1
|
Zhang J, Campion S, Catlin N, Reagan WJ, Palyada K, Ramaiah SK, Ramanathan R. Circulating microRNAs as promising testicular translatable safety biomarkers: current state and future perspectives. Arch Toxicol 2023; 97:947-961. [PMID: 36795116 PMCID: PMC9933818 DOI: 10.1007/s00204-023-03460-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Drug-induced testicular injury (DITI) is one of the often-observed and challenging safety issues seen during drug development. Semen analysis and circulating hormones currently utilized have significant gaps in their ability to detect testicular damage accurately. In addition, no biomarkers enable a mechanistic understanding of the damage to the different regions of the testis, such as seminiferous tubules, Sertoli, and Leydig cells. MicroRNAs (miRNAs) are a class of non-coding RNAs that modulate gene expression post-transcriptionally and have been indicated to regulate a wide range of biological pathways. Circulating miRNAs can be measured in the body fluids due to tissue-specific cell injury/damage or toxicant exposure. Therefore, these circulating miRNAs have become attractive and promising non-invasive biomarkers for assessing drug-induced testicular injury, with several reports on their use as safety biomarkers for monitoring testicular damage in preclinical species. Leveraging emerging tools such as 'organs-on-chips' that can emulate the human organ's physiological environment and function is starting to enable biomarker discovery, validation, and clinical translation for regulatory qualification and implementation in drug development.
Collapse
Affiliation(s)
- Jiangwei Zhang
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 10777 Science Center Dr, San Diego, CA, USA
| | - Sarah Campion
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Natasha Catlin
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - William J Reagan
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA
| | - Kiran Palyada
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 10777 Science Center Dr, San Diego, CA, USA
| | - Shashi K Ramaiah
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 1 Portland St., Cambridge, MA, 02139, USA
| | - Ragu Ramanathan
- Drug Safety Research & Development, Pfizer Worldwide Research, Development & Medical, 445 Eastern Point Rd., Groton, CT, USA.
| |
Collapse
|
2
|
Guo L, Qin TZ, Liu LY, Lai PP, Xue YZ, Jing YT, Zhang W, Li W, Li J, Ding GR. The Abscopal Effects of Cranial Irradiation Induce Testicular Damage in Mice. Front Physiol 2021; 12:717571. [PMID: 34867437 PMCID: PMC8637864 DOI: 10.3389/fphys.2021.717571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/07/2021] [Indexed: 11/14/2022] Open
Abstract
To investigate whether the abscopal effects of cranial irradiation (C-irradiation) cause testicular damage in mice, male C57BL/6 mice (9weeks of age) were randomly divided into a sham irradiation group, a shielded group and a C-irradiation group and administered sham/shielded irradiation or C-irradiation at a dose rate of 2.33Gy/min (5Gy/d for 4 d consecutively). All mice were sacrificed at 4weeks after C-irradiation. We calculated the testis index, observed testicular histology by haematoxylin-eosin (HE) staining and observed testicular ultrastructure by transmission electron microscopy. Western blotting was used to determine the protein levels of Bax, Bcl-2, Cleaved caspase 3, glial cell line-derived neurotrophic factor (GDNF) and stem cell factor (SCF) in the testes of mice. Immunofluorescence staining was performed to detect the expression of Cleaved caspase 3 and 3β hydroxysteroid dehydrogenase (3βHSD), and a TUNEL assay was used to confirm the location of apoptotic cells. The levels of testosterone (T), GDNF and SCF were measured by ELISA. We also evaluated the sperm quality in the cauda epididymides by measuring the sperm count, abnormality, survival rate and apoptosis rate. The results showed that there was no significant difference in testicular histology, ultrastructure or sperm quality between the shielded group and sham group. Compared with the sham/shielded group, the C-irradiation group exhibited a lower testis index and severely damaged testicular histology and ultrastructure at 4weeks after C-irradiation. The levels of apoptosis in the testes increased markedly in the C-irradiation group, especially in spermatogonial stem cells. The levels of serum T and testicular 3βHSD did not obviously differ between the sham group and the C-irradiation group, but the levels of GDNF and SCF in the testes increased in the C-irradiation group, compared with the sham group. In addition, the sperm count and survival rate decreased in the C-irradiation group, while the abnormality and apoptosis rate increased. Under these experimental conditions, the abscopal effects of C-irradiation induced testicular damage with regard to both structure and function and ultimately decreased sperm quality in mice. These findings provide novel insights into prevention and treatment targets for male reproductive damage induced by C-irradiation.
Collapse
Affiliation(s)
- Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tong-Zhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Li-Yuan Liu
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Pan-Pan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yi-Zhe Xue
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yun-Tao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Wei Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Wei Li
- Department of Histology and Embryology, School of Basic Medical Science, Fourth Military Medical University, Xi'an, China
| | - Jing Li
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Gui-Rong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Fourth Military Medical University, Xi'an, China.,Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| |
Collapse
|
3
|
Bianchi E, Stermer A, Nolan T, Li H, Hall S, Boekelheide K, Sigman M, Hwang K. Highly conserved sperm function-related transcripts across three species: human, rat and mouse. Reprod Toxicol 2021; 104:44-51. [PMID: 34174366 DOI: 10.1016/j.reprotox.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/24/2023]
Abstract
Assessing male reproductive toxicity of environmental and therapeutic agents relies on the histopathology of the testis and epididymis in a pre-clinical setting. Animal histopathology poorly correlates with human sperm parameters, and none of these current methods are strong indicators of sperm health or reproductive potential. Therefore, there is an urgent need to identify a translatable, non-invasive and reliable approach to monitor environmental and therapeutic agents' effects on male reproductive health. mRNA sequences were analyzed in mouse, rat and human sperm samples to identify sperm transcriptomic similarities across species that could be used as biomarkers to predict male reproductive toxicity in animal models. Semen specimens were collected from men aged 18 to 55 years with proven fertility. Rat and mouse semen specimens were collected via needle punctures of the cauda epididymides. Sperm RNAs were extracted using an optimized sperm RNA isolation protocol and subjected to polyA-purified mRNA-sequencing. Bioinformatics analyses, including differential abundance and gene set enrichment analysis, were used to investigate the biological and molecular functions of all shared and differentially abundant transcripts across species. Transcriptome profiling identified 6,684 similarly expressed transcripts within the three species of which 1,579 transcripts were found to be involved in spermatogenic functions. Our findings have shown that sperm transcriptome is highly species dependent, however, there are some key similarities among transcripts that are required for fertility. Based on these similarities, sperm mRNA biomarker may be developed to monitor male reproductive toxicity where rodent models would make suitable laboratory substitutes for human.
Collapse
Affiliation(s)
- Enrica Bianchi
- Division of Urology, Rhode Island Hospital, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Angela Stermer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Timothy Nolan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Hui Li
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Mark Sigman
- Division of Urology, Rhode Island Hospital, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Shing JC, Schaefer K, Grosskurth SE, Vo AH, Sharapova T, Bodié K, Kambara T, Buck WR. Small RNA Sequencing to Discover Circulating MicroRNA Biomarkers of Testicular Toxicity in Dogs. Int J Toxicol 2020; 40:26-39. [PMID: 33176523 DOI: 10.1177/1091581820961515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Predictive indicators of testicular toxicity could improve drug development by allowing early in-life screening for this adverse effect before it becomes severe. We hypothesized that circulating microRNAs (miRNAs) could serve as testicular toxicity biomarkers in dogs. Herein, we describe the results of an exploratory study conducted to discover biomarkers of drug-induced testicular injury. Following a dose-selection study using the testicular toxicant ethylene glycol monomethyl ether (EGME), we chose a dose of 50 mg/kg/d EGME to avoid systemic toxicity and treated 2 groups of dogs (castrated, non-castrated) for 14 to 28 days. Castrated animals were used as negative controls to identify biomarkers specific for testicular toxicity because EGME can cause toxicity to organ systems in addition to the testis. Blood was collected daily during the dosing period, followed by recovery for 29 to 43 days with less frequent sampling. Dosing was well tolerated, resulting in mild-to-moderate degeneration in testes and epididymides. Global profiling of serum miRNAs at selected dosing and recovery time points was completed by small RNA sequencing. Bioinformatics data analysis using linear modeling demonstrated several circulating miRNAs that were differentially abundant during the dosing period compared with baseline and/or castrated control samples. Confirmatory reverse transcription quantitative polymerase chain reaction data in these animals was unable to detect sustained alterations of miRNAs in serum, except for 1 potential candidate cfa-miR-146b. Taken together, we report the results of a comprehensive exploratory study and suggest future directions for follow-up research to address the challenge of developing diagnostic biomarkers of testicular toxicity.
Collapse
Affiliation(s)
| | - Kai Schaefer
- 385232AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | - Andy H Vo
- 359181AbbVie, Inc. North Chicago, IL, USA
| | | | - Karen Bodié
- 385232AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany
| | | | | |
Collapse
|
5
|
Kawata R, Kagawa T, Koya Y, Kajiyama H, Oda S, Yokoi T. Exploration of small RNA biomarkers for testicular injury in the serum exosomes of rats. Toxicology 2020; 440:152490. [PMID: 32418910 DOI: 10.1016/j.tox.2020.152490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 01/15/2023]
Abstract
Testicular injury is often observed in drug development. Serum hormones are usually used as noninvasive biomarkers for testicular injury; however, their sensitivities are low. Therefore, it is difficult to monitor testicular injury in drug development. In recent years, molecules in body fluid exosomes have attracted attention as biomarkers for diseases. In this study, small RNAs in serum exosomes were analyzed to identify noninvasive biomarkers of testicular injury in rats, which are often used in preclinical drug development. The rat models of testicular injury were prepared by a single oral administration of 2000 mg/kg ethylene glycol monomethyl ether, in which spermatocyte degeneration and Sertoli cell vacuolation were observed, or 400 mg/kg carbendazim, in which Sertoli cell vacuolation and seminiferous tubule dilation were observed. Serum exosomal small RNA-seq analysis of these models was performed. The analysis identified 3 small RNAs that fluctuated in common between the models, and miR-423-5p and miR-128-3p were selected as candidate markers. For evaluating these candidate markers in other testicular injury models, the models were prepared by a single oral administration of 60 mg/kg 1,3-dinitrobenzene or 500 mg/kg nitrofurazone, and spermatocyte degeneration and Sertoli cell vacuolation were observed. In qPCR analysis, these exosomal miRNAs were upregulated in all models except for the 1,3-dinitrobenzene model, in which severe hemolysis was observed. By contrast, these miRNAs in whole serum extracts did not significantly change in any of the models. In conclusion, we identified miR-423-5p and miR-128-3p in serum exosomes as noninvasive biomarkers for testicular injury in rats.
Collapse
Affiliation(s)
- Reo Kawata
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; Department of Investigative Toxicology, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-0192, Japan
| | - Takumi Kagawa
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshihiro Koya
- Bell Research Center Obstetrics and Gynecology, Academic Research & Industrial-Academia Collaboration, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
6
|
Stermer AR, Reyes G, Hall SJ, Boekelheide K. Small RNAs in Rat Sperm Are a Predictive and Sensitive Biomarker of Exposure to the Testicular Toxicant Ethylene Glycol Monomethyl Ether. Toxicol Sci 2020; 169:399-408. [PMID: 30768127 DOI: 10.1093/toxsci/kfz041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Testicular histology and semen parameters are considered the gold standards when determining male reproductive toxicity. Ethylene glycol monomethyl ether (EGME) is a testicular toxicant with well-described effects on histopathology and sperm parameters. To compare the predictivity and sensitivity of molecular biomarkers of testicular toxicity to the traditional endpoints, small RNAs in the sperm were analyzed by next generation RNA-sequencing (RNA-seq). Adult rats were exposed to 0, 50, 60, or 75 mg/kg EGME by oral gavage for 5 consecutive days. Testis histology, epididymal sperm motility, and sperm small RNAs, including microRNAs (miRNAs), mRNA fragments, piwi-interacting RNAs (piRNAs), and tRNA fragments (tRFs), were analyzed 5 weeks after cessation of exposure. Testicular histology showed a significant dose-dependent increase in retained spermatid heads (RSH), while sperm motility declined with increasing dose. RNA-sequencing of sperm small RNAs was used to identify significant dose-dependent changes in percent mRNA fragments (of total reads), percent miRNAs (of total reads), average tRF length, average piRNA length, and piRNA and tRF length-distributions. Discriminant analysis showed relatively low predictivity of exposure based on RSH or motility compared to the average read length of all assigned RNAs. Benchmark dose (BMD) modeling resulted in a BMD of 62 mg/kg using RSH, whereas average read length of all assigned RNAs resulted in a BMD of 47 mg/kg. These results showed that sperm small RNAs are sensitive and predictive biomarkers of EGME-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Angela R Stermer
- Department of pathology and laboratory medicine, Brown University, Providence, Rhode Island 02912
| | - Gerardo Reyes
- Department of pathology and laboratory medicine, Brown University, Providence, Rhode Island 02912
| | - Susan J Hall
- Department of pathology and laboratory medicine, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of pathology and laboratory medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
7
|
Abstract
Novel tissue injury biomarkers have recently been identified that outperform or add value to the conventional safety biomarkers. These novel biomarkers have enhanced sensitivity and/or specificity in monitoring drug-induced tissue injury in a variety of tissues, included liver, kidney, and skeletal muscle. Among these novel biomarkers, microRNAs (miRNAs) are one type in particular that have received much attention in recent years. These microRNAs are short, endogenous noncoding nucleic acids that are involved in modulation and regulation of mRNA transcripts. Other attributes of miRNAs are that they exist in tissues at high abundance, and individual miRNAs can be highly tissue-specific. These miRNAs can be readily assayed in blood, urine, or cerebral spinal fluid, making them attractive as accessible biomarkers of tissue injury. Further, the miRNA processing involves embedding the miRNA within a protein complex, making them stable in plasma upon leakage from injured tissues. This review article will highlight the discovery of tissue-specific miRNAs and their evolution as novel toxicity biomarkers in recent years.
Collapse
|
8
|
Identification of sperm mRNA biomarkers associated with testis injury during preclinical testing of pharmaceutical compounds. Toxicol Appl Pharmacol 2017; 320:1-7. [PMID: 28167222 DOI: 10.1016/j.taap.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The human testis is sensitive to toxicant-induced injury but current methods for detecting adverse effects are limited, insensitive and unreliable. Animal studies use sensitive histopathological endpoints to assess toxicity, but require testicular tissue that is not available during human clinical trials. More sensitive and reliable molecular biomarkers of testicular injury are needed to better monitor testicular toxicity in both clinical and preclinical. Adult male Wistar Han rats were exposed for 4weeks to compounds previously associated with testicular injury, including cisplatin (0, 0.2, 0.3, or 0.4mg/kg/day), BI665915 (0, 20, 70, 100mg/kg/d), BI665636 (0, 20, 100mg/kg/d) or BI163538 (0, 70, 150, 300mg/kg/d) to evaluate reproductive toxicity and assess changes in sperm mRNA levels. None of the compounds resulted in any significant changes in body, testis or epididymis weights, nor were there decreases in testicular homogenization resistant spermatid head counts. Histopathological evaluation found that only BI665915 treatment caused any testicular effects, including minor germ cell loss and disorganization of the seminiferous tubule epithelium, and an increase in the number of retained spermatid heads. A custom PCR-array panel was used to assess induced changes in sperm mRNA. BI665915 treatment resulted in a significant increase in clusterin (Clu) levels and decreases in GTPase, IMAP family member 4 (Gimap4), prostaglandin D2 synthase (Ptgds) and transmembrane protein with EGF like and two follistatin like domains 1 (Tmeff1) levels. Correlation analysis between transcript levels and quantitative histopathological endpoints found a modest association between Clu with retained spermatid heads. These results demonstrate that sperm mRNA levels are sensitive molecular indicators of testicular injury that can potentially be translated into a clinical setting.
Collapse
|
9
|
Dere E, Wilson SK, Anderson LM, Boekelheide K. From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 2016; 153:327-40. [PMID: 27466211 DOI: 10.1093/toxsci/kfw137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional testis histopathology endpoints remain the gold standard for evaluating testicular insult and injury in a non-clinical setting, but are invasive and unfeasible for monitoring these effects clinically in humans. Assessing testicular injury in humans relies on semen and serum hormone analyses, both of which are insensitive and poor indicators of effect. Therefore, we hypothesized that sperm messenger RNA (mRNA) transcripts and DNA methylation marks can be used as translatable and sensitive indicators or testicular injury. Dose-response studies using adult male Fischer 344 rats subchronically exposed to model Sertoli cell toxicants (0.14, 0.21, and 0.33% 2,5-hexanedione, and 30, 50, and 70 mg/kg/day carbendazim), and a model germ cell toxicant (1.4, 3.4, and 5.1 mg/kg/day cyclophosphamide) for 3 months were evaluated for testicular injury by traditional histopathological endpoints, changes in sperm mRNA transcript levels using custom PCR arrays, and alterations in sperm DNA methylation via reduced representation bisulfite sequencing. Testis histopathological evaluation and PCR array analysis of the sperm transcriptome identified dose-dependent changes elicited by toxicant exposure (P < 0.05). Global sperm DNA methylation analysis of subchronic 0.33% 2,5-hexandione and 5.1 mg/kg/day cyclophosphamide exposure using a Monte Carlo approach did not identify differentially methylated regions (methylation difference > 10% and q < 0.05) with robust signatures. Overall, these results suggest that sperm mRNA transcripts are sensitive indicators of low dose toxicant-induced testicular injury in the rat, while sperm DNA methylation changes are not. Additionally, the Monte Carlo analysis is a powerful approach that can be used to assess the robustness of signals resulting from -omic studies.
Collapse
Affiliation(s)
- Edward Dere
- *Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903 Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Shelby K Wilson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
10
|
Sakurai K, Mikamoto K, Shirai M, Iguchi T, Ito K, Takasaki W, Mori K. MicroRNA profiles in a monkey testicular injury model induced by testicular hyperthermia. J Appl Toxicol 2016; 36:1614-1621. [PMID: 27071960 PMCID: PMC5108483 DOI: 10.1002/jat.3326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
To characterize microRNAs (miRNAs) involved in testicular toxicity in cynomolgus monkeys, miRNA profiles were investigated using next‐generation sequencing (NGS), microarray and reverse transcription‐quantitative real‐time‐PCR (RT‐qPCR) methods. First, to identify organ‐specific miRNAs, we compared the expression levels of miRNAs in the testes to those in representative organs (liver, heart, kidney, lung, spleen and small intestine) obtained from naïve mature male and female monkeys (n = 2/sex) using NGS analysis. Consequently, miR‐34c‐5p, miR‐202‐5p, miR‐449a and miR‐508‐3p were identified to be testicular‐specific miRNAs in cynomolgus monkeys. Next, we investigated miRNA profiles after testicular–hyperthermia (TH) treatment to determine which miRNAs are involved in testicular injury. In this experiment, mature male monkeys were divided into groups with or without TH‐treatment (n = 3/group) by immersion of the testes in a water bath at 43 °C for 30 min for 5 consecutive days. As a result, TH treatment induced testicular injury in all animals, which was characterized by decreased numbers of spermatocytes and spermatids. In a microarray analysis of the testis, 11 up‐regulated (>2.0 fold) and 13 down‐regulated (<0.5 fold) miRNAs were detected compared with those in the control animals. Interestingly, down‐regulated miRNAs included two testicular‐specific miRNAs, miR‐34c‐5p and miR‐449a, indicating their potential use as biomarkers for testicular toxicity. Furthermore, RT‐qPCR analysis revealed decreased expression levels of testicular miR‐34b‐5p and miR‐34c‐5p, which are enriched in meiotic cells, reflecting the decrease in pachytene spermatocytes and spermatids after TH treatment. These results provide valuable insights into the mechanism of testicular toxicity and potential translational biomarkers for testicular toxicity. Copyright © 2016 The Authors. Journal of Applied Toxicology published by John Wiley & Sons Ltd. In this study, we identified 4 testicular‐specific miRNAs, miR‐34c‐5p, miR‐202‐5p, miR‐449a, and miR‐508‐3p based on next‐generation sequencing of miRNAs from representative organs obtained from naïve mature cynomolgus monkeys. Next, miRNAs were profiled in a model of testicular injury induced by testicular hyperthermia. Microarray and PCR analyses revealed down‐regulation of miR‐34c‐5p in the testis, which is enriched in meiotic cells, reflecting decreased numbers of pachytene spermatocytes and spermatids by the treatment.
Collapse
Affiliation(s)
- Ken Sakurai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan.
| | - Kei Mikamoto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Makoto Shirai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Takuma Iguchi
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Kazumi Ito
- Translational Medicine & Clinical Pharmacology Department, Daiichi Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, Japan
| | - Wataru Takasaki
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd, 1-16-13 Kita-Kasai, Edogawa-ku, Tokyo, Japan
| | - Kazuhiko Mori
- Translational Medicine & Clinical Pharmacology, Daiichi Sankyo Pharma Development, Daiichi Sankyo, Inc., 399 Thornall Street, Edison, NJ, USA
| |
Collapse
|
11
|
Zheng W, Pan S, Wang G, Wang YJ, Liu Q, Gu J, Yuan Y, Liu XZ, Liu ZP, Bian JC. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:146-155. [PMID: 26851377 DOI: 10.1016/j.etap.2016.01.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the effects of ZEA on the cytoskeletal structure, and factors specifically expressed by Sertoli cells. Primary Sertoli cells from rats aged 18-21 days were exposed to increasing ZEA concentrations (0, 5, 10, 20 μg mL(-1)) for 24 h. The results of immunofluorescence showed disruption of α-tubulin filaments and F-actin bundles, and damage to the nucleus of Sertoli cells on exposure to ZEA. In the control group, the protein level expression of androgen-binding protein (ABP), transferrin, vimentin, N-cadherin, and follicle-stimulating hormone receptor (FSHR) were decreased significantly (p<0.05, p<0.01). The mRNA levels of ABP, transferrin, vimentin, N-cadherin, and FSHR varied significantly in the experimental group (p<0.05). The results of enzyme-linked immunosorbent assay indicated a significant decrease in the levels of inhibin-β and transferrin in the cultural supernatants (p<0.05). Additionally, the ultrastructural analysis indicated the absence of mitochondria and Golgi apparatus, and presence of vacuoles in the cytoplasm. These findings showed that ZEA treatment can damage the cytoskeletal structure and affect specific secretory functions of Sertoli cells, which may be an underlying cause of ZEA-induced reproductive toxicity.
Collapse
Affiliation(s)
- WangLong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - ShunYe Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Guangguang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Ya Jun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Saybagh District Animal Husbandry and Veterinary Station, Urumqi 830000, Xinjiang, China
| | - Qing Liu
- Jiaozuo Entry-Exit Inspection and Quarantine Bureau of P.R. China, Jiaozuo 454001, Henan, China
| | - JianHong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xue Zhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zong Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jian Chun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
12
|
Abstract
BACKGROUND The recent revolutionary advances made in genome-wide sequencing technology have transformed biology and molecular diagnostics, allowing new sRNA (small RNA) classes to be discovered as potential disease-specific biological indicators. Cell-free microRNAs (miRNAs) have been shown to exist stably in a wide spectrum of body fluids and their expression profiles have been shown to reflect an assortment of physiological conditions, underscoring the utility of this new class of molecules to function as noninvasive biomarkers of disease. CONTENT We summarize information on the known mechanisms of miRNA protection and release into extracellular space and compile the current literature on extracellular miRNAs that have been investigated as biomarkers of 20 different cancers, 11 organ damage conditions and 10 diverse disease states. We also discuss the various strategies involved in the miRNA biomarker discovery workflow and provide a critical opinion on the impediments faced by this advancing field that need to be overcome in the laboratory. SUMMARY The field of miRNA-centered diagnostics is still in its infancy, and basic questions with regard to the exact role of miRNAs in the pathophysiology of diseases, and the mechanisms of their release from affected cells into biological fluids are yet to be completely understood. Nevertheless, these noninvasive micromarkers have immense potential in translational medicine not only for use in monitoring the efficacy and safety of therapeutic regimens but also to guide the diagnosis of diseases, to determine the risk of developing diseases or conditions, and more importantly, to inform treatment options.
Collapse
Affiliation(s)
- Janani Saikumar
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Krithika Ramachandran
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Vishal S Vaidya
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and Department of Environmental Health, Harvard School of Public Health, Boston, MA.
| |
Collapse
|
13
|
The Influence of Environmental Contaminants and Lifestyle on Testicular Damage and Male Fertility. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2014. [DOI: 10.1007/7653_2014_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|