1
|
Zhang W, Tan Y, Ai J, Luo F, Su X, Wu Q, Su L, Pan J, Zheng Q, Li B, Chen J, Luo Q, Chen J, Dou X. Comparison of risk of peritoneal dialysis-associated peritonitis between roxadustat and recombinant human erythropoietin in peritoneal dialysis patients: a retrospective comparative cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1212. [PMID: 36544662 PMCID: PMC9761165 DOI: 10.21037/atm-22-5050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
Background Roxadustat and recombinant human erythropoietin (rhuEPO) have been approved for the treatment of renal anemia in patients undergoing dialysis. The comparison of risk of peritoneal dialysis (PD)-associated peritonitis between roxadustat and rhuEPO in PD patients remains uncertain. We aimed to compare the risk of PD-associated peritonitis between roxadustat and rhuEPO and examine possible modifiers for the comparison in PD patients. Methods A total of 437 PD patients with renal anemia (defined as hemoglobin ≤10.0 g/dL) from 4 centers were selected. Participants were scheduled for follow-up every 1-3 months at each center. We compared differences in baseline characteristics by medication group and 1:1 matching group based on propensity scores. PD-associated peritonitis was defined according to the International Society for Peritoneal Dialysis guidelines. Univariable and multivariable Cox proportional hazard analyses were performed to compare the risk of PD-associated peritonitis between roxadustat and rhuEPO in PD patients. Propensity score matching method was used to examine the robustness of results. Results A total of 437 participants, including 291 in roxadustat group and 146 in rhuEPO group, were included in the current study, respectively. During a median follow-up of 13.0 (25th-75th, 10.0-15.0) months, PD-associated peritonitis occurred in 68 patients, including 26 of 291 (0.10 episodes per patient-year) patients in the roxadustat group and 42 of 146 (0.27 episodes per patient-year) patients in the rhuEPO group. Overall, compared to patients in the rhuEPO group, the roxadustat group (hazard ratio, 0.345; 95% confidence interval: 0.202-0.589) was associated with a lower risk of PD-associated peritonitis with adjustment of use of roxadustat medication, age, sex, hypertension status, diabetes status, dialysis vintage, serum potassium, hemoglobin, and albumin. Furthermore, the results were consistent with the propensity score analysis. None of the variables, including age, sex, body mass index, PD vintage, presence of residual renal function, hemoglobin, albumin, serum potassium, and C-reactive protein levels, significantly modified the associations. Conclusions Our study demonstrated that compared with rhuEPO, roxadustat may reduce the risk of PD-associated peritonitis in PD patients, highlighting the importance of roxadustat for the prevention of PD-associated peritonitis in PD patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Yanhong Tan
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Jun Ai
- Department of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuzhang Luo
- Department of Nephrology, Nanhai People’s Hospital, Foshan, China
| | - Xiaoyan Su
- Department of Nephrology, the Affiliated Donghua Hospital of Sun Yat-sen University, Dongguan, China
| | - Qimeng Wu
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Lijuan Su
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Jianyi Pan
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Qingkun Zheng
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Bin Li
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Jiayi Chen
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Qimei Luo
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Jinzhong Chen
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| | - Xianrui Dou
- Department of Nephrology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan, China
| |
Collapse
|
2
|
Carberry CK, Koval LE, Payton A, Hartwell H, Ho Kim Y, Smith GJ, Reif DM, Jaspers I, Ian Gilmour M, Rager JE. Wildfires and extracellular vesicles: Exosomal MicroRNAs as mediators of cross-tissue cardiopulmonary responses to biomass smoke. ENVIRONMENT INTERNATIONAL 2022; 167:107419. [PMID: 35863239 PMCID: PMC9389917 DOI: 10.1016/j.envint.2022.107419] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Wildfires are a threat to public health world-wide that are growing in intensity and prevalence. The biological mechanisms that elicit wildfire-associated toxicity remain largely unknown. The potential involvement of cross-tissue communication via extracellular vesicles (EVs) is a new mechanism that has yet to be evaluated. METHODS Female CD-1 mice were exposed to smoke condensate samples collected from the following biomass burn scenarios: flaming peat; smoldering peat; flaming red oak; and smoldering red oak, representing lab-based simulations of wildfire scenarios. Lung tissue, bronchoalveolar lavage fluid (BALF) samples, peripheral blood, and heart tissues were collected 4 and 24 h post-exposure. Exosome-enriched EVs were isolated from plasma, physically characterized, and profiled for microRNA (miRNA) expression. Pathway-level responses in the lung and heart were evaluated through RNA sequencing and pathway analyses. RESULTS Markers of cardiopulmonary tissue injury and inflammation from BALF samples were significantly altered in response to exposures, with the greatest changes occurring from flaming biomass conditions. Plasma EV miRNAs relevant to cardiovascular disease showed exposure-induced expression alterations, including miR-150, miR-183, miR-223-3p, miR-30b, and miR-378a. Lung and heart mRNAs were identified with differential expression enriched for hypoxia and cell stress-related pathways. Flaming red oak exposure induced the greatest transcriptional response in the heart, a large portion of which were predicted as regulated by plasma EV miRNAs, including miRNAs known to regulate hypoxia-induced cardiovascular injury. Many of these miRNAs had published evidence supporting their transfer across tissues. A follow-up analysis of miR-30b showed that it was increased in expression in the heart of exposed mice in the absence of changes to its precursor molecular, pri-miR-30b, suggesting potential transfer from external sources (e.g., plasma). DISCUSSION This study posits a potential mechanism through which wildfire exposures induce cardiopulmonary responses, highlighting the role of circulating plasma EVs in intercellular and systems-level communication between tissues.
Collapse
Affiliation(s)
- Celeste K Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexis Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hadley Hartwell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Gregory J Smith
- Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - David M Reif
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Hari S, Burns GL, Hoedt EC, Keely S, Talley NJ. Eosinophils, Hypoxia-Inducible Factors, and Barrier Dysfunction in Functional Dyspepsia. FRONTIERS IN ALLERGY 2022; 3:851482. [PMID: 35769556 PMCID: PMC9234913 DOI: 10.3389/falgy.2022.851482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Functional dyspepsia (FD) is a highly prevalent disorder of gut-brain interaction (DGBI), previously known as a functional gastrointestinal disorder. Characterized by early satiety, postprandial fullness, and/or epigastric pain or burning, diagnosis depends on positive symptomatology and exclusion of obvious structural diseases. A subtle inflammatory phenotype has been identified in FD patients, involving an increase in duodenal mucosal eosinophils, and imbalances in the duodenal gut microbiota. A dysregulated epithelial barrier has also been well described in FD and is thought to be a contributing factor to the low-grade duodenal inflammation observed, however the mechanisms underpinning this are poorly understood. One possible explanation is that alterations in the microbiota and increased immune cells can result in the activation of cellular stress response pathways to perpetuate epithelial barrier dysregulation. One such cellular response pathway involves the stabilization of hypoxia-inducible factors (HIF). HIF, a transcriptional protein involved in the cellular recognition and adaptation to hypoxia, has been identified as a critical component of various pathologies, from cancer to inflammatory bowel disease (IBD). While the contribution of HIF to subtle inflammation, such as that seen in FD, is unknown, HIF has been shown to have roles in regulating the inflammatory response, particularly the recruitment of eosinophils, as well as maintaining epithelial barrier structure and function. As such, we aim to review our present understanding of the involvement of eosinophils, barrier dysfunction, and the changes to the gut microbiota including the potential pathways and mechanisms of HIF in FD. A combination of PubMed searches using the Mesh terms functional dyspepsia, functional gastrointestinal disorders, disorders of gut-brain interaction, duodenal eosinophilia, barrier dysfunction, gut microbiota, gut dysbiosis, low-grade duodenal inflammation, hypoxia-inducible factors (or HIF), and/or intestinal inflammation were undertaken in the writing of this narrative review to ensure relevant literature was included. Given the findings from various sources of literature, we propose a novel hypothesis involving a potential role for HIF in the pathophysiological mechanisms underlying FD.
Collapse
Affiliation(s)
- Suraj Hari
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
| | - Grace L. Burns
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- *Correspondence: Nicholas J. Talley
| |
Collapse
|
4
|
Hypoxia-Inducible Factor Signaling in Inflammatory Lung Injury and Repair. Cells 2022; 11:cells11020183. [PMID: 35053299 PMCID: PMC8774273 DOI: 10.3390/cells11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory lung injury is characterized by lung endothelial cell (LEC) death, alveolar epithelial cell (AEC) death, LEC-LEC junction weakening, and leukocyte infiltration, which together disrupt nutrient and oxygen transport. Subsequently, lung vascular repair is characterized by LEC and AEC regeneration and LEC-LEC junction re-annealing, which restores nutrient and oxygen delivery to the injured tissue. Pulmonary hypoxia is a characteristic feature of several inflammatory lung conditions, including acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and severe coronavirus disease 2019 (COVID-19). The vascular response to hypoxia is controlled primarily by the hypoxia-inducible transcription factors (HIFs) 1 and 2. These transcription factors control the expression of a wide variety of target genes, which in turn mediate key pathophysiological processes including cell survival, differentiation, migration, and proliferation. HIF signaling in pulmonary cell types such as LECs and AECs, as well as infiltrating leukocytes, tightly regulates inflammatory lung injury and repair, in a manner that is dependent upon HIF isoform, cell type, and injury stimulus. The aim of this review is to describe the HIF-dependent regulation of inflammatory lung injury and vascular repair. The review will also discuss potential areas for future study and highlight putative targets for inflammatory lung conditions such as ALI/ARDS and severe COVID-19. In the development of HIF-targeted therapies to reduce inflammatory lung injury and/or enhance pulmonary vascular repair, it will be vital to consider HIF isoform- and cell-specificity, off-target side-effects, and the timing and delivery strategy of the therapeutic intervention.
Collapse
|
5
|
Du X, Liu J, Wang Y, Jin M, Ye Q. Cobalt-related interstitial lung disease or hard metal lung disease: A case series of Chinese workers. Toxicol Ind Health 2021; 37:280-288. [PMID: 34078186 DOI: 10.1177/07482337211000989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hard metal lung disease (HMLD) is rarely diagnosed and is caused by the occupational inhalation of hard metal dust, mainly cobalt. The diagnosis of HMLD is based on a thorough occupational dust exposure combined with clinical-radiological-histological findings. We present a series of four Chinese workers who had occupational exposure to cobalt acid lithium or cobalt and tungsten dust. Four patients all complained of intermittent cough, chest tightness, or shortness of breath on exertion. High-resolution computed tomography scans presented bilateral ground-glass attenuation, consolidations, and/or reticular opacities with diffuse small nodules. Histologic findings showed that interstitial inflammation and fibrotic lesions distributed peribronchioles. The infiltrations by macrophages as well as visible multinucleated giant cells indicated giant cell interstitial pneumonia (GIP). Cobalt was detectable in the lung tissues of two patients measured by inductively-coupled plasma mass spectrometry. The first patient was diagnosed with cobalt-related interstitial lung disease (ILD), while the others were HMLD. GIP is the classic pathology of cobalt-related ILD or HMLD. One of the patients showed spontaneous remission after the cessation of exposure, while the other three recovered within 6-32 weeks after avoiding occupational exposure and using corticosteroids. At follow-up, all four patients showed no recurrence. A multidisciplinary diagnostic panel including occupational cobalt exposure evaluation is beneficial to recognize cobalt-related ILD or HMLD and to indicate the necessity of prevention.
Collapse
Affiliation(s)
- Xuqin Du
- Department of Occupational Medicine and Toxicology, Clinical Center forInterstitial Lung Diseases, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jie Liu
- Department of Occupational Diseases and Chemical Poisoning, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Hospital of Soochow University, Suzhou, China
| | - Yiran Wang
- Department of Occupational Medicine and Toxicology, Clinical Center forInterstitial Lung Diseases, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Mulan Jin
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center forInterstitial Lung Diseases, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Association of Age with the Expression of Hypoxia-Inducible Factors HIF-1α, HIF-2α, HIF-3α and VEGF in Lung and Heart of Tibetan Sheep. Animals (Basel) 2019; 9:ani9090673. [PMID: 31514457 PMCID: PMC6769909 DOI: 10.3390/ani9090673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The heart and lung play an essential role in physiological homeostasis, especially in a hypoxic environment. The effect of aging on HIF-1α, HIF-2α, HIF-3α and VEGF expression in the heart and lung of Tibetan sheep that were adapted to hypoxia was evaluated in this study. We conclude that HIF-3a and VEGF are important in how the heart responds to hypoxia and that HIF-1a and HIF-2a may help mediate the adaptation by the sheep to hypoxia. The results suggested that the altered expression of these proteins due to hypoxia is regulated at the protein as well as gene levels. The expression of these proteins in alveolar macrophages suggests these cells play an important role in adaption to hypoxia. The research could provide insight into the role of inflammation in response to reduced alveolar PO2, and is useful in understanding how age influences the hypoxia adaption mechanisms of the heart and lung. This may allow a better understanding of chronic mountain sickness that is commonly observed in Tibetan people living at high altitude on the Qinghai-Tibetan plateau. Abstract Hypoxia-inducible factors (HIFs) play an important role in mediating the physiological response to low oxygen environments. However, whether the expression of HIFs changes with age is unknown. In the present study, the effect of aging on HIF-1α, HIF-2α, HIF-3α and VEGF expression in the heart and lung of 30 Tibetan sheep that were adapted to hypoxia was evaluated. The 30 sheep were subdivided into groups of 10 animals that were 1, 2 or 6 years of age. Immunohistochemistry for HIF-1α, HIF-2α, HIF-3α and VEGF revealed that the immunostaining intensity of VEGF protein in the heart and lung was significantly higher than the intensity of immunostaining against the HIFs (p < 0.05). HIF-1α and HIF-2α protein translocated into the nucleus of cardiac muscle cells. However, immunostaining for HIF-3α was restricted to the cytoplasm of the myocardial cells. Immunostaining for HIF-1α, HIF-2α, HIF-3α and VEGF was detected within alveolar macrophages. The concentration of HIF-1α and HIF-2α was higher in the lung of 1-year-old than 6-year-old sheep (p < 0.05). In contrast, HIF-3α and VEGF immunostaining was most prominent in the hearts of the oldest sheep. However, when RT-PCR was used to evaluate RNA within the tissues, the expression of all four studied genes was higher in the lung than in the heart in the 1-year-old sheep (p < 0.05). Furthermore, VEGF and HIF-3α gene expression was higher in the heart from 1-year old than 6-year old sheep (p < 0.05). However, in the lung, HIF-1α and HIF-2α gene expression was lower in 1-year old than 6-year old sheep (p < 0.05). We conclude that HIF-3α and VEGF may play be important in how the heart responds to hypoxia. Additionally, HIF-1α and HIF-2α may have a role in the adaptation of the lung to hypoxia. The expression of these proteins in alveolar macrophages suggests a potential role of these cells in the physiological response to hypoxia. These results are useful in understanding how age influences the hypoxia adaption mechanisms of the heart and lung and may help to better understand chronic mountain sickness that is commonly observed in Tibetan people living on the Qinghai-Tibetan plateau.
Collapse
|
7
|
Watts ER, Walmsley SR. Inflammation and Hypoxia: HIF and PHD Isoform Selectivity. Trends Mol Med 2018; 25:33-46. [PMID: 30442494 DOI: 10.1016/j.molmed.2018.10.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
Abstract
Cells sense and respond to hypoxia through the activity of the transcription factor HIF (hypoxia-inducible factor) and its regulatory hydroxylases, the prolyl hydroxylase domain enzymes (PHDs). Multiple isoforms of HIFs and PHDs exist, and isoform-selective roles have been identified in the context of the inflammatory environment, which is itself frequently hypoxic. Recent advances in the field have highlighted the complexity of this system, particularly with regards to the cell and context-specific activity of HIFs and PHDs. Because novel therapeutic agents which regulate this pathway are nearing the clinic, understanding the role of HIFs and PHDs in inflammation outcomes is an essential step in avoiding off-target effects and, crucially, in developing new anti-inflammatory strategies.
Collapse
Affiliation(s)
- Emily R Watts
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sarah R Walmsley
- The University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
8
|
Lison D, van den Brule S, Van Maele-Fabry G. Cobalt and its compounds: update on genotoxic and carcinogenic activities. Crit Rev Toxicol 2018; 48:522-539. [PMID: 30203727 DOI: 10.1080/10408444.2018.1491023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article summarizes recent experimental and epidemiological data on the genotoxic and carcinogenic activities of cobalt compounds. Emphasis is on the respiratory system, but endogenous exposure from Co-containing alloys used in endoprostheses, and limited data on nanomaterials and oral exposures are also considered. Two groups of cobalt compounds are differentiated on the basis of their mechanisms of toxicity: (1) those essentially involving the solubilization of Co(II) ions, and (2) metallic materials for which both surface corrosion and release of Co(II) ions act in concert. For both groups, identified genotoxic and carcinogenic mechanisms are non-stochastic and thus expected to exhibit a threshold. Cobalt compounds should, therefore, be considered as genotoxic carcinogens with a practical threshold. Accumulating evidence indicates that chronic inhalation of cobalt compounds can induce respiratory tumors locally. No evidence of systemic carcinogenicity upon inhalation, oral or endogenous exposure is available. The scarce data available for Co-based nanosized materials does not allow deriving a specific mode of action or assessment for these species.
Collapse
Affiliation(s)
- D Lison
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - S van den Brule
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| | - G Van Maele-Fabry
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Catholic University of Louvain, Brussels, Belgium
| |
Collapse
|
9
|
Li CL, Xu ZB, Fan XL, Chen HX, Yu QN, Fang SB, Wang SY, Lin YD, Fu QL. MicroRNA-21 Mediates the Protective Effects of Mesenchymal Stem Cells Derived from iPSCs to Human Bronchial Epithelial Cell Injury Under Hypoxia. Cell Transplant 2018; 27:571-583. [PMID: 29806480 PMCID: PMC6038046 DOI: 10.1177/0963689718767159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Airway epithelial cell injury is a key triggering event to activate allergic airway inflammation, such as asthma. We previously reported that administration of mesenchymal stem cells (MSCs) significantly alleviated allergic inflammation in a mouse model of asthma, and the mmu-miR-21/ACVR2A axis may be involved. However, whether MSCs protect against bronchial epithelial cell injury induced by hypoxia, and the underlying mechanism, remain unknown. In our study, the human bronchial epithelial cell line BEAS-2B was induced to undergo apoptosis with a hypoxia mimic of cobalt chloride (CoCl2) damage. Treatment of MSCs derived from induced pluripotent stem cells (iPSCs) significantly decreased apoptosis of BEAS-2B cells. There was high miR-21 expression in injured BEAS-2B cells after MSC treatment. Transfection of the miR-21 mimic significantly decreased apoptosis of BEAS-2B, and transfection of a miR-21 inhibitor significantly increased apoptosis. More importantly, the protective effects of MSCs on injured BEAS-2B were reversed by transfection of the miR-21 inhibitor. Binding sites of human miR-21 were identified in the 3’UTR of human ACVR2A. We further determined that CoCl2 stimulation increased ACVR2A expression at both the mRNA and protein levels. Moreover, transfection of the miR-21 mimic further up-regulated ACVR2A expression induced by CoCl2, whereas transfection of the miR-21 inhibitor down-regulated ACVR2A expression. In addition, MSCs increased ACVR2A expression in BEAS-2B cells; however, this effect was reversed after transfection of the miR-21 inhibitor. Our data suggested that MSCs protect bronchial epithelial cells from hypoxic injury via miR-21, which may represent an important target. These findings suggest the potentially wide application of MSCs for epithelial cell injury during hypoxia.
Collapse
Affiliation(s)
- Cheng-Lin Li
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,2 Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Xu
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,2 Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing-Liang Fan
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,2 Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - He-Xin Chen
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiu-Ning Yu
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu-Bin Fang
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yue Wang
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong-Dong Lin
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Ling Fu
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,2 Centre for Stem Cell Clinical Research and Application, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Xiu Q, Kong C, Gao Y, Gao Y, Sha J, Cui N, Zhu D. Hypoxia regulates IL-17A secretion from nasal polyp epithelial cells. Oncotarget 2017; 8:102097-102109. [PMID: 29254228 PMCID: PMC5731938 DOI: 10.18632/oncotarget.22189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia creates a microenvironment conducive to polypogenesis by regulating immune responses of the nasal polyp (NP) epithelium. We explored the immunocompetence of NP and control epithelial cells in response to hypoxia, to investigate potential relationships with polypogenesis. Three groups of tissue samples were collected: inferior turbinate (IT)and NP from individuals with chronic rhinosinusitis with NPs (CRSwNP), and control IT. A positive relationship was detected between HIF1α, HIF2α protein expression in epithelial cells and endoscope score in NP samples, while there was a negative correlation between HIF1α expression and degree of eosinophil infiltration. Epithelial IL-17A expression was lower in NPs than in IT samples from either controls or patients with CRSwNP. Primary human nasal epithelial cells were cultured under hypoxic or normoxic conditions. Enzyme-linked immunosorbent assays demonstrated decreased IL-17A expression upon prolonged exposure to hypoxia in both IT and NP samples from patients with CRSwNP, while IL-17A increased in control IT epithelial cells; correlation and time-dependency were observed between HIF1α and IL-17A expression in both IT and NP samples from patients with CRSwNP. These observations suggest that hypoxia is involved in the pathogenesis of NPs through regulation of IL-17A secretion and HIF1α and HIF2α expression in the NP epithelium.
Collapse
Affiliation(s)
- Qian Xiu
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chenfei Kong
- Department of Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yiyao Gao
- Department of Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yang Gao
- Department of Clinical Medicine, Bethune Medical College, Jilin University, Changchun, China
| | - Jichao Sha
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Na Cui
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Dongdong Zhu
- Department of Otolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
11
|
Wan R, Mo Y, Zhang Z, Jiang M, Tang S, Zhang Q. Cobalt nanoparticles induce lung injury, DNA damage and mutations in mice. Part Fibre Toxicol 2017; 14:38. [PMID: 28923112 PMCID: PMC5604172 DOI: 10.1186/s12989-017-0219-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We and other groups have demonstrated that exposure to cobalt nanoparticles (Nano-Co) caused oxidative stress and inflammation, which have been shown to be strongly associated with genotoxic and carcinogenic effects. However, few studies have reported Nano-Co-induced genotoxic effects in vivo. Here, we propose that Nano-Co may have high genotoxic effects due to their small size and high surface area, which have high capacity for causing oxidative stress and inflammation. METHODS gpt delta transgenic mice were used as our in vivo study model. They were intratracheally instilled with 50 μg per mouse of Nano-Co. At day 1, 3, 7 and 28 after exposure, bronchoalveolar lavage (BAL) was performed and the number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BAL fluid (BALF) were determined. Mouse lung tissues were collected for H&E staining, and Ki-67, PCNA and γ-H2AX immunohistochemical staining. 8-OHdG level in the genomic DNA of mouse lungs was determined by an OxiSelect™ Oxidative DNA Damage ELISA Kit, and mutant frequency and mutation spectrum in the gpt gene were also determined in mouse lungs at four months after Nano-Co exposure by 6-TG selection, colony PCR, and DNA sequencing. RESULTS Exposure of mice to Nano-Co (50 μg per mouse) resulted in extensive acute lung inflammation and lung injury which were reflected by increased number of neutrophils, CXCL1/KC level, LDH activity and concentration of total protein in the BALF, and infiltration of large amount of neutrophils and macrophages in the alveolar space and interstitial tissues. Increased immunostaining of cell proliferation markers, Ki-67 and PCNA, and the DNA damage marker, γ-H2AX, was also observed in bronchiolar epithelial cells and hyperplastic type II pneumocytes in mouse lungs at day 7 after Nano-Co exposure. At four months after exposure, extensive interstitial fibrosis and proliferation of interstitial cells with inflammatory cells infiltrating the alveolar septa were observed. Moreover, Nano-Co caused increased level of 8-OHdG in genomic DNA of mouse lung tissues. Nano-Co also induced a much higher mutant frequency as compared to controls, and the most common mutation was G:C to T:A transversion, which may be explained by Nano-Co-induced increased formation of 8-OHdG. CONCLUSION Our study demonstrated that exposure to Nano-Co caused oxidative stress, lung inflammation and injury, and cell proliferation, which further resulted in DNA damage and DNA mutation. These findings have important implications for understanding the potential health effects of nanoparticle exposure.
Collapse
Affiliation(s)
- Rong Wan
- Department of Pathology, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
| | - Zhenyu Zhang
- Seven-year Program of Clinical Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Mizu Jiang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
- Department of Gastroenterology, Children’s Hospital, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shichuan Tang
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY 40202 USA
- Beijing Municipal Institute of Labor Protection, Beijing, People’s Republic of China
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, 350122 People’s Republic of China
| |
Collapse
|
12
|
Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia. mBio 2016; 7:mBio.01397-16. [PMID: 27624128 PMCID: PMC5021805 DOI: 10.1128/mbio.01397-16] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae. Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood.
Collapse
|
13
|
Role Of Hif2α Oxygen Sensing Pathway In Bronchial Epithelial Club Cell Proliferation. Sci Rep 2016; 6:25357. [PMID: 27150457 PMCID: PMC4858655 DOI: 10.1038/srep25357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022] Open
Abstract
Oxygen-sensing pathways executed by the hypoxia-inducible factors (HIFs) induce a cellular adaptive program when oxygen supply becomes limited. However, the role of the HIF oxygen-sensing pathway in the airway response to hypoxic stress in adulthood remains poorly understood. Here we found that in vivo exposure to hypoxia led to a profound increase in bronchial epithelial cell proliferation mainly confined to Club (Clara) cells. Interestingly, this response was executed by hypoxia-inducible factor 2α (HIF2α), which controls the expression of FoxM1, a recognized proliferative factor of Club cells. Furthermore, HIF2α induced the expression of the resistin-like molecules α and β (RELMα and β), previously considered bronchial epithelial growth factors. Importantly, despite the central role of HIF2α, this proliferative response was not initiated by in vivo Vhl gene inactivation or pharmacological inhibition of prolyl hydroxylase oxygen sensors, indicating the molecular complexity of this response and the possible participation of other oxygen-sensing pathways. Club cells are principally involved in protection and maintenance of bronchial epithelium. Thus, our findings identify a novel molecular link between HIF2α and Club cell biology that can be regarded as a new HIF2α-dependent mechanism involved in bronchial epithelium adaptation to oxygen fluctuations.
Collapse
|
14
|
Kaplan BLF, Li J, LaPres JJ, Pruett SB, Karmaus PWF. Contributions of nonhematopoietic cells and mediators to immune responses: implications for immunotoxicology. Toxicol Sci 2016; 145:214-32. [PMID: 26008184 DOI: 10.1093/toxsci/kfv060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immunotoxicology assessments have historically focused on the effects that xenobiotics exhibit directly on immune cells. These studies are invaluable as they identify immune cell targets and help characterize mechanisms and/or adverse outcome pathways of xenobiotics within the immune system. However, leukocytes can receive environmental cues by cell-cell contact or via released mediators from cells of organs outside of the immune system. These organs include, but are not limited to, the mucosal areas such as the lung and the gut, the liver, and the central nervous system. Homeostatic perturbation in these organs induced directly by toxicants can initiate and alter the outcome of local and systemic immunity. This review will highlight some of the identified nonimmune influences on immune homeostasis and provide summaries of how immunotoxic mechanisms of selected xenobiotics involve nonimmune cells or mediators. Thus, this review will identify data gaps and provide possible alternative mechanisms by which xenobiotics alter immune function that could be considered during immunotoxicology safety assessment.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Jinze Li
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - John J LaPres
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Stephen B Pruett
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peer W F Karmaus
- *Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi St, Mississippi 39762, Safety Assessment, Genentech, Inc. South San Francisco, California 94080, Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824 and Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
15
|
Jeong J, Han Y, Poland CA, Cho WS. Response-metrics for acute lung inflammation pattern by cobalt-based nanoparticles. Part Fibre Toxicol 2015; 12:13. [PMID: 25967046 PMCID: PMC4440510 DOI: 10.1186/s12989-015-0089-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/01/2015] [Indexed: 11/20/2022] Open
Abstract
Background Although the surface area metric has been proposed as a possible dose-metric for nanoparticles (NPs), it is limited to low-solubility NPs and the dose-metric for high-solubility NPs is poorly understood. In this study, we aimed to assess the appropriate dose-metric or response-metric for NPs using two cobalt (Co)-based NPs, cobalt monoxide (CoO) and cobalt oxide (Co3O4), which both show distinctive solubility, and determine the role of their soluble Co ions in inflammation. Methods We evaluated the physicochemical properties of NPs, including solubility in artificial lysosomal fluid (ALF, pH 5.5). Acute lung inflammogenicity was evaluated by bronchoalveolar lavage fluid analysis using the rat intratracheal instillation model. The appropriate response-metric was then determined by plotting several dose-metrics against parameters for lung inflammation. To investigate the effect of the soluble fraction of CoO NPs, the equivalent doses of Co ions from CoCl2 were instilled. Results The Co3O4 and CoO NPs showed about 11.46 % and 92.65 % solubility in ALF, respectively. Instillation of Co3O4 NPs produced neutrophilic inflammation, but CoO NPs induced eosinophilic inflammation. The number of eosinophils showed good correlation with the soluble Co ions dose from NPs (r2 = 0.987, p <0.001), while the number of neutrophils showed good correlation with the surface area dose of the biopersistent NPs (r2 = 0.876, p <0.001). Instillation of CoCl2 showed a similar type and magnitude of inflammation as CoO NPs. Conclusions In the Co-based NPs, the eosinophilic inflammation was produced by Co ions based on the ion metric, while the neutrophilic inflammation was developed based on the surface area metric of the biopersistent NPs.
Collapse
Affiliation(s)
- Jiyoung Jeong
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 840 Hadan-2dong, Saha-gu, Busan, 604-714, Republic of Korea.
| | - Youngju Han
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 840 Hadan-2dong, Saha-gu, Busan, 604-714, Republic of Korea.
| | - Craig A Poland
- Institute of Occupational Medicine, Research Avenue North, Riccarton, Edinburgh, UK.
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, 840 Hadan-2dong, Saha-gu, Busan, 604-714, Republic of Korea.
| |
Collapse
|