at a daily dose of 0.0035 mg/kg bw for 14 days. Following exposure, the DNA damage levels in leukocytes, bone marrow, liver, and kidney cells of the treated mice were measured using an alkaline comet assay. In vitro results suggested low terbuthylazine cytotoxicity in non-target cells. The highest tested concentration (8.00 ng/mL) reduced lymphocyte viability by 15%, mostly due to apoptosis, while cytotoxic effects in HepG2 cells at the same concentration were negligible. Acute in vitro exposure of human lymphocytes and HepG2 cells to terbuthylazine resulted in low-level DNA instability, as detected by the alkaline comet assay. Further characterization of the mechanisms behind the DNA damage obtained using the hOGG1-modified comet assay indicated that oxidative DNA damage did not prevail in the overall damage. This was further confirmed by the measured levels of oxidative stress markers, which were mostly comparable to control. Results obtained in mice indicate that both the active substance and formulated commercial product of terbuthylazine produced DNA instability in all of the studied cell types. We found that DNA in liver and kidney cells was more prone to direct toxic effects of the parent compound and its metabolites than DNA in leukocytes and bone marrow cells. The overall findings suggest the formation of reactive terbuthylazine metabolites capable of inducing DNA cross-links, which hinder DNA migration. These effects were most pronounced in liver cells in vivo and HepG2 cells in vitro. To provide a more accurate explanation of the observed effects, additional research is needed. Nevertheless, the present study provides evidence that terbuthylazine at concentrations comparable with current reference values possesses toxicological risk because it caused low-level DNA instability, both at cellular and animal organism level, which should be further established in forthcoming studies.
Collapse
Affiliation(s)
- Davor Želježić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Suzana Žunec
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Marija Bjeliš
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Vesna Benković
- Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Blanka Lovaković Tariba
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | | | - Vilena Kašuba
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Alica Pizent
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Ana Lucić Vrdoljak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia
| | - Nevenka Kopjar
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, HR-10000, Zagreb, Croatia.
| |
Collapse
|
13
|
Engeli RT, Fürstenberger C, Kratschmar DV, Odermatt A. Currently available murine Leydig cell lines can be applied to study early steps of steroidogenesis but not testosterone synthesis. Heliyon 2018; 4:e00527. [PMID: 29560447 PMCID: PMC5857625 DOI: 10.1016/j.heliyon.2018.e00527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 02/08/2023] Open
Abstract
Androgen biosynthesis in males occurs to a large extent in testicular Leydig cells. This study focused on the evaluation of three murine Leydig cell lines as potential screening tool to test xenobiotics interfering with gonadal androgen synthesis. The final step of testosterone (T) production in Leydig cells is catalyzed by the enzyme 17β-hydroxysteroid dehydrogenase 3 (17β-hsd3). The endogenous 17β-hsd3 mRNA expression and Δ4-androstene-3,17-dione (AD) to T conversion were determined in the murine cell lines MA-10, BLTK1 and TM3. Additionally, effects of 8-Br-cAMP and forskolin stimulation on steroidogenesis and T production were analyzed. Steroids were quantified in supernatants of cells using liquid chromatography–tandem mass spectrometry. Unstimulated cells incubated with AD produced only very low T but substantial amounts of the inactive androsterone. Stimulated cells produced low amounts of T, moderate amounts of AD, but high amounts of progesterone. Gene expression analyses revealed barely detectable 17β-hsd3 levels, absence of 17β-hsd5 (Akr1c6), but substantial 17β-hsd1 expression in all three cell lines. Thus, MA-10, BLTK1 and TM3 cells are not suitable to study the expression and activity of the gonadal T synthesizing enzyme 17β-hsd3. The low T production reported in stimulated MA-10 cells are likely a result of the expression of 17β-hsd1. This study substantiates that the investigated Leydig cell lines MA-10, BLTK1, and TM3 are not suitable to study gonadal androgen biosynthesis due to altered steroidogenic pathways. Furthermore, this study emphasizes the necessity of mass spectrometry-based steroid quantification in experiments using steroidogenic cells such as Leydig cells.
Collapse
Affiliation(s)
- Roger T Engeli
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Cornelia Fürstenberger
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Denise V Kratschmar
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
14
|
Persistent testicular structural and functional alterations after exposure of adult rats to atrazine. Reprod Toxicol 2017; 73:201-213. [PMID: 28847621 DOI: 10.1016/j.reprotox.2017.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
Abstract
Atrazine is an endocrine disruptor affecting testicular steroidogenesis, and promoting testicular atrophy and 3β-HSD reduction. However, it remains unknown whether these effects are reversible or permanent. To address this issue was the aim of this study. Exposition of rats to 200mg/kg of atrazine resulted in transient increase in testicular weight, seminiferous tubules dilation and atrophy, and reduction in Leydig cell 3β-HSD. Testicular atrophy and 3β-HSD reduction were more pronounced after the recovery period of 75days. There was increase in aromatase expression after long-term exposure but it returned to control level after recovery. Moreover, there was increase in ED1-/ED2+, ED1+/ED2+ and ED1+/ED2- macrophages, in the recovery group. These macrophages were positive for 3β-HSD, thereby raising possibility of their involvement in steroidogenesis. These findings further emphasize the adverse effects of atrazine on male reproduction, highlighting that testicular damages may be irreversible even after a recovery period longer than the spermatogenic cycle.
Collapse
|
15
|
Liu Z, Fu Z, Jin Y. Immunotoxic effects of atrazine and its main metabolites at environmental relevant concentrations on larval zebrafish (Danio rerio). CHEMOSPHERE 2017; 166:212-220. [PMID: 27697710 DOI: 10.1016/j.chemosphere.2016.09.100] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/21/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Atrazine (ATZ) and its main metabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in surface water around the world. In the present study, to determine their immunotoxic effects, zebrafish during the early developmental stage were exposed to ATZ and its main metabolites at environmental concentrations (30, 100, 300 μg L-1). It was observed that ATZ, DACT, DIP and DE selectively induced the transcription of immunotoxic related genes including Tnfα, Il-1β, Il-6, Il-8, Cxcl-clc and Cc-chem in larval zebrafish. Pretreatment with ATZ and its metabolites also changed the immune response of larval zebrafish to LPS and E. coli challenge, which was indicated by the alternation in the mRNA levels of some cytokines. In addition, 300 μg L-1 ATZ and DACT exposure could also increase the release of tryptase into water, indicating that they increased the anaphylactoid reaction in the larval zebrafish. According to these results, both of ATZ and its metabolites exposure could cause the immunotoxicity in larval zebrafish. Thus, we thought that the ecological risks of the metabolites of ATZ on aquatic organisms could not be ignored.
Collapse
Affiliation(s)
- Zhenzhen Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
16
|
Komsky-Elbaz A, Roth Z. Effect of the herbicide atrazine and its metabolite DACT on bovine sperm quality. Reprod Toxicol 2017; 67:15-25. [DOI: 10.1016/j.reprotox.2016.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023]
|
17
|
Pogrmic-Majkic K, Fa S, Samardzija D, Hrubik J, Kaisarevic S, Andric N. Atrazine activates multiple signaling pathways enhancing the rapid hCG-induced androgenesis in rat Leydig cells. Toxicology 2016; 368-369:37-45. [DOI: 10.1016/j.tox.2016.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/17/2016] [Accepted: 08/19/2016] [Indexed: 01/07/2023]
|
18
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Liu Z, Wang Y, Zhu Z, Yang E, Feng X, Fu Z, Jin Y. Atrazine and its main metabolites alter the locomotor activity of larval zebrafish (Danio rerio). CHEMOSPHERE 2016; 148:163-170. [PMID: 26803580 DOI: 10.1016/j.chemosphere.2016.01.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Atrazine (ATZ) and its main chlorometabolites, i.e., diaminochlorotriazine (DACT), deisopropylatrazine (DIP), and deethylatrazine (DE), have been widely detected in aquatic systems near agricultural fields. However, their possible effects on aquatic animals are still not fully understood. In this study, it was observed that several developmental endpoints such as the heart beat, hatchability, and morphological abnormalities were influenced by ATZ and its metabolites in different developmental stages. In addition, after 5 days of exposure to 30, 100, 300 μg L(-1) ATZ and its main chlorometabolites, the swimming behaviors of larval zebrafish were significantly disturbed, and the acetylcholinesterase (AChE) activities were consistently inhibited. Our results also demonstrate that ATZ and its main chlorometabolites are neuroendocrine disruptors that impact the expression of neurotoxicity-related genes such as Ache, Gap43, Gfap, Syn2a, Shha, Mbp, Elavl3, Nestin and Ngn1 in early developmental stages of zebrafish. According to our results, it is possible that not only ATZ but also its metabolites (DACT, DIP and DE) have the same or even more toxic effects on different endpoints of the early developmental stages of zebrafish.
Collapse
Affiliation(s)
- Zhenzhen Liu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yueyi Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhihong Zhu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Enlu Yang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiayan Feng
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
20
|
Karmaus AL, Toole CM, Filer DL, Lewis KC, Martin MT. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells. Toxicol Sci 2016; 150:323-32. [PMID: 26781511 PMCID: PMC4809454 DOI: 10.1093/toxsci/kfw002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a 3 stage screening strategy. The first stage established the maximum tolerated concentration (MTC; ≥ 70% viability) per sample. The second stage quantified changes in hormone levels at the MTC whereas the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were prestimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2060 chemical samples evaluated, 524 samples were selected for 6-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into 5 distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A distinct pattern was observed between imidazole and triazole fungicides suggesting potentially distinct mechanisms of action. From a chemical testing and prioritization perspective, this assay platform provides a robust model for high-throughput screening of chemicals for effects on steroidogenesis.
Collapse
Affiliation(s)
- Agnes L Karmaus
- *National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina;
| | | | - Dayne L Filer
- *National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina
| | | | - Matthew T Martin
- *National Center for Computational Toxicology, US EPA, Research Triangle Park, North Carolina;
| |
Collapse
|
21
|
Silva VP, Moreira-Santos M, Mateus C, Teixeira T, Ribeiro R, Viegas CA. Evaluation of Arthrobacter aurescens Strain TC1 as Bioaugmentation Bacterium in Soils Contaminated with the Herbicidal Substance Terbuthylazine. PLoS One 2015; 10:e0144978. [PMID: 26662024 PMCID: PMC4684385 DOI: 10.1371/journal.pone.0144978] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/25/2015] [Indexed: 11/17/2022] Open
Abstract
In the last years the chloro-s-triazine active substance terbuthylazine has been increasingly used as an herbicide and may leave residues in the environment which can be of concern. The present study aimed at developing a bioaugmentation tool based on the soil bacterium Arthrobacter aurescens strain TC1 for the remediation of terbuthylazine contaminated soils and at examining its efficacy for both soil and aquatic compartments. First, the feasibility of growing the bioaugmentation bacterium inocula on simple sole nitrogen sources (ammonium and nitrate) instead of atrazine, while still maintaining its efficiency to biodegrade terbuthylazine was shown. In sequence, the successful and quick (3 days) bioremediation efficacy of ammonium-grown A. aurescens TC1 cells was proven in a natural soil freshly spiked or four-months aged with commercial terbuthylazine at a dose 10× higher than the recommended in corn cultivation, to mimic spill situations. Ecotoxicity assessment of the soil eluates towards a freshwater microalga supported the effectiveness of the bioaugmentation tool. Obtained results highlight the potential to decontaminate soil while minimizing terbuthylazine from reaching aquatic compartments via the soil-water pathway. The usefulness of this bioaugmentation tool to provide rapid environment decontamination is particularly relevant in the event of accidental high herbicide contamination. Its limitations and advantages are discussed.
Collapse
Affiliation(s)
- Vera P Silva
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Lisboa, Portugal
| | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carla Mateus
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Lisboa, Portugal
| | - Tânia Teixeira
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Rui Ribeiro
- CFE-Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Cristina A Viegas
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico (IST), Universidade de Lisboa (UL), Lisboa, Portugal.,Department of Bioengineering, IST, UL, Lisboa, Portugal
| |
Collapse
|
22
|
Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. TOXICS 2015; 3:414-450. [PMID: 28713818 PMCID: PMC5507375 DOI: 10.3390/toxics3040414] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine disrupting chemicals (EDC) are exogenous agents that alter endogenous hormone signaling pathways. These chemicals target the neuroendocrine system which is composed of organs throughout the body that work alongside the central nervous system to regulate biological processes. Of primary importance is the hypothalamic-pituitary-gonadal (HPG) axis which is vital for maintaining proper reproductive function. Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a pre-emergent herbicide used to prevent the growth of weeds on various crops. This herbicide is reported to widely contaminate potable water supplies everywhere it is applied. As such, the European Union banned the use of atrazine in 2004. Currently the United States Environmental Protection Agency regulates atrazine at 3 parts per billion (ppb; μg/L) in drinking water, while the World Health Organization recently changed their drinking water guideline to 100 ppb. Atrazine is implicated to be an EDC that alters reproductive dysfunction by targeting the HPG axis. However, questions remain as to the human health risks associated with atrazine exposure with studies reporting mixed results on the ability of atrazine to alter the HPG axis. In this review, the current findings for atrazine’s effects on the HPG axis are examined in mammalian, anuran, and fish models and in epidemiological studies.
Collapse
|
23
|
Li X, Li H, Jia L, Li X, Rahman N. Oestrogen action and male fertility: experimental and clinical findings. Cell Mol Life Sci 2015; 72:3915-30. [PMID: 26160724 PMCID: PMC11113595 DOI: 10.1007/s00018-015-1981-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 12/24/2022]
Abstract
A proper balance between androgen and oestrogen is fundamental for normal male reproductive development and function in both animals and humans. This balance is governed by the cytochrome P450 aromatase, which is expressed also under spatio-temporal control. Oestrogen receptors ERα and/or ERβ, together with the membrane-associated G-protein-coupled functional ER (GPER), mediate the effects of oestrogen in the testis. Oestrogen action in male reproduction is more complex than previously predicted. The androgen/oestrogen balance and its regulation in the masculinisation programming window (MPW) during foetal life is the most critical period for the development of the male reproductive system. If this balance is impaired during the MPW, the male reproductive system may be negatively affected. Recent data from genetically modified mice and human infertile patients have shown that oestrogens may promote the engulfment of live Leydig cells by macrophages leading to male infertility. We also discuss recent data on environmental oestrogen exposure in men and rodents, where a rodent-human distinction is crucial and analyse some aspects of male fertility potentially related to impaired oestrogen/androgen balance.
Collapse
Affiliation(s)
- Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, Faculty of Biological Sciences, China Agricultural University, Beijing, China.
| | - Haiwen Li
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, USA
| | - Lina Jia
- State Key Laboratory of the Agro-Biotechnology, Faculty of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Nafis Rahman
- Department of Physiology, Institute F Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
24
|
Karmaus AL, Zacharewski TR. Atrazine-Mediated Disruption of Steroidogenesis in BLTK1 Murine Leydig Cells. Toxicol Sci 2015; 148:544-54. [PMID: 26377646 DOI: 10.1093/toxsci/kfv204] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Atrazine (ATR) is a broad-spectrum triazine herbicide that disrupts steroidogenesis resulting in reproductive and developmental toxicity at high doses. Mouse BLTK1 Leydig cells were used as a steroidogenic model to investigate the effects of ATR on testosterone (T) biosynthesis. Induction of steroidogenesis by 3 ng/ml recombinant human chorionic gonadotropin (rhCG) induced intracellular 3',5' cyclic adenosine monophosphate (cAMP) approximately 20-fold and T approximately 3-fold at 4 h. Co-treatment with 300 μM ATR super-induced cAMP levels 100-fold yet antagonized rhCG-mediated induction of T approximately 20% at 4 h. ATR inhibited cAMP-specific phosphodiesterase (cPDE) with an IC50 of ≥98 μM, suggesting cPDE inhibition contributes to the super-induction of cAMP. However, concentrations of up to 3 mM db-cAMP did not antagonize rhCG induction of T levels, suggesting cAMP super-induction alone does not decrease T biosynthesis. Western analysis of cAMP-activated protein kinase A (PKA) target proteins identified ATR-mediated concentration-dependent alterations in phosphorylation including phospho-CREB. These results suggest the cPDE inhibition by ATR and super-induction of cAMP are independent of effects on T levels, and that altered phosphorylation of key steroidogenic regulatory proteins may underlie ATR-mediated disruption of steroidogenesis.
Collapse
Affiliation(s)
- Agnes L Karmaus
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Timothy R Zacharewski
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
25
|
Xing H, Wang C, Wu H, Chen D, Li S, Xu S. Effects of atrazine and chlorpyrifos on DNA methylation in the brain and gonad of the common carp. Comp Biochem Physiol C Toxicol Pharmacol 2015; 168:11-9. [PMID: 25460047 DOI: 10.1016/j.cbpc.2014.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 12/28/2022]
Abstract
DNA methylation is known to play an important role in the regulation of gene expression in animal. The purpose of the present study was to examine the effect of atrazine (ATR), chlorpyrifos (CPF) and combined ATR/CPF exposure on DNA methylation in the brain and gonad of common carp (Cyprinus carpio L.). The carp were sampled after a 40-d exposure to CPF and ATR, individually or in combination, followed by a 40-d recovery to measure the levels of global DNA methylation and the expression of methylation enzymes (DNA methyltransferases (DNMTs) and methylcytosine binding domain 2 (MBD2)) in the brain and gonad tissues. The results revealed that a significant global DNA hypomethylation in the common carp exposed to ATR, CPF and their mixture was observed compared to the control fish. The MBD2 mRNA expression was up-regulated in the brain and gonad of the common carp exposed to ATR, CPF and their mixture, in contrast, the DNMTs mRNA expression was down-regulated. The information regarding the effects of ATR and CPF on DNA methylation status generated in this study is important for pesticides toxicology evaluation. However, the effect of ATR and CPF on the methylation status of specific genes, as well as its detailed mechanism requires further investigation.
Collapse
Affiliation(s)
- Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Animal Health Supervision Institute of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin 150069, PR China
| | - Chao Wang
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Hongda Wu
- Institute of Animal Science, Academy of Agricultural Sciences of Heilongjiang Province, 368 Xuefu Road, Xiangfang District, Harbin 150086, PR China
| | - Dechun Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Shu Li
- College of Animal Science and Technology, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|
26
|
Pogrmic-Majkic K, Samardzija D, Fa S, Hrubik J, Glisic B, Kaisarevic S, Andric N. Atrazine Enhances Progesterone Production Through Activation of Multiple Signaling Pathways in FSH-Stimulated Rat Granulosa Cells: Evidence for Premature Luteinization1. Biol Reprod 2014; 91:124. [DOI: 10.1095/biolreprod.114.122606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|