1
|
Kato Y, Lim AY, Sakolish C, Valdiviezo A, Moyer HL, Hewitt P, Bajaj P, Han G, Rusyn I. Analysis of reproducibility and robustness of OrganoPlate® 2-lane 96, a liver microphysiological system for studies of pharmacokinetics and toxicological assessment of drugs. Toxicol In Vitro 2022; 85:105464. [PMID: 36057418 PMCID: PMC10015056 DOI: 10.1016/j.tiv.2022.105464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/26/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023]
Abstract
Establishing the functionality, reproducibility, robustness, and reliability of microphysiological systems is a critical need for adoption of these technologies. A high throughput microphysiological system for liver studies was recently proposed in which induced pluripotent stem cell-derived hepatocytes (iHeps) and non-parenchymal cells (endothelial cells and THP-1 cells differentiated with phorbol 12-myristate 13-acetate into macrophage-like cells) were co-cultured in OrganoPlate® 2-lane 96 devices. The goal of this study was to evaluate this platform using additional cell types and conditions and characterize its utility and reproducibility. Primary human hepatocytes or iHeps, with and without non-parenchymal cells, were cultured for up to 17 days. Image-based cell viability, albumin and urea secretion into culture media, CYP3A4 activity and drug metabolism were assessed. The iHeps co-cultured with non-parenchymal cells demonstrated stable cell viability and function up to 17 days; however, variability was appreciable both within and among studies. The iHeps in monoculture did not form clusters and lost viability and function over time. The primary human hepatocytes in monoculture also exhibited low cell viability and hepatic function. Metabolism of various drugs was most efficient when iHeps were co-cultured with non-parenchymal cells. Overall, we found that the OrganoPlate® 2-lane 96 device, when used with iHeps and non-parenchymal cells, is a functional liver microphysiological model; however, the high-throughput nature of this model is somewhat dampened by the need for replicates to compensate for high variability.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; Laboratory for Drug Discovery and Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka 561-0825, Japan
| | - Alicia Y Lim
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Courtney Sakolish
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Alan Valdiviezo
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Haley L Moyer
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Piyush Bajaj
- Global Investigative Toxicology, Preclinical Safety, Sanofi USA, MA 01701, USA
| | - Gang Han
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Jasim Mohammed B, Aso Taher T, Abdallah ZN. Investigation of TNFα Level and Metallothionein Gene Expression in Livers of Rats Exposed to Dietary Aluminum. ARCHIVES OF RAZI INSTITUTE 2022; 77:1439-1446. [PMID: 36883150 PMCID: PMC9985779 DOI: 10.22092/ari.2022.358201.2180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 03/09/2023]
Abstract
Aluminum chloride is a chemical compound widely used in both pharmaceutical and industrial sectors. The present study aimed to assess the effect of aluminum chloride on TNF levels and metallothionein gene expression in rat livers. A total of 16 Wistar rats were used as an experimental model and assigned to four groups (n=4). The treated groups received aluminum chloride (Sigma/USA) at a dose of 25g/kg body weight via a feeding tube as follows: group 1: Non-treated rats as the control group, group 2 were treated with aluminum chloride for 8 weeks, group 3 were treated with aluminum chloride for 12 weeks, and group 4 received aluminum chloride for 16 weeks. The TNF-α was measured in liver tissue using an enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry and real-time polymerase chain reaction (RT-PCR) were used to analyze metallothionein gene expression in rat liver. To estimate TNF levels, the results revealed that levels were considerably higher (P<0.01) in all experimental groups, especially in group 4 which underwent treatment for 16 weeks (401±22.1 ng/ml), as compared to that in the control group. For the immunohistochemistry assay, a gradient intensity of staining for liver tissue was observed, ranging from zero staining in the control group to moderate, medium, and high staining in the experimental groups after 8, 12, and 16 weeks of aluminum chloride treatment, respectively. The greatest amount of methylothionine expression was observed in the livers of group 4 which received aluminum chloride for 16 weeks (15.5-fold), with a significant difference (P<0.01) from the other experimental groups. In both immunohistochemical and RT-PCR experiments, aluminum administration had a substantial influence on TNFα levels and metallothionein expression in rat livers.
Collapse
Affiliation(s)
| | - T Aso Taher
- College of Sciences for Women, University of Baghdad, Baghdad, Iraq
| | - Z N Abdallah
- Institute of Genetic Engineering and Biotechnology
| |
Collapse
|
3
|
Trovafloxacin drives inflammation-associated drug-induced adverse hepatic reaction through changing macrophage polarization. Toxicol In Vitro 2022; 82:105374. [DOI: 10.1016/j.tiv.2022.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/28/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
|
4
|
Kamali K, Schmelzle M, Kamali C, Brunnbauer P, Splith K, Leder A, Berndt N, Hillebrandt KH, Raschzok N, Feldbrügge L, Felsenstein M, Gaßner J, Ritschl P, Lurje G, Schöning W, Benzing C, Pratschke J, Krenzien F. Sensing Acute Cellular Rejection in Liver Transplant Patients Using Liver-Derived Extracellular Particles: A Prospective, Observational Study. Front Immunol 2021; 12:647900. [PMID: 34025656 PMCID: PMC8131523 DOI: 10.3389/fimmu.2021.647900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Acute cellular rejection (ACR) after liver transplantation (LT) goes along with allograft dysfunction, which is diagnosed by liver biopsy and concomitant histological analysis, representing the gold standard in clinical practice. Yet, liver biopsies are invasive, costly, time-intensive and require expert knowledge. Herein we present substantial evidence that blood plasma residing peripheral liver-derived extracellular particles (EP) could be employed to diagnose ACR non-invasively. In vitro experiments showed organ-specific EP release from primary human hepatocytes under immunological stress. Secondly, analysis of consecutive LT patients (n=11) revealed significant heightened EP concentrations days before ACR. By conducting a diagnostic accuracy study (n = 69, DRKS00011631), we explored the viability of using EP as a liquid biopsy for diagnosing ACR following LT. Consequently, novel EP populations in samples were identified using visualization of t-distributed stochastic neighbor embedding (viSNE) and self-organizing maps (FlowSOM) algorithms. As a result, the ASGR1+CD130+Annexin V+ EP subpopulation exhibited the highest accuracy for predicting ACR (area under the curve: 0.80, 95% confidence interval [CI], 0.70-0.90), with diagnostic sensitivity and specificity of 100% (95% CI, 81.67-100.0%) and 68.5% (95% CI, 55.3-79.3%), respectively. In summary, this new EP subpopulation presented the highest diagnostic accuracy for detecting ACR in LT patients.
Collapse
Affiliation(s)
- Kaan Kamali
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Philipp Brunnbauer
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Katrin Splith
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Annekatrin Leder
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nadja Berndt
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Linda Feldbrügge
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthäus Felsenstein
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Joseph Gaßner
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Paul Ritschl
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Christian Benzing
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Charité - Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
5
|
Ahn JH, Jegal H, Choi MS, Kim S, Park SM, Ahn J, Han HY, Cho HS, Yoon S, Oh JH. TNFα enhances trovafloxacin-induced in vitro hepatotoxicity by inhibiting protective autophagy. Toxicol Lett 2021; 342:73-84. [PMID: 33609687 DOI: 10.1016/j.toxlet.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Trovafloxacin (TVX) is associated with idiosyncratic drug-induced liver injury (iDILI) and inflammation-mediated hepatotoxicity. However, the inflammatory stress-regulated mechanisms in iDILI remain unclear. Herein, we elucidated the novel role of tumor-necrosis factor alpha (TNFα), an inflammatory stress factor, in TVX-induced in vitro hepatotoxicity and synergistic toxicity. TVX specifically induced synergistic toxicity in HepG2 cells with TNFα, which inhibits autophagy. TVX-treated HepG2 cells induced protective autophagy by inhibiting the expression of mTOR signaling proteins, while ATG5 knockdown in HepG2 cells, responsible for the impairment of autophagy, enhanced TVX-induced toxicity due to the increase in cytochrome C release and JNK pathway activation. Interestingly, the expression of mTOR signal proteins, which were suppressed by TVX, disrupted the negative feedback of the PI3K/AKT pathway and TNFα rebounded p70S6K phosphorylation. Co-treatment with TVX and TNFα inhibited protective autophagy by maintaining p70S6K activity, which enhanced TVX-induced cytotoxicity. Phosphorylation of p70S6K was inhibited by siRNA knockdown and rapamycin to restore TNFα-inhibited autophagy, which prevented the synergistic effect on TVX-induced cytotoxicity. These results indicate that TVX activates protective autophagy in HepG2 cells exposed to toxicity and an imbalance in negative feedback regulation of autophagy by TNFα synergistically enhanced the toxicity. The finding from this study may contribute to a better understanding of the mechanisms underlying iDILI associated with inflammatory stress.
Collapse
Affiliation(s)
- Jun-Ho Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Bio Medical Research Center, Bio Medical & Health Division, Korea Testing Laboratory (KTL), Seoul, 08389, Republic of Korea
| | - Hyun Jegal
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea
| | - Mi-Sun Choi
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Soojin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jaehwan Ahn
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyoung-Yun Han
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hyun-Soo Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seokjoo Yoon
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
6
|
Hastings KL, Green MD, Gao B, Ganey PE, Roth RA, Burleson GR. Beyond Metabolism: Role of the Immune System in Hepatic Toxicity. Int J Toxicol 2021; 39:151-164. [PMID: 32174281 DOI: 10.1177/1091581819898399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver is primarily thought of as a metabolic organ; however, the liver is also an important mediator of immunological functions. Key perspectives on this emerging topic were presented in a symposium at the 2018 annual meeting of the American College of Toxicology entitled "Beyond metabolism: Role of the immune system in hepatic toxicity." Viral hepatitis is an important disease of the liver for which insufficient preventive vaccines exist. Host immune responses inadequately clear these viruses and often potentiate immunological inflammation that damages the liver. In addition, the liver is a key innate immune organ against bacterial infection. Hepatocytes and immune cells cooperatively control systemic and local bacterial infections. Conversely, bacterial infection can activate multiple types of immune cells and pathways to cause hepatocyte damage and liver injury. Finally, the immune system and specifically cytokines and drugs can interact in idiosyncratic drug-induced liver injury. This rare disease can result in a disease spectrum that ranges from mild to acute liver failure. The immune system plays a role in this disease spectrum.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, NIH, Bethesda, MD, USA
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gary R Burleson
- BRT-Burleson Research Technologies, Inc, Morrisville, NC, USA
| |
Collapse
|
7
|
Wu X, Zhang Y, Qiu J, Xu Y, Zhang J, Huang J, Bai J, Huang Z, Qiu X, Xu W. Lipidomics Analysis Indicates Disturbed Hepatocellular Lipid Metabolism in Reynoutria multiflora-Induced Idiosyncratic Liver Injury. Front Pharmacol 2020; 11:569144. [PMID: 33408629 PMCID: PMC7779765 DOI: 10.3389/fphar.2020.569144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The root of Reynoutria multiflora (Thunb.) Moldenke (syn.: Polygonum multiflorum Thunb., HSW) is a distinguished herb that has been popularly used in traditional Chinese medicine (TCM). Evidence of its potential side effect on liver injury has accumulated and received much attention. The objective of this study was to profile the metabolic characteristics of lipids in injured liver of rats induced by HSW and to find out potential lipid biomarkers of toxic consequence. A lipopolysaccharide (LPS)-induced rat model of idiosyncratic drug-induced liver injury (IDILI) was constructed and evident liver injury caused by HSW was confirmed based on the combination of biochemical, morphological, and functional tests. A lipidomics method was developed for the first time to investigate the alteration of lipid metabolism in HSW-induced IDILI rat liver by using ultra-high-performance liquid chromatography/Q-exactive Orbitrap mass spectrometry coupled with multivariate analysis. A total of 202 characterized lipids, including phosphatidylcholine (PC), lysophosphatidylcholine (LPC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), sphingomyelin (SM), phosphatidylinositol (PI), lysophosphatidylinositol (LPI), phosphatidylserine (PS), phosphoglycerols (PG), and ceramide (Cer), were compared among groups of LPS and LPS + HSW. A total of 14 out 26 LPC, 22 out of 47 PC, 19 out of 29 LPE, 16 out of 36 PE, and 10 out of 15 PI species were increased in HSW-treated rat liver, which indicated that HSW may cause liver damage via interfering the phospholipid metabolism. The present work may assist lipid biomarker development of HSW-induced DILI and it also provide new insights into the relationships between phospholipid perturbation and herbal-induced idiosyncratic DILI.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yating Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqi Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ya Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China
| | - Juan Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junqi Bai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Huang
- Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Key Laboratory of Quality Evaluation of Chinese Medicine of the Guangdong Provincial Medical Products Administration, Guangzhou, China
| |
Collapse
|
8
|
|
9
|
Giustarini G, Huppelschoten S, Barra M, Oppelt A, Wagenaar L, Weaver RJ, Bol-Schoenmakers M, Smit JJ, van de Water B, Klingmüller U, Pieters RHH. The hepatotoxic fluoroquinolone trovafloxacin disturbs TNF- and LPS-induced p65 nuclear translocation in vivo and in vitro. Toxicol Appl Pharmacol 2020; 391:114915. [PMID: 32035082 DOI: 10.1016/j.taap.2020.114915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 01/26/2023]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a severe disease that cannot be detected during drug development. It has been shown that hepatotoxicity of some compounds associated with IDILI becomes apparent when these are combined in vivo and in vitro with LPS or TNF. Among these compounds trovafloxacin (TVX) induced apoptosis in the liver and increased pro-inflammatory cytokines in mice exposed to LPS/TNF. The hepatocyte survival and the cytokine release after TNF/LPS stimulation relies on a pulsatile activation of NF-κB. We set out to evaluate the dynamic activation of NF-κB in response to TVX + TNF or LPS models, both in mouse and human cells. Remarkably, TVX prolonged the first translocation of NF-κB induced by TNF both in vivo and in vitro. The prolonged p65 translocation caused by TVX was associated with an increased phosphorylation of IKK and MAPKs and accumulation of inhibitors of NF-κB such as IκBα and A20 in HepG2. Coherently, TVX suppressed further TNF-induced NF-κB translocations in HepG2 leading to decreased transcription of ICAM-1 and inhibitors of apoptosis. TVX prolonged LPS-induced NF-κB translocation in RAW264.7 macrophages increasing the secretion of TNF. In summary, this study presents new, relevant insights into the mechanism of TVX-induced liver injury underlining the resemblance between mouse and human models. In this study we convincingly show that regularly used toxicity models provide a coherent view of relevant pathways for IDILI. We propose that assessment of the kinetics of activation of NF-κB and MAPKs is an appropriate tool for the identification of hepatotoxic compounds during drug development.
Collapse
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Suzanna Huppelschoten
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Marco Barra
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; University of Pisa, Department of Pharmacy, Italy
| | - Angela Oppelt
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Laura Wagenaar
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Richard J Weaver
- Biopharmacy, Institut de Recherches Internationales Servier (I.R.I.S.), Suresnes 92284, France
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Joost J Smit
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Raymond H H Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Giustarini G, Vrisekoop N, Kruijssen L, Wagenaar L, van Staveren S, van Roest M, Bleumink R, Bol-Schoenmakers M, Weaver RJ, Koenderman L, Smit J, Pieters R. Trovafloxacin-Induced Liver Injury: Lack in Regulation of Inflammation by Inhibition of Nucleotide Release and Neutrophil Movement. Toxicol Sci 2020; 167:385-396. [PMID: 30247740 DOI: 10.1093/toxsci/kfy244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The fluoroquinolone trovafloxacin (TVX) is associated with a high risk of drug-induced liver injury (DILI). Although part of the liver damage by TVX+TNF relies on neutrophils, we have recently demonstrated that liver recruitment of monocytes and neutrophils is delayed by TVX. Here we show that the delayed leukocyte recruitment is caused by a combination of effects which are linked to the capacity of TVX to block the hemichannel pannexin 1. TVX inhibited find-me signal release in apoptotic HepG2 hepatocytes, decelerated freshly isolated human neutrophils toward IL-8 and f-MLF, and decreased the liver expression of ICAM-1. In blood of TVX+TNF-treated mice, we observed an accumulation of activated neutrophils despite an increased MIP-2 release by the liver. Depletion of monocytes and neutrophils caused increased serum concentrations of TNF, IL-6, and MIP-2 in TVX-treated mice as well as in mice treated with the fluoroquinolone levofloxacin, known to have a lower DILI-inducing profile. This supports the idea that early leukocyte recruitment regulates inflammation. In conclusion, disrupted regulation by leukocytes appears to constitute a fundamental step in the onset of TVX-induced liver injury, acting in concert with the capability of TVX to induce hepatocyte cell death. Interference of leukocyte-mediated regulation of inflammation represents a novel mechanism to explain the onset of DILI.
Collapse
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Nienke Vrisekoop
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Laura Kruijssen
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Laura Wagenaar
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Selma van Staveren
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Manon van Roest
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Rob Bleumink
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Richard J Weaver
- Institut de Recherches Internationales Servier (I.R.I.S.), Suresnes 92284, France
| | - Leo Koenderman
- Department of Respiratory Medicine and Laboratory of Translational Immunology (LTI), University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Joost Smit
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| | - Raymond Pieters
- Immunotoxicology, Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Yalelaan 104, 3584CM, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
Sharanek A, Burban A, Ciriaci N, Guillouzo A. Pro-inflammatory cytokines enhance dilatation of bile canaliculi caused by cholestatic antibiotics. Toxicol In Vitro 2019; 58:51-59. [PMID: 30876886 DOI: 10.1016/j.tiv.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Many drugs can induce liver injury, characterized by hepatocellular, cholestatic or mixed hepatocellular-cholestatic lesions. While an inflammatory stress is known to aggravate hepatocellular injury caused by some drugs much less evidence exists for cholestatic features. In this study, the influence of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α), either individually or combined, on cytotoxic and cholestatic properties of antibiotics was evaluated using differentiated HepaRG cells. Six antibiotics of various chemical structures and known to cause cholestasis and/or hepatocellular injury in clinic were investigated. Caspase-3 activity was increased with all these tested hepatotoxic drugs and except with erythromycin, was further augmented in presence of cytokines mainly when these were co-added as a mixture. TNF-α and IL-1β aggravated cytotoxicity of TVX more than IL-6. Bile canaliculi (BC) dilatation induced by cholestatic drugs was increased by co-treatment with IL-6 and IL-1β but not with TNF-α. Reduced accumulation of carboxy-dichlorofluorescein, a substrate of the multi-drug resistance-associated protein 2, in antibiotic-induced dilatated BC, was further extended in presence of individual or mixed cytokines. In conclusion, our data demonstrate that pro-inflammatory cytokines either individually or in mixture, can modulate cholestatic and/or cytotoxic responses to antibiotics and that the extent of these effects is dependent on the cytokine and the cholestatic antibiotic.
Collapse
Affiliation(s)
- Ahmad Sharanek
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France
| | - Audrey Burban
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France
| | - Nadia Ciriaci
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France
| | - André Guillouzo
- Univ Rennes, Inserm, Inra, Institut NUMECAN (Nutrition Metabolisms and Cancer), UMR_S 1241, 35000 Rennes, France.
| |
Collapse
|
12
|
Burban A, Sharanek A, Guguen-Guillouzo C, Guillouzo A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 2018; 115:166-178. [PMID: 29191461 DOI: 10.1016/j.freeradbiomed.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.
Collapse
Affiliation(s)
- Audrey Burban
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | - Ahmad Sharanek
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | | | - André Guillouzo
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France.
| |
Collapse
|
13
|
Giustarini G, Kruijssen L, van Roest M, Bleumink R, Weaver RJ, Bol-Schoenmakers M, Smit J, Pieters R. Tissue influx of neutrophils and monocytes is delayed during development of trovafloxacin-induced tumor necrosis factor-dependent liver injury in mice. J Appl Toxicol 2018; 38:753-765. [DOI: 10.1002/jat.3585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/29/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Giulio Giustarini
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Laura Kruijssen
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Manon van Roest
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Rob Bleumink
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Richard J. Weaver
- Institut de Recherches Internationales Servier (I.R.I.S.); 50, rue Carnot 92284 Suresnes Cedex France
| | - Marianne Bol-Schoenmakers
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Joost Smit
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Raymond Pieters
- Immunotoxicology, Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
14
|
Maiuri AR, Wassink B, Turkus JD, Breier AB, Lansdell T, Kaur G, Hession SL, Ganey PE, Roth RA. Synergistic Cytotoxicity from Drugs and Cytokines In Vitro as an Approach to Classify Drugs According to Their Potential to Cause Idiosyncratic Hepatotoxicity: A Proof-of-Concept Study. J Pharmacol Exp Ther 2017; 362:459-473. [PMID: 28687704 PMCID: PMC5563944 DOI: 10.1124/jpet.117.242354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/05/2017] [Indexed: 02/06/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (IDILI) typically occurs in a small fraction of patients and has resulted in removal of otherwise efficacious drugs from the market. Current preclinical testing methods are ineffective in predicting which drug candidates have IDILI liability. Recent results suggest that immune mediators such as tumor necrosis factor-α (TNF) and interferon-γ (IFN) interact with drugs that cause IDILI to kill hepatocytes. This proof-of-concept study was designed to test the hypothesis that drugs can be classified according to their ability to cause IDILI in humans using classification modeling with covariates derived from concentration-response relationships that describe cytotoxic interaction with cytokines. Human hepatoma (HepG2) cells were treated with drugs associated with IDILI or with drugs lacking IDILI liability and cotreated with TNF and/or IFN. Detailed concentration-response relationships were determined for calculation of parameters such as the maximal cytotoxic effect, slope, and EC50 for use as covariates for classification modeling using logistic regression. These parameters were incorporated into multiple classification models to identify combinations of covariates that most accurately classified the drugs according to their association with human IDILI. Of 14 drugs associated with IDILI, almost all synergized with TNF to kill HepG2 cells and were successfully classified by statistical modeling. IFN enhanced the toxicity mediated by some IDILI-associated drugs in the presence of TNF. In contrast, of 10 drugs with little or no IDILI liability, none synergized with inflammatory cytokines to kill HepG2 cells and were classified accordingly. The resulting optimal model classified the drugs with extraordinary selectivity and specificity.
Collapse
Affiliation(s)
- Ashley R Maiuri
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Bronlyn Wassink
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Jonathan D Turkus
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Anna B Breier
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Theresa Lansdell
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Gurpreet Kaur
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Sarah L Hession
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Institute for Integrative Toxicology (A.R.M., J.D.T., A.B.B., T.L., G.K., P.E.G., R.A.R.), Department of Statistics and Probability (B.W.), and Center for Statistical Training & Consulting, (S.L.H.), Michigan State University, East Lansing, Michigan
| |
Collapse
|
15
|
Goda K, Takahashi T, Kobayashi A, Shoda T, Kuno H, Sugai S. Usefulness of in vitro combination assays of mitochondrial dysfunction and apoptosis for the estimation of potential risk of idiosyncratic drug induced liver injury. J Toxicol Sci 2017; 41:605-15. [PMID: 27665770 DOI: 10.2131/jts.41.605] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drug-induced liver injury (DILI) is one of the serious and frequent drug-related adverse events. This adverse event is a main reason for regulatory action pertaining to drugs, including restrictions in clinical indications and withdrawal from clinical trials or the marketplace. Idiosyncratic DILI especially has become a major clinical concern because of its unpredictable nature, frequent hospitalization, need for liver transplantation and high mortality. The estimation of the potential for compounds to induce idiosyncratic DILI is very difficult in non-clinical studies because the precise mechanism of idiosyncratic DILI is still unknown. Recently, many in vitro assays which indicate a possibility of the prediction of the idiosyncratic DILI have been reported. Among these, some in vitro assays focus on the effects of compounds on mitochondrial function and the apoptotic effects of compounds on human hepatocytes. In this study, we measured oxygen consumption rate (OCR) and caspase-3/7 activity as an endpoint of mitochondrial dysfunction and apoptosis, respectively, with human hepatocytes after treatment with compounds causing idiosyncratic DILI (troglitazone, leflunomide, ranitidine and diclofenac). Troglitazone and leflunomide decreased the OCR but did not affect caspase-3/7 activity. Ranitidine increased caspase-3/7 activity but did not affect the OCR. Diclofenac decreased the OCR and increased caspase-3/7 activity. Acetaminophen and ethanol, which are also hepatotoxicants but do not induce idiosyncratic DILI, did not affect the OCR or caspase-3/7 activity. These results indicate that a combination assay of mitochondrial dysfunction and apoptosis is useful for the estimation of potential risk of compounds to induce idiosyncratic DILI.
Collapse
Affiliation(s)
- Keisuke Goda
- Toxicology Research Lab., Central Pharmaceutical Research Institute, JAPAN TOBACCO INC
| | | | | | | | | | | |
Collapse
|
16
|
Granitzny A, Knebel J, Müller M, Braun A, Steinberg P, Dasenbrock C, Hansen T. Evaluation of a human in vitro hepatocyte-NPC co-culture model for the prediction of idiosyncratic drug-induced liver injury: A pilot study. Toxicol Rep 2017; 4:89-103. [PMID: 28959630 PMCID: PMC5615103 DOI: 10.1016/j.toxrep.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
Co-cultures of liver and immune cells can be used to detect iDILI compounds. Pro-inflammatory factors are involved in the development of iDILI. The co-exposure of a drug candidate with TNF might be sufficient to predict iDILI.
Interactions between hepatocytes and immune cells as well as inflammatory episodes are frequently discussed to play a critical role in the alteration of the individual susceptibility to idiosyncratic drug-induced liver injury (iDILI). To evaluate this hypothesis and to face the urgent need for predictive in vitro models, we established two co-culture systems based on two human cell lines in presence or absence of pro-inflammatory factors (LPS, TNF), i.e. hepatoma HepG2 cells co-cultured with monocytic or macrophage-like THP-1 cells. HepG2 monocultures served as control scenario. Mono- or co-cultures were treated with iDILI reference substances (Troglitazone [TGZ], Trovafloxacin [TVX], Diclofenac [DcL], Ketoconazole [KC]) or their non-iDILI partner compounds (Rosiglitazone, Levofloxacin, Acetylsalicylic Acid, Fluconazole). The liver cell viability was subsequently determined via WST-Assay. An enhanced cytotoxicity (synergy) or a hormetic response compared to the drug effect in the HepG2 monoculture was considered as iDILI positive. TGZ synergized in co-cultures with monocytes without an additional pro-inflammatory stimulus, while DcL and KC showed a hormetic response. All iDILI drugs synergized with TNF in the simple HepG2 monoculture, indicating its relevance as an initiator of iDILI. KC showed a synergy when co-exposed to both, monocytes and LPS, while TVX and DcL showed a synergy under the same conditions with macrophages. All described iDILI responses were not observed with the corresponding non-iDILI partner compounds. Our first results confirm that an inflammatory environment increases the sensitivity of liver cells towards iDILI compounds and point to an involvement of pro-inflammatory factors, especially TNF, in the development of iDILI.
Collapse
Key Words
- CD, cluster of differentiation
- Co-culture model
- DAMP, damage-associated molecular pattern
- Drug-induced liver injury
- EC, effective concentration
- EpCAM, epithelial cellular adhesion molecule
- HSP, heat shock protein
- Idiosyncratic
- Inflammation
- JNK, c-Jun N-terminal kinase
- LPS, bacterial lipopolysaccharide
- NF-κB, nuclear factor kappa B
- NPC, non-parenchymal cell
- NSAID, nonsteriodal anti-inflammatory drug
- PAMP, pathogen-associated molecular pattern
- Preclinical research
- SD, standard deviation
- TNF, tumor necrosis factor
- iDILI, idiosyncratic drug-induced liver injury
Collapse
Affiliation(s)
- Anne Granitzny
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Jan Knebel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Meike Müller
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Member of the German Center for Lung Research (DZL), Biomedical Research in End stage and Obstructive Lung Disease (BREATH) research network, Member of the Cluster of Excellence Regenerative Biology to Reconstructive Therapy (REBIRTH), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Pablo Steinberg
- University of Veterinary Medicine Hannover (TiHo), Institute for Food Toxicology and Analytical Chemistry, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Clemens Dasenbrock
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Tanja Hansen
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
- Corresponding author at: Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Department of In vitro and Mechanistic Toxicology, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany.Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)Nikolai-Fuchs-Straße 1Hannover30625Germany
| |
Collapse
|
17
|
Roth RA, Maiuri AR, Ganey PE. Idiosyncratic Drug-Induced Liver Injury: Is Drug-Cytokine Interaction the Linchpin? J Pharmacol Exp Ther 2017; 360:461-470. [PMID: 28104833 DOI: 10.1124/jpet.116.237578] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury continues to be a human health problem in part because drugs that cause these reactions are not identified in current preclinical testing and because progress in prevention is hampered by incomplete knowledge of mechanisms that underlie these adverse responses. Several hypotheses involving adaptive immune responses, inflammatory stress, inability to adapt to stress, and multiple, concurrent factors have been proposed. Yet much remains unknown about how drugs interact with the liver to effect death of hepatocytes. Evidence supporting hypotheses implicating adaptive or innate immune responses in afflicted patients has begun to emerge and is bolstered by results obtained in experimental animal models and in vitro systems. A commonality in adaptive and innate immunity is the production of cytokines, including interferon-γ (IFNγ). IFNγ initiates cell signaling pathways that culminate in cell death or inhibition of proliferative repair. Tumor necrosis factor-α, another cytokine prominent in immune responses, can also promote cell death. Furthermore, tumor necrosis factor-α interacts with IFNγ, leading to enhanced cellular responses to each cytokine. In this short review, we propose that the interaction of drugs with these cytokines contributes to idiosyncratic drug-induced liver injury, and mechanisms by which this could occur are discussed.
Collapse
Affiliation(s)
- Robert A Roth
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Ashley R Maiuri
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
18
|
Rose KA, Holman NS, Green AM, Andersen ME, LeCluyse EL. Co-culture of Hepatocytes and Kupffer Cells as an In Vitro Model of Inflammation and Drug-Induced Hepatotoxicity. J Pharm Sci 2016; 105:950-964. [PMID: 26869439 DOI: 10.1016/s0022-3549(15)00192-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/10/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Immune-mediated drug-induced hepatotoxicity is often unrecognized as a potential mode of action due to the lack of appropriate in vitro models. We have established an in vitro rat donor-matched hepatocyte and Kupffer cell co-culture (HKCC) model to study immune-related responses to drug exposure. Optimal cell culture conditions were identified for the maintenance of co-cultures based on cell longevity, monolayer integrity, and cytokine response after lipopolysaccharide (LPS) exposure. Hepatocyte monocultures and HKCCs were then used to test a subset of compounds associated with hepatotoxic effects with or without LPS. Cytokine levels and metabolic activity (cytochrome P450 3A [Cyp3A]) were measured after a 48-h exposure to monitor endotoxin-induced changes in acute phase and functional end points. LPS-activated HKCCs, but not hepatocyte monocultures, treated with trovafloxacin or acetaminophen, compounds associated with immune-mediated hepatotoxicity, showed LPS-dependent decreases in interleukin-6 production with concomitant increases in Cyp3A activity. Differential endotoxin- and model-dependent alterations were observed in cytokine profiles and Cyp3A activity levels that corresponded to specific compounds. These results indicate the utility of the HKCC model system to discern compound-specific effects that may lead to enhanced or mitigate hepatocellular injury due to innate or adaptive immune responses.
Collapse
Affiliation(s)
- Kelly A Rose
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Natalie S Holman
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; The Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514
| | - Angela M Green
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Melvin E Andersen
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; The Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514.
| |
Collapse
|
19
|
Beggs KM, McGreal SR, McCarthy A, Gunewardena S, Lampe JN, Lau C, Apte U. The role of hepatocyte nuclear factor 4-alpha in perfluorooctanoic acid- and perfluorooctanesulfonic acid-induced hepatocellular dysfunction. Toxicol Appl Pharmacol 2016; 304:18-29. [PMID: 27153767 DOI: 10.1016/j.taap.2016.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/21/2016] [Accepted: 05/01/2016] [Indexed: 01/09/2023]
Abstract
Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), chemicals present in a multitude of consumer products, are persistent organic pollutants. Both compounds induce hepatotoxic effects in rodents, including steatosis, hepatomegaly and liver cancer. The mechanisms of PFOA- and PFOS-induced hepatic dysfunction are not completely understood. We present evidence that PFOA and PFOS induce their hepatic effects via targeting hepatocyte nuclear factor 4-alpha (HNF4α). Human hepatocytes treated with PFOA and PFOS at a concentration relevant to occupational exposure caused a decrease in HNF4α protein without affecting HNF4α mRNA or causing cell death. RNA sequencing analysis combined with Ingenuity Pathway Analysis of global gene expression changes in human hepatocytes treated with PFOA or PFOS indicated alterations in the expression of genes involved in lipid metabolism and tumorigenesis, several of which are regulated by HNF4α. Further investigation of specific HNF4α target gene expression revealed that PFOA and PFOS could promote cellular dedifferentiation and increase cell proliferation by down regulating positive targets (differentiation genes such as CYP7A1) and inducing negative targets of HNF4α (pro-mitogenic genes such as CCND1). Furthermore, in silico docking simulations indicated that PFOA and PFOS could directly interact with HNF4α in a similar manner to endogenous fatty acids. Collectively, these results highlight HNF4α degradation as novel mechanism of PFOA and PFOS-mediated steatosis and tumorigenesis in human livers.
Collapse
Affiliation(s)
- Kevin M Beggs
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| | - Steven R McGreal
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| | - Alex McCarthy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, 2027 HLSIC, Kansas City, KS 66160, United States.
| | - Jed N Lampe
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| | - Christoper Lau
- Developmental Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, 4052 HLSIC, Kansas City, KS 66160, United States.
| |
Collapse
|
20
|
Zheng S, Yang J, Tang Y, Yang J, Shao Q, Guo L, Liu Q. Effect of bone marrow mesenchymal stem cells transplantation on the serum and liver HMGB1 expression in rats with acute liver failure. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:15985-92. [PMID: 26884873 PMCID: PMC4730086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/28/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE This study aimed to investigate the effect of bone marrow mesenchymal stem cells (BMSCs) transplantation on the expression of high mobility group box 1 protein (HMGB1) in the serum and liver of rats with acute liver failure (ALF). METHODS Healthy male SD rats were randomly divided into control group, ALF group and BMSCs group. ALF was induced by intraperitoneal injection of 900 mg/kg D-GalN and 10 μg/kg LPS. In BMSCs group, rats received BMSCs (1.0×10(7)) transplantation via the tail vein at 2 h after ALF induction. RESULTS Intraperitoneal injection of 900 mg/kg D-GalN and 10 μg/kg LPS was able to induce ALF in rats. In ALF group, serum ALT and AST increased gradually over time. At 72 h, the serum ALT and AST in BMSCs group were significantly different from those in ALF group. HMGB1 expression in the serum and liver remained at a low level at any time point in control group, but increased significantly in ALF group and BMSCs group. The serum and liver HMGB1 expression increased progressively in ALF group, but reduced gradually in BMSCs group. Significant difference in serum and liver HMGB1 expression was observed between ALF group and BMSCs group at 24 h and 72 h. In addition, there was marked difference in the survival rate among three groups at 24 h (χ (2) =21.098, P<0.01). CONCLUSION BMSCs transplantation is able to improve the liver function and liver pathology in ALF rats and decrease the serum and liver HMGB1.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | - Juan Yang
- Department of Gastroenterology, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | - Yingmei Tang
- Center for Liver Diseases, Second Affiliated Hospital of Kunming Medical UniversityKunming 650021, China
| | - Jinhui Yang
- Center for Liver Diseases, Second Affiliated Hospital of Kunming Medical UniversityKunming 650021, China
| | - Qinghua Shao
- Department of Hepatobiliary Surgery, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | - Ling Guo
- Department of Scientific Research and Education, Third People’s Hospital of Yunnan ProvinceKunming 650011, China
| | | |
Collapse
|
21
|
The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-α to activate apoptosis. Cell Death Discov 2015; 1:15034. [PMID: 27551465 PMCID: PMC4979425 DOI: 10.1038/cddiscovery.2015.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Predicting and understanding the mechanism of drug-induced toxicity is one of the primary goals of drug development. It has been hypothesized that inflammation may have a synergistic role in this process. Cell-based models provide an easily manipulated system to investigate this type of drug toxicity. Several groups have attempted to reproduce in vivo toxicity with combination treatment of pharmacological agents and inflammatory cytokines. Through this approach, synergistic cytotoxicity between the investigational agent pevonedistat (MLN4924) and TNF-α was identified. Pevonedistat is an inhibitor of the NEDD8-activating enzyme (NAE). Inhibition of NAE prevents activation of cullin-RING ligases, which are critical for proteasome-mediated protein degradation. TNF-α is a cytokine that is involved in inflammatory responses and cell death, among other biological functions. Treatment of cultured cells with the combination of pevonedistat and TNF-α, but not as single agents, resulted in rapid cell death. This cell death was determined to be mediated by caspase-8. Interestingly, the combination treatment of pevonedistat and TNF-α also caused an accumulation of the p10 protease subunit of caspase-8 that was not observed with cytotoxic doses of TNF-α. Under conditions where apoptosis was blocked, the mechanism of death switched to necroptosis. Trimerized MLKL was verified as a biomarker of necroptotic cell death. The synergistic toxicity of pevonedistat and elevated TNF-α was also demonstrated by in vivo rat studies. Only the combination treatment resulted in elevated serum markers of liver damage and single-cell hepatocyte necrosis. Taken together, the results of this work have characterized a novel synergistic toxicity driven by pevonedistat and TNF-α.
Collapse
|
22
|
Lu J, Einhorn S, Venkatarangan L, Miller M, Mann DA, Watkins PB, LeCluyse E. Morphological and Functional Characterization and Assessment of iPSC-Derived Hepatocytes for In Vitro Toxicity Testing. Toxicol Sci 2015; 147:39-54. [PMID: 26092927 DOI: 10.1093/toxsci/kfv117] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a great challenge and a major concern during late-stage drug development. Induced pluripotent stem cells (iPSC) represent an exciting alternative in vitro model system to explore the role of genetic diversity in DILI, especially when derived from patients who have experienced drug-induced hepatotoxicity. The development and validation of the iPSC-derived hepatocytes as an in vitro cell-based model of DILI is an essential first step in creating more predictive tools for understanding patient-specific hepatotoxic responses to drug treatment. In this study, we performed extensive morphological and functional analyses on iPSC-derived hepatocytes from a commercial source. iPSC-derived hepatocytes exhibit many of the key morphological and functional features of primary hepatocytes, including membrane polarity and production of glycogen, lipids, and key hepatic proteins, such as albumin, asialoglycoprotein receptor and α1-antitrypsin. They maintain functional activity for many drug-metabolizing enzyme pathways and possess active efflux capacity of marker substrates into bile canalicular compartments. Whole genome-wide array analysis of multiple batches of iPSC-derived cells showed that their transcriptional profiles are more similar to those from neonatal and adult hepatocytes than those from fetal liver. Results from experiments using prototype DILI compounds, such as acetaminophen and trovafloxacin, indicate that these cells are able to reproduce key characteristic metabolic and adaptive responses attributed to the drug-induced hepatotoxic effects in vivo. Overall, this novel system represents a promising new tool for understanding the underlying mechanisms of idiosyncratic DILI and for screening new compounds for DILI-related liabilities.
Collapse
Affiliation(s)
- Jingtao Lu
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | | | - Lata Venkatarangan
- QPS Hepatic Biosciences, Research Triangle Park, North Carolina 27709; and
| | - Manda Miller
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - David A Mann
- QPS Hepatic Biosciences, Research Triangle Park, North Carolina 27709; and
| | - Paul B Watkins
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; Schools of Medicine, Pharmacy and Public Health, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Edward LeCluyse
- *The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
23
|
Maiuri AR, Breier AB, Gora LFJ, Parkins RV, Ganey PE, Roth RA. Cytotoxic Synergy Between Cytokines and NSAIDs Associated With Idiosyncratic Hepatotoxicity Is Driven by Mitogen-Activated Protein Kinases. Toxicol Sci 2015; 146:265-80. [PMID: 25953702 DOI: 10.1093/toxsci/kfv091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most frequent causes of idiosyncratic, drug-induced liver injury (IDILI). Mechanisms of IDILI are unknown, but immune responses are suspected to underlie them. In animal models of IDILI, the cytokines tumor necrosis factor-alpha (TNFα) and interferon-gamma (IFNγ) are essential to the pathogenesis. Some drugs associated with IDILI interact with cytokines to kill hepatocytes in vitro, and mitogen-activated protein kinases (MAPKs) might play a role. We tested the hypothesis that caspases and MAPKs are involved in NSAID/cytokine-induced cytotoxicity. NSAIDs that are acetic acid (AA) derivatives and associated with IDILI synergized with TNFα in causing cytotoxicity in HepG2 cells, and IFNγ enhanced this interaction. NSAIDs that are propionic acid (PA) derivatives and cause IDILI that is of less clinical concern also synergized with TNFα, but IFNγ was without effect. Caspase inhibition prevented cytotoxicity from AA and PA derivative/cytokine treatment. Treatment with a representative AA or PA derivative induced activation of the MAPKs c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38. Inhibition of either JNK or ERK reduced cytotoxicity from cytokine interactions with AA derivatives. In contrast, an ERK inhibitor potentiated cytotoxicity from cytokine interactions with PA derivatives. An AA derivative but not a PA derivative enhanced IFNγ-mediated activation of STAT-1, and this enhancement was ERK-dependent. These findings raise the possibility that some IDILI reactions result from drug/cytokine synergy involving caspases and MAPKs and suggest that, even for drugs within the same pharmacologic class, synergy with cytokines occurs by different kinase signaling mechanisms.
Collapse
Affiliation(s)
- Ashley R Maiuri
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Anna B Breier
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Lukas F J Gora
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert V Parkins
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Patricia E Ganey
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert A Roth
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
24
|
Beggs KM, Maiuri AR, Fullerton AM, Poulsen KL, Breier AB, Ganey PE, Roth RA. Trovafloxacin-induced replication stress sensitizes HepG2 cells to tumor necrosis factor-alpha-induced cytotoxicity mediated by extracellular signal-regulated kinase and ataxia telangiectasia and Rad3-related. Toxicology 2015; 331:35-46. [PMID: 25748550 DOI: 10.1016/j.tox.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/11/2015] [Accepted: 03/04/2015] [Indexed: 01/23/2023]
Abstract
Use of the fluoroquinolone antibiotic trovafloxacin (TVX) was restricted due to idiosyncratic, drug-induced liver injury (IDILI). Previous studies demonstrated that tumor necrosis factor-alpha (TNF) and TVX interact to cause death of hepatocytes in vitro that was associated with prolonged activation of c-Jun N-terminal kinase (JNK), activation of caspases 9 and 3, and DNA damage. The purpose of this study was to explore further the mechanism by which TVX interacts with TNF to cause cytotoxicity. Treatment with TVX caused cell cycle arrest, enhanced expression of p21 and impaired proliferation, but cell death only occurred after cotreatment with TVX and TNF. Cell death involved activation of extracellular signal-related kinase (ERK), which in turn activated caspase 3 and ataxia telangiectasia and Rad3-related (ATR), both of which contributed to cytotoxicity. Cotreatment of HepG2 cells with TVX and TNF caused double-strand breaks in DNA, and ERK contributed to this effect. Inhibition of caspase activity abolished the DNA strand breaks. The data suggest a complex interaction of TVX and TNF in which TVX causes replication stress, and the downstream effects are exacerbated by TNF, leading to hepatocellular death. These results raise the possibility that IDILI from TVX results from MAPK and ATR activation in hepatocytes initiated by interaction of cytokine signaling with drug-induced replication stress.
Collapse
Affiliation(s)
- Kevin M Beggs
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Ashley R Maiuri
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Aaron M Fullerton
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Kyle L Poulsen
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Anna B Breier
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Patricia E Ganey
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States
| | - Robert A Roth
- Michigan State University, Department of Pharmacology & Toxicology, Center for Integrative Toxicology, 1129 Farm Lane, East Lansing, MI 48824, United States.
| |
Collapse
|
25
|
Poulsen KL, Albee RP, Ganey PE, Roth RA. Trovafloxacin potentiation of lipopolysaccharide-induced tumor necrosis factor release from RAW 264.7 cells requires extracellular signal-regulated kinase and c-Jun N-Terminal Kinase. J Pharmacol Exp Ther 2014; 349:185-91. [PMID: 24525298 PMCID: PMC3989804 DOI: 10.1124/jpet.113.211276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/11/2014] [Indexed: 01/01/2023] Open
Abstract
Trovafloxacin (TVX) is a fluoroquinolone antibiotic known to cause idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanism underlying this toxicity remains unknown. Previously, an animal model of IDILI in mice revealed that TVX synergizes with inflammatory stress from bacterial lipopolysaccharide (LPS) to produce a hepatotoxic interaction. The liver injury required prolongation of the appearance of tumor necrosis factor-α (TNF) in the plasma. The results presented here describe a model of TVX/LPS coexposure in RAW 264.7 cells acting as a surrogate for TNF-releasing cells in vivo. Pretreating cells with TVX for 2 hours before LPS addition led to increased TNF protein release into culture medium in a concentration- and time-dependent manner relative to cells treated with LPS or TVX alone. During the pretreatment period, TVX increased TNF mRNA, but this was less apparent when cells were exposed to TVX after LPS addition, suggesting that the pivotal signaling events that increase TNF expression occurred during the TVX pretreatment period. Indeed, TVX exposure increased activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase. Inhibition of either ERK or JNK decreased the TVX-mediated increase in TNF mRNA and LPS-induced TNF protein release, but p38 inhibition did not. These results demonstrated that the increased TNF appearance from TVX-LPS interaction in vivo can be reproduced in vitro and occurs in an ERK- and JNK-dependent manner.
Collapse
Affiliation(s)
- Kyle L Poulsen
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | | | | | | |
Collapse
|
26
|
Ramaiahgari SC, den Braver MW, Herpers B, Terpstra V, Commandeur JNM, van de Water B, Price LS. A 3D in vitro model of differentiated HepG2 cell spheroids with improved liver-like properties for repeated dose high-throughput toxicity studies. Arch Toxicol 2014; 88:1083-95. [PMID: 24599296 DOI: 10.1007/s00204-014-1215-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
Immortalized hepatocyte cell lines show only a weak resemblance to primary hepatocytes in terms of gene expression and function, limiting their value in predicting drug-induced liver injury (DILI). Furthermore, primary hepatocytes cultured on two-dimensional tissue culture plastic surfaces rapidly dedifferentiate losing their hepatocyte functions and metabolic competence. We have developed a three-dimensional in vitro model using extracellular matrix-based hydrogel for long-term culture of the human hepatoma cell line HepG2. HepG2 cells cultured in this model stop proliferating, self-organize and differentiate to form multiple polarized spheroids. These spheroids re-acquire lost hepatocyte functions such as storage of glycogen, transport of bile salts and the formation of structures resembling bile canaliculi. HepG2 spheroids also show increased expression of albumin, urea, xenobiotic transcription factors, phase I and II drug metabolism enzymes and transporters. Consistent with this, cytochrome P450-mediated metabolism is significantly higher in HepG2 spheroids compared to monolayer cultures. This highly differentiated phenotype can be maintained in 384-well microtiter plates for at least 28 days. Toxicity assessment studies with this model showed an increased sensitivity in identifying hepatotoxic compounds with repeated dosing regimens. This simple and robust high-throughput-compatible methodology may have potential for use in toxicity screening assays and mechanistic studies and may represent an alternative to animal models for studying DILI.
Collapse
Affiliation(s)
- Sreenivasa C Ramaiahgari
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|