1
|
Yilmaz B, Aydin Y, Orta-Yilmaz B. Furan promotes cytotoxic effects through DNA damage and cell apoptosis in Leydig cells. Toxicol Mech Methods 2023; 33:796-805. [PMID: 37488932 DOI: 10.1080/15376516.2023.2240884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Furan is an organic chemical that can cause adverse effects on human health and is formed as a result of the thermal decomposition of many food components during cooking, storage, and processing techniques. Studies have shown that exposure to furan causes nephrotoxicity, hepatotoxicity, immunotoxicity, and reproductive toxicity. According to our current knowledge of the literature, the genotoxic mode of action of furan is highly controversial. The genotoxic effects of furan on the male reproductive system, however, have not been studied. In this study, the TM3 Leydig cell line was treated with 750, 1500, and 3000 μM concentrations of furan for 24 h. Following the completion of the exposure period, the cytotoxicity of furan in TM3 Leydig cells was assessed using a cell viability assay and a spectrophotometric measurement of lactate dehydrogenase (LDH) enzyme levels. The double fluorescence staining method was used to demonstrate furan-induced apoptosis, and DNA damage was shown using the micronucleus, comet, and chromosomal aberration assays. The result indicated that furan administration of Leydig cells resulted in an increase in structural chromosomal aberration, comet, and micronucleus formation, reduced cell viability, increased LDH activity, and a higher incidence of apoptotic cells. These findings revealed that furan induces DNA damage in TM3 Leydig cells, causing genotoxicity and DNA damage-induced cytotoxicity.
Collapse
Affiliation(s)
- Buse Yilmaz
- Department of Biology, Institute of Graduate Studies in Science and Engineering, Istanbul University, Istanbul, Turkey
| | - Yasemin Aydin
- Department of Biology, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
2
|
Capriati M, Hao C, D'Cruz SC, Monfort C, Chevrier C, Warembourg C, Smagulova F. Genome-wide analysis of sex-specific differences in the mother-child PELAGIE cohort exposed to organophosphate metabolites. Sci Rep 2023; 13:8003. [PMID: 37198424 DOI: 10.1038/s41598-023-35113-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
In recent decades, the detrimental effects of environmental contaminants on human health have become a serious public concern. Organophosphate (OP) pesticides are widely used in agriculture, and the negative impacts of OP and its metabolites on human health have been demonstrated. We hypothesized that exposure to OPs during pregnancy could impose damaging effects on the fetus by affecting various processes. We analyzed sex-specific epigenetic responses in the placenta samples obtained from the mother-child PELAGIE cohort. We assayed the telomere length and mitochondrial copy numbers using genomic DNA. We analyzed H3K4me3 by using chromatin immunoprecipitation followed by qPCR (ChIP‒qPCR) and high-throughput sequencing (ChIP-seq). The human study was confirmed with mouse placenta tissue analysis. Our study revealed a higher susceptibility of male placentas to OP exposure. Specifically, we observed telomere length shortening and an increase in γH2AX levels, a DNA damage marker. We detected lower histone H3K9me3 occupancy at telomeres in diethylphosphate (DE)-exposed male placentas than in nonexposed placentas. We found an increase in H3K4me3 occupancy at the promoters of thyroid hormone receptor alpha (THRA), 8-oxoguanine DNA glycosylase (OGG1) and insulin-like growth factor (IGF2) in DE-exposed female placentas. H3K4me3 occupancy at PPARG was increased in both male and female placentas exposed to dimethylphosphate (DM). The genome-wide sequencing of selected samples revealed sex-specific differences induced by DE exposure. Specifically, we found alterations in H3K4me3 in genes related to the immune system in female placenta samples. In DE-exposed male placentas, a decrease in H3K4me3 occupancy at development-related, collagen and angiogenesis-related genes was observed. Finally, we observed a high number of NANOG and PRDM6 binding sites in regions with altered histone occupancy, suggesting that the effects were possibly mediated via these factors. Our data suggest that in utero exposure to organophosphate metabolites affects normal placental development and could potentially impact late childhood.
Collapse
Affiliation(s)
- Martina Capriati
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Chunxiang Hao
- School of Medicine, Linyi University, Linyi, 276000, China
| | - Shereen Cynthia D'Cruz
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christine Monfort
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Cecile Chevrier
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Charline Warembourg
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Univ. Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
3
|
Zhang Y, Zhang Y. A comprehensive review of furan in foods: From dietary exposures and in vivo metabolism to mitigation measures. Compr Rev Food Sci Food Saf 2023; 22:809-841. [PMID: 36541202 DOI: 10.1111/1541-4337.13092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Furan is a thermal food processing contaminant that is ubiquitous in various food products such as coffee, canned and jarred foods, and cereals. A comprehensive summary of research progress on furan is presented in this review, including discussion of (i) formation pathways, (ii) occurrence and dietary exposures, (iii) analytical techniques, (iv) toxicities, (v) metabolism and metabolites, (vi) risk assessment, (vii) potential biomarkers, and (viii) mitigation measures. Dietary exposure to furan varies among different countries and age groups. Furan acts through various toxicological pathways mediated by its primary metabolite, cis-2-butene-1,4-dial (BDA). BDA can readily react with glutathione, amino acids, biogenic amines, or nucleotides to form corresponding metabolites, some of which have been proposed as potential biomarkers of exposure to furan. Present risk assessment of furan mainly employed the margin of exposure approach. Given the widespread occurrence of furan in foods and its harmful health effects, mitigating furan levels in foods or exploring potential dietary supplements to protect against furan toxicity is necessary for the benefit of food safety and public health.
Collapse
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Krausová M, Braun D, Buerki-Thurnherr T, Gundacker C, Schernhammer E, Wisgrill L, Warth B. Understanding the Chemical Exposome During Fetal Development and Early Childhood: A Review. Annu Rev Pharmacol Toxicol 2023; 63:517-540. [PMID: 36202091 DOI: 10.1146/annurev-pharmtox-051922-113350] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Early human life is considered a critical window of susceptibility to external exposures. Infants are exposed to a multitude of environmental factors, collectively referred to as the exposome. The chemical exposome can be summarized as the sum of all xenobiotics that humans are exposed to throughout a lifetime. We review different exposure classes and routes that impact fetal and infant metabolism and the potential toxicological role of mixture effects. We also discuss the progress in human biomonitoring and present possiblemodels for studying maternal-fetal transfer. Data gaps on prenatal and infant exposure to xenobiotic mixtures are identified and include natural biotoxins, in addition to commonly reported synthetic toxicants, to obtain a more holistic assessment of the chemical exposome. We highlight the lack of large-scale studies covering a broad range of xenobiotics. Several recommendations to advance our understanding of the early-life chemical exposome and the subsequent impact on health outcomes are proposed.
Collapse
Affiliation(s)
- Magdaléna Krausová
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Dominik Braun
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , ,
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles Biology Interactions, St. Gallen, Switzerland;
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Eva Schernhammer
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Center for Public Health, Department of Epidemiology, Medical University of Vienna, Vienna, Austria; .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Lukas Wisgrill
- Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.,Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria;
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria; , , .,Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
5
|
Su Y, Lian J, Chen S, Zhang W, Deng C. Epigenetic histone acetylation modulating prenatal Poly I:C induced neuroinflammation in the prefrontal cortex of rats: a study in a maternal immune activation model. Front Cell Neurosci 2022; 16:1037105. [DOI: 10.3389/fncel.2022.1037105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction: Neuroinflammation in the central nervous system, particularly the prefrontal cortex (PFC), plays a role in the pathogenesis of schizophrenia, which has been found to be associated with maternal immune activation (MIA). Recent evidence suggests that epigenetic regulation involves in the MIA-induced neurodevelopmental disturbance. However, it is not well-understood how epigenetic modulation is involved in the neuroinflammation and pathogenesis of schizophrenia.Methods: This study explored the modulation of histone acetylation in both neuroinflammation and neurotransmission using an MIA rat model induced by prenatal polyriboinosinic-polyribocytidylic acid (Poly I:C) exposure, specifically examining those genes that were previously observed to be impacted by the exposure, including a subunit of nuclear factor kappa-B (Rela), Nod-Like-Receptor family Pyrin domain containing 3 (Nlrp3), NMDA receptor subunit 2A (Grin2a), 5-HT2A (Htr2a), and GABAA subunit β3 (Gabrb3).Results: Our results revealed global changes of histone acetylation on H3 (H3ace) and H4 (H4ace) in the PFC of offspring rats with prenatal Poly I:C exposure. In addition, it revealed enhancement of both H3ace and H4ace binding on the promoter region of Rela, as well as positive correlations between Rela and genes encoding histone acetyltransferases (HATs) including CREB-binding protein (CBP) and E1A-associated protein p300 (EP300). Although there was no change in H3ace or H4ace enrichment on the promoter region of Nlrp3, a significant enhancement of histone deacetylase 6 (HDAC6) binding on the promoter region of Nlrp3 and a positive correlation between Nlrp3 and Hdac6 were also observed. However, prenatal Poly I:C treatment did not lead to any specific changes of H3ace and H4ace on the promoter region of the target genes encoding neurotransmitter receptors in this study.Discussion: These findings demonstrated that epigenetic modulation contributes to NF-κB/NLRP3 mediated neuroinflammation induced by prenatal Poly I:C exposure via enhancement of histone acetylation of H3ace and H4ace on Rela and HDAC6-mediated NLRP3 transcriptional activation. This may further lead to deficits in neurotransmissions and schizophrenia-like behaviors observed in offspring.
Collapse
|
6
|
Kobets T, Smith BPC, Williams GM. Food-Borne Chemical Carcinogens and the Evidence for Human Cancer Risk. Foods 2022; 11:2828. [PMID: 36140952 PMCID: PMC9497933 DOI: 10.3390/foods11182828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Commonly consumed foods and beverages can contain chemicals with reported carcinogenic activity in rodent models. Moreover, exposures to some of these substances have been associated with increased cancer risks in humans. Food-borne carcinogens span a range of chemical classes and can arise from natural or anthropogenic sources, as well as form endogenously. Important considerations include the mechanism(s) of action (MoA), their relevance to human biology, and the level of exposure in diet. The MoAs of carcinogens have been classified as either DNA-reactive (genotoxic), involving covalent reaction with nuclear DNA, or epigenetic, involving molecular and cellular effects other than DNA reactivity. Carcinogens are generally present in food at low levels, resulting in low daily intakes, although there are some exceptions. Carcinogens of the DNA-reactive type produce effects at lower dosages than epigenetic carcinogens. Several food-related DNA-reactive carcinogens, including aflatoxins, aristolochic acid, benzene, benzo[a]pyrene and ethylene oxide, are recognized by the International Agency for Research on Cancer (IARC) as causes of human cancer. Of the epigenetic type, the only carcinogen considered to be associated with increased cancer in humans, although not from low-level food exposure, is dioxin (TCDD). Thus, DNA-reactive carcinogens in food represent a much greater risk than epigenetic carcinogens.
Collapse
Affiliation(s)
- Tetyana Kobets
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Benjamin P. C. Smith
- Future Ready Food Safety Hub, Nanyang Technological University, Singapore 639798, Singapore
| | - Gary M. Williams
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Gouveia-Fernandes S, Rodrigues A, Nunes C, Charneira C, Nunes J, Serpa J, Antunes AMM. Glycidamide and cis-2-butene-1,4-dial (BDA) as potential carcinogens and promoters of liver cancer - An in vitro study. Food Chem Toxicol 2022; 166:113251. [PMID: 35750087 DOI: 10.1016/j.fct.2022.113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/18/2022] [Indexed: 10/18/2022]
Abstract
Acrylamide and furan are environmental and food contaminants that are metabolized by cytochrome P450 2E1 (CYP2E1), giving rise to glycidamide and cis-2-butene-1,4-dial (BDA) metabolites, respectively. Both glycidamide and BDA are electrophilic species that react with nucleophilic groups, being able to introduce mutations in DNA and perform epigenetic remodeling. However, whereas these carcinogens are primarily metabolized in the liver, the carcinogenic potential of acrylamide and furan in this organ is still controversial, based on findings from experimental animal studies. With the ultimate goal of providing further insights into this issue, we explored in vitro, using a hepatocyte cell line and a hepatocellular carcinoma cell line, the putative effect of these metabolites as carcinogens and cancer promoters. Molecular alterations were investigated in cells that survive glycidamide and BDA toxicity. We observed that those cells express CD133 stemness marker, present a high proliferative capacity and display an adjusted expression profile of genes encoding enzymes involved in oxidative stress control, such as GCL-C, GSTP1, GSTA3 and CAT. These molecular changes seem to be underlined, at least in part, by epigenetic remodeling involving histone deacetylases (HDACs). Although more studies are needed, here we present more insights towards the carcinogenic capacity of glycidamide and BDA and also point out their effect in favoring hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Sofia Gouveia-Fernandes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Armanda Rodrigues
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Carolina Nunes
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal
| | - Jacinta Serpa
- NOVA Medical School Research, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049 001, Lisboa, Portugal.
| |
Collapse
|
8
|
Javed F, Shahbaz HM, Nawaz A, Olaimat AN, Stratakos AC, Wahyono A, Munir S, Mueen-Ud-Din G, Ali Z, Park J. Formation of furan in baby food products: Identification and technical challenges. Compr Rev Food Sci Food Saf 2021; 20:2699-2715. [PMID: 33719191 DOI: 10.1111/1541-4337.12732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022]
Abstract
Furan is generally produced during thermal processing of various foods including baked, fried, and roasted food items such as cereal products, coffee, canned, and jarred prepared foods as well as in baby foods. Furan is a toxic and carcinogenic compound to humans and may be a vital hazard to infants and babies. Furan could be formed in foods through thermal degradation of carbohydrates, dissociation of amino acids, and oxidation of polyunsaturated fatty acids. The detection of furan in food products is difficult due to its high volatility and low molecular weight. Headspace solid-phase microextraction coupled with gas chromatography/mass spectrometer (GC/MS) is generally used for analysis of furan in food samples. The risk assessment of furan can be characterized using margin of exposure approach (MOE). Conventional strategies including cooking in open vessels, reheating of commercially processed foods with stirring, and physical removal using vacuum treatment have remained unsuccessful for the removal of furan due to the complex production mechanisms and possible precursors of furan. The innovative food-processing technologies such as high-pressure processing (HPP), high-pressure thermal sterilization (HPTS), and Ohmic heating have been adapted for the reduction of furan levels in baby foods. But in recent years, only HPP has gained interest due to successful reduction of furan because of its nonthermal mechanism. HPP-treated baby food products are commercially available from different food companies. This review summarizes the mechanism involved in the formation of furan in foods, its toxicity, and identification in infant foods and presents a solution for limiting its formation, occurrence, and retention using novel strategies.
Collapse
Affiliation(s)
- Farah Javed
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiz Muhammad Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asad Nawaz
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Alexandros Ch Stratakos
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of the West of England, Bristol, United Kingdom
| | - Agung Wahyono
- Department of Food Engineering Technology, State Polytechnic of Jember, Jember, Indonesia
| | - Sadia Munir
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ghulam Mueen-Ud-Din
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Zeshan Ali
- Department of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Jiyong Park
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
9
|
Stegmüller S, Beißmann N, Kremer JI, Mehl D, Baumann C, Richling E. A New UPLC-qTOF Approach for Elucidating Furan and 2-Methylfuran Metabolites in Human Urine Samples after Coffee Consumption. Molecules 2020; 25:molecules25215104. [PMID: 33153167 PMCID: PMC7663408 DOI: 10.3390/molecules25215104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
We have investigated urine samples after coffee consumption using targeted and untargeted approaches to identify furan and 2-methylfuran metabolites in urine samples by UPLC-qToF. The aim was to establish a fast, robust, and time-saving method involving ultra-performance liquid chromatography-quantitative time-of-flight tandem mass spectrometry (UPLC-qToF-MS/MS). The developed method detected previously reported metabolites, such as Lys-BDA, and others that had not been previously identified, or only detected in animal or in vitro studies. The developed UPLC-qToF method detected previously reported metabolites, such as lysine-cis-2-butene-1,4-dial (Lys-BDA) adducts, and others that had not been previously identified, or only detected in animal and in vitro studies. In sum, the UPLC-qToF approach provides additional information that may be valuable in future human or animal intervention studies.
Collapse
Affiliation(s)
- Simone Stegmüller
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
| | - Nadine Beißmann
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
| | - Jonathan Isaak Kremer
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
| | - Denise Mehl
- AB SCIEX Germany GmbH, 64293 Darmstadt, Germany; (D.M.); (C.B.)
| | | | - Elke Richling
- Technische Universität Kaiserslautern, Department of Chemistry, Division of Food Chemistry and Toxicology, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany; (S.S.); (N.B.); (J.I.K.)
- Correspondence: ; Tel./Fax.: +0049-631-205-4061 (ext. 3085)
| |
Collapse
|
10
|
Rehman H, Jahan S, Ullah I, Thörnqvist PO, Jabbar M, Shoaib M, Aman F, John N. Effects of endocrine disruptor furan on reproductive physiology of Sprague Dawley rats: An F1 Extended One-Generation Reproductive Toxicity Study (EOGRTS). Hum Exp Toxicol 2020; 39:1079-1094. [PMID: 32174189 DOI: 10.1177/0960327120911416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study investigated the reproductive toxicity of furan in an Extended One-Generation Reproductive Toxicity Study in rats. Sprague Dawley F0 weaning rats (30 per sex per group) were exposed to furan orally at 0, 1, 2.5, 5, and 10 mg kg-1 for 10 weeks (males) and 2 weeks (females) and then mated. Results of F0 indicated that in the furan-treated groups (5 mg kg-1 and 10 mg kg-1), body weight (bw) gain decreased during prebreed and gestational period while increased during lactation periods. F0 animals prebreeding exposure resulted in head tilt and foot splay at 10 mg kg-1. Number of live pups at birth were decreased (p < 0.001) at 10 mg kg-1. At postnatal day (PND) 70, a significant (p = 0.03) decrease in testosterone levels of male rats and estrogen levels of female rats (p = 0.05) was observed in 10 mg kg-1 furan-treated group in F1 generation. Luteinizing hormone, follicle-stimulating hormone, and progesterone levels were also reduced, but their reduction was not statistically significant in all groups. In higher dose furan group (10 mg kg-1), testicular and ovarian weights were reduced in F1 generation at PND 70, with decreased daily sperm production (p = 0.01) and disturbed estrous cyclicity (p < 0.01). Some histopathological changes were also observed in testis and ovaries in groups whose parents were previously exposed to 10 mg kg-1 bw of furan group. Based on the above results, it is suggested that exposure to food-based contaminant furan induced remarkable changes in the F0 (parental stage) and F1 (offspring, pubertal, and adult stage) generations of Sprague Dawley rats.
Collapse
Affiliation(s)
- H Rehman
- Reproductive Physiology Laboratory, Faculty of Biological Sciences, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Division of Physiology, Department of Neuroscience, Uppsala Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - S Jahan
- Reproductive Physiology Laboratory, Faculty of Biological Sciences, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - I Ullah
- Division of Physiology, Department of Neuroscience, Uppsala Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - P-O Thörnqvist
- Division of Physiology, Department of Neuroscience, Uppsala Biomedical Centre (BMC), Uppsala University, Uppsala, Sweden
| | - M Jabbar
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - M Shoaib
- Reproductive Physiology Laboratory, Faculty of Biological Sciences, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - F Aman
- Reproductive Physiology Laboratory, Faculty of Biological Sciences, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - N John
- Reproductive Physiology Laboratory, Faculty of Biological Sciences, Department of Animal Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
11
|
Batool Z, Xu D, Zhang X, Li X, Li Y, Chen Z, Li B, Li L. A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods. Crit Rev Food Sci Nutr 2020; 61:395-406. [PMID: 32146825 DOI: 10.1080/10408398.2020.1734532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Furan (C4H4O) is a volatile, heterocyclic and carcinogenic heterocyclic chemical compound occurring in a wide range of thermally processed foods. Several studies have been conducted to analyze the formation conditions, triggering furan formation via model systems. Furan can be encountered via various pathways including thermal degradation, oxidation of polyunsaturated fatty acids, thermal rearrangement of carbohydrates in the presence of amino acids, thermal degradation of certain amino acids. Furan has been proven to cause cancer in experimental animal models and classified as a possible human carcinogen by International agency for research on cancer based on sufficient evidences. Thus, different strategies should be developed to reduce furan contents in commercially available food stuffs while food processing. This review summarizes some current evidences of furan formation from different precursors, analytical methods for its detection, and its toxicity that might lead to carcinogenicity and genotoxicity with human risk assessment. In addition, furan occurrence in different thermally processed foods entailed by several recent studies as well as furan mitigation strategies during food processing have also been illustrated in this review.
Collapse
Affiliation(s)
- Zahra Batool
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dan Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xia Zhang
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuting Li
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Zhiyi Chen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Bing Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lin Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
12
|
Rehman H, Jahan S, Ullah I, Winberg S. Toxicological effects of furan on the reproductive system of male rats: An "in vitro" and "in vivo"-based endocrinological and spermatogonial study. CHEMOSPHERE 2019; 230:327-336. [PMID: 31108444 DOI: 10.1016/j.chemosphere.2019.05.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Furan is a colorless toxic chemical produced in various food items during heat processing and in chemical industries. Both in vitro and in vivo studies have reported that it induces oxidative stress and endocrine disruption; however, limited data are available regarding the effects of furan on the reproduction of mammals. In the present study, an in vitro experiment was designed to investigate the direct effects of furan exposure on oxidative stress and testosterone concentration in rat testicular tissue. Furan not only generated high oxidative stress but also decreased antioxidant enzyme activity in the testicular tissue. On the basis of in vitro study results, an in vivo sub-chronic exposure study was performed. Male rats were orally exposed to different concentrations of furan (0, 5, 10, 20, and 40 mg kg-1). An increase (P < 0.05) of reactive oxygen species (ROS) and of the lipid profile (cholesterol, triglycerides, and LDL) in higher dose treatment groups of furan was observed, while total protein content and antioxidant enzyme activity were considerably decreased after furan exposure. Also, plasma and intratesticular testosterone concentrations were reduced in high-dose treatment groups. Sperm parameters such as sperm viability, sperm count, and sperm motility showed a decrease (P < 0.05) in a dose-dependent manner. Histopathological findings revealed significant alterations in testis and epididymis tissues. These results confirm that furan can induce toxic effects on the reproductive system of male rats.
Collapse
Affiliation(s)
- Humaira Rehman
- Reproductive Physiology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Sarwat Jahan
- Reproductive Physiology Laboratory, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan.
| | - Imdad Ullah
- Department of Zoology, Abbottabad University of Science and Technology, Havalian, Abbottabad, Pakistan; Department of Neuroscience, Physiology, Uppsala Biomedical Centre (BMC), Uppsala University, PO Box NO 593, 751 24 Uppsala, Sweden.
| | - Svante Winberg
- Department of Neuroscience, Physiology, Uppsala Biomedical Centre (BMC), Uppsala University, PO Box NO 593, 751 24 Uppsala, Sweden.
| |
Collapse
|
13
|
Review of the evidence for thresholds for DNA-Reactive and epigenetic experimental chemical carcinogens. Chem Biol Interact 2019; 301:88-111. [DOI: 10.1016/j.cbi.2018.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/06/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
|
14
|
Kettlitz B, Scholz G, Theurillat V, Cselovszky J, Buck NR, O’ Hagan S, Mavromichali E, Ahrens K, Kraehenbuehl K, Scozzi G, Weck M, Vinci C, Sobieraj M, Stadler RH. Furan and Methylfurans in Foods: An Update on Occurrence, Mitigation, and Risk Assessment. Compr Rev Food Sci Food Saf 2019; 18:738-752. [DOI: 10.1111/1541-4337.12433] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Beate Kettlitz
- FoodDrinkEurope (FDE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Gabriele Scholz
- Nestlé ResearchVers‐chez‐les‐Blanc 1000 Lausanne 26 Switzerland
| | - Viviane Theurillat
- Nestlé Research & Development Rte de Chavornay 3 CH‐1350 Orbe Switzerland
| | - Jörg Cselovszky
- Cereal Partners Worldwide S.A. Rte de Chavornay 7 CH‐1350 Orbe Switzerland
| | - Neil R. Buck
- General Mills Inc. Ave. Reverdil 12–14 CH‐1260 Nyon Switzerland
| | - Sue O’ Hagan
- Pepsico Beaumont Park, 4 Leycroft Rd., Leiecster LE4 1ET United Kingdom
| | - Eva Mavromichali
- Specialised Nutrition Europe (SNE) Ave. des Nerviens 9–31 1040 Brussels Belgium
| | - Katja Ahrens
- German Federation for Food Law and Food Science Claire‐Waldoff‐Str. 7 10117 Berlin Germany
| | - Karin Kraehenbuehl
- Société des Produits Nestlé S.A. Entre‐deux‐Villes 10–12 1814 La Tour‐de‐Peilz Switzerland
| | - Gabriella Scozzi
- European Breakfast Cereal Assn. Ave. des Nerviens 9–31 B‐1040 Brussels Belgium
| | - Markus Weck
- CULINARIA Europe Reuterstraße 151 D‐53113 Bonn Germany
| | - Claudia Vinci
- European Assn. of Fruit and Vegetable Processors (Profel) Av. De Tervueren 188A B‐1150 Brussels Belgium
| | - Marta Sobieraj
- European Fruit Juice Assn. (AIJN) Rue de la Loi 221 box 5 B‐1040 Brussels Belgium
| | | |
Collapse
|
15
|
Saracoğlu G, Baş H, Pandır D. Furan-induced cardiotoxicity in diabetic rats and protective role of lycopene. J Food Biochem 2018; 43:e12738. [PMID: 31353562 DOI: 10.1111/jfbc.12738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/16/2018] [Accepted: 10/20/2018] [Indexed: 12/15/2022]
Abstract
The objective of this current study is to search the impacts of furan and lycopene on a diabetic rat's heart. Diabetes increases prevalence with a sedentary lifestyle and obesity. Furan, a carcinogen, was detected in foods that had undergone thermal treatment. Two groups were formed, such as: the control and diabetic groups. Diabetic groups fall into four allocated groups: control, lycopene, furan, and furan + lycopene. The changes in malondialdehide levels, antioxidant enzymes' activities, and histopathology of the heart were pointed out. We observed that the changes in both the MDA level and the antioxidant enzymes' activities were due to diabetes. Furan-induced increment in MDA levels, but GST, CAT, SOD, and GPx activities showed a decrease. Lycopene influenced these changes positively. In terms of the pathological studies, changes were also observed in diabetic rats. The histological damage in the diabetic furan groups was found to be very serious. Lycopene was protective against furan that caused histopathological changes. Diabetes and furan resulted into heart damages in rats and lycopene showed preventive effects. But this was not a complete protection. PRACTICAL APPLICATIONS: Furan by product of chlorinated chemical compounds production and chemical processes including combustion, are virtually ubiquitous in the environment. Because of this, furan occur potential risk for human health. Furan is known to exist at higher levels in fatty foods, such as full-fat milk and dairy products, meat and eggs. They can accumulate in the fatty tissues of animals and humans. Diabetes increase in the prevalence of a sedentary lifestyle and obesity. Diabetes with furan-induced cardiotoxicity. Foods should not be heated over and over again, especially diabetic heart patients should stay away from this situation.
Collapse
Affiliation(s)
| | - Hatice Baş
- Department of Biology, Faculty of Arts and Science, Bozok University, Yozgat, Turkey
| | - Dilek Pandır
- Department of Biology, Faculty of Arts and Science, Bozok University, Yozgat, Turkey
| |
Collapse
|
16
|
Alizadeh M, Barati M, Saleh-Ghadimi S, Roshanravan N, Zeinalian R, Jabbari M. Industrial furan and its biological effects on the body systems. J Food Biochem 2018. [DOI: 10.1111/jfbc.12597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohammad Alizadeh
- Department of Nutrition; Tabriz University of Medical Sciences; Tabriz Iran
| | - Meisam Barati
- Faculty of Nutrition and Food Sciences, Student Research Committee, Cellular and Molecular Nutrition Department; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Sevda Saleh-Ghadimi
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Neda Roshanravan
- Cardiovascular Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Reihaneh Zeinalian
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| | - Masoumeh Jabbari
- Student Research Committee, Talented Student Office; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
17
|
Dere E, Anderson LM, Huse SM, Spade DJ, McDonnell-Clark E, Madnick SJ, Hall SJ, Camacho L, Lewis SM, Vanlandingham MM, Boekelheide K. Effects of continuous bisphenol A exposure from early gestation on 90 day old rat testes function and sperm molecular profiles: A CLARITY-BPA consortium study. Toxicol Appl Pharmacol 2018; 347:1-9. [PMID: 29596923 DOI: 10.1016/j.taap.2018.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical that has been identified as an endocrine disrupting compound (EDC). There is growing concern that early life exposures to EDCs, such as BPA, can adversely affect the male reproductive tract and function. This study was conducted as part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) to further delineate the toxicities associated with continuous exposure to BPA from early gestation, and to comprehensively examine the elicited effects on testes and sperm. NCTR Sprague Dawley rat dams were gavaged from gestational day (GD) 6 until parturition, and their pups were directly gavaged daily from postnatal day (PND) 1 to 90 with BPA (2.5, 25, 250, 2500, 25,000, 250,000 μg/kg/d) or vehicle control. At PND 90, the testes and sperm were collected for evaluation. The testes were histologically evaluated for altered germ cell apoptosis, sperm production, and altered spermiation. RNA and DNA isolated from sperm were assessed for elicited changes in global mRNA transcript abundance and altered DNA methylation. Effects of BPA were observed in changes in body, testis and epididymis weights only at the highest administered dose of BPA of 250,000 μg/kg/d. Genome-wide transcriptomic and epigenomic analyses failed to detect robust alterations in sperm mRNA and DNA methylation levels. These data indicate that prolonged exposure starting in utero to BPA over a wide range of levels has little, if any, impact on the testes and sperm molecular profiles of 90 day old rats as assessed by the histopathologic, morphometric, and molecular endpoints evaluated.
Collapse
Affiliation(s)
- Edward Dere
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States; Division of Urology, Rhode Island Hospital, Providence, RI, United States
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Susan M Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Sherry M Lewis
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR, United States
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States.
| |
Collapse
|
18
|
|
19
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Schwerdtle T, Vleminckx C, Vollmer G, Chipman K, De Meulenaer B, Dinovi M, Mennes W, Schlatter J, Schrenk D, Baert K, Dujardin B, Wallace H. Risks for public health related to the presence of furan and methylfurans in food. EFSA J 2017; 15:e05005. [PMID: 32625300 PMCID: PMC7009982 DOI: 10.2903/j.efsa.2017.5005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risk to human health of the presence of furan and methylfurans (2-methylfuran, 3-methylfuran and 2,5-dimethylfuran) in food. They are formed in foods during thermal processing and can co-occur. Furans are produced from several precursors such as ascorbic acid, amino acids, carbohydrates, unsaturated fatty acids and carotenoids, and are found in a variety of foods including coffee and canned and jarred foods. Regarding furan occurrence, 17,056 analytical results were used in the evaluation. No occurrence data were received on methylfurans. The highest exposures to furan were estimated for infants, mainly from ready-to-eat meals. Grains and grain-based products contribute most for toddlers, other children and adolescents. In adults, elderly and very elderly, coffee is the main contributor to dietary exposure. Furan is absorbed from the gastrointestinal tract and is found in highest amounts in the liver. It has a short half-life and is metabolised by cytochrome P450 2E1 (CYP2E1) to the reactive metabolite, cis-but-2-ene-1,4-dialdehyde (BDA). BDA can bind covalently to amino acids, proteins and DNA. Furan is hepatotoxic in rats and mice with cholangiofibrosis in rats and hepatocellular adenomas/carcinomas in mice being the most prominent effects. There is limited evidence of chromosomal damage in vivo and a lack of understanding of the underlying mechanism. Clear evidence for indirect mechanisms involved in carcinogenesis include oxidative stress, gene expression alterations, epigenetic changes, inflammation and increased cell proliferation. The CONTAM Panel used a margin of exposure (MOE) approach for the risk characterisation using as a reference point a benchmark dose lower confidence limit for a benchmark response of 10% of 0.064 mg/kg body weight (bw) per day for the incidence of cholangiofibrosis in the rat. The calculated MOEs indicate a health concern. This conclusion was supported by the calculated MOEs for the neoplastic effects.
Collapse
|
20
|
LaRocca J, Johnson KJ, LeBaron MJ, Rasoulpour RJ. The interface of epigenetics and toxicology in product safety assessment. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
de Conti A, Dreval K, Tryndyak V, Orisakwe OE, Ross SA, Beland FA, Pogribny IP. Inhibition of the Cell Death Pathway in Nonalcoholic Steatohepatitis (NASH)-Related Hepatocarcinogenesis Is Associated with Histone H4 lysine 16 Deacetylation. Mol Cancer Res 2017; 15:1163-1172. [PMID: 28512251 DOI: 10.1158/1541-7786.mcr-17-0109] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/11/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers, and its incidence is steadily increasing worldwide. Recent epidemiologic findings have suggested that the increased incidence of HCC is associated with obesity, type II diabetes mellitus, and nonalcoholic steatohepatitis (NASH); however, the mechanisms and the molecular pathogenesis of NASH-related HCC are not fully understood. To elucidate the underlying mechanisms of the development of NASH-related HCC, we investigated the hepatic transcriptomic and histone modification profiles in Stelic Animal Model mice, the first animal model of NASH-related HCC to resemble the disease pathogenesis in humans. The results demonstrate that the development of NASH-related HCC is characterized by progressive transcriptomic alterations, global loss of histone H4 lysine 20 trimethylation (H4K20me3), and global and gene-specific deacetylation of histone H4 lysine 16 (H4K16). Pathway analysis of the entire set of differentially expressed genes indicated that the inhibition of cell death pathway was the most prominent alteration, and this was facilitated by persistent gene-specific histone H4K16 deacetylation. Mechanistically, deacetylation of histone H4K16 was associated with downregulation of lysine acetyltransferase KAT8, which was driven by overexpression of its inhibitor nuclear protein 1 (Nupr1). The results of this study identified a reduction of global and gene-specific histone H4K16 acetylation as a key pathophysiologic mechanism contributing to the development of NASH-derived HCC and emphasized the importance of epigenetic alterations as diagnostic and therapeutic targets for HCC.Implications: Histone H4K16 deacetylation induces silencing of genes related to the cell death that occurred during the development of NASH-related HCC. Mol Cancer Res; 15(9); 1163-72. ©2017 AACR.
Collapse
Affiliation(s)
- Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Kostiantyn Dreval
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Volodymyr Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Orish E Orisakwe
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas.,Department of Experimental Pharmacology and Toxicology, University of Port-Harcourt, Rivers State, Nigeria
| | - Sharon A Ross
- Division of Cancer Prevention, NCI, Bethesda, Maryland
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, Arkansas.
| |
Collapse
|
22
|
Von Tungeln LS, Walker NJ, Olson GR, Mendoza MCB, Felton RP, Thorn BT, Marques MM, Pogribny IP, Doerge DR, Beland FA. Low dose assessment of the carcinogenicity of furan in male F344/N Nctr rats in a 2-year gavage study. Food Chem Toxicol 2017; 99:170-181. [PMID: 27871980 PMCID: PMC5375162 DOI: 10.1016/j.fct.2016.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/11/2023]
Abstract
Furan is a volatile organic chemical that is a contaminant in many common foods. Furan is hepatocarcinogenic in mice and rats; however, the risk to humans from dietary exposure to furan cannot be estimated accurately because the lowest tested dose of furan in a 2-year bioassay in rats gave nearly a 100% incidence of cholangiocarcinoma. To provide bioassay data that can be used in preparing risk assessments, the carcinogenicity of furan was determined in male F344/N Nctr rats administered 0, 0.02, 0.044, 0.092, 0.2, 0.44, 0.92, and 2 mg furan/kg body weight (BW) by gavage 5 days/week for 2 years. Exposure to furan was associated with the development of malignant mesothelioma on membranes surrounding the epididymis and on the testicular tunics, with the increase being significant at 2 mg furan/kg BW. There was also a dose-related increase in the incidence of mononuclear cell leukemia, with the increase in incidence being significant at 0.092, 0.2, 0.92, and 2 mg furan/kg BW. Dose-related non-neoplastic liver lesions included cholangiofibrosis, mixed cell foci, basophilic foci, biliary tract hyperplasia, oval cell hyperplasia, regenerative hyperplasia, and cytoplasmic vacuolization. The most sensitive non-neoplastic lesion was cholangiofibrosis, the frequency of which increased significantly at 0.2 mg furan/kg BW.
Collapse
Affiliation(s)
- Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Nigel J Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Greg R Olson
- Toxicologic Pathology Associates, Jefferson, AR 72079, United States
| | - Maria C B Mendoza
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Robert P Felton
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Brett T Thorn
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Daniel R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| |
Collapse
|
23
|
de Conti A, Tryndyak V, Doerge DR, Beland FA, Pogribny IP. Irreversible down-regulation of miR-375 in the livers of Fischer 344 rats after chronic furan exposure. Food Chem Toxicol 2016; 98:2-10. [DOI: 10.1016/j.fct.2016.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/24/2016] [Accepted: 06/26/2016] [Indexed: 02/09/2023]
|
24
|
Nunes J, Martins IL, Charneira C, Pogribny IP, de Conti A, Beland FA, Marques MM, Jacob CC, Antunes AMM. New insights into the molecular mechanisms of chemical carcinogenesis: In vivo adduction of histone H2B by a reactive metabolite of the chemical carcinogen furan. Toxicol Lett 2016; 264:106-113. [PMID: 27825936 DOI: 10.1016/j.toxlet.2016.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022]
Abstract
Furan is a rodent hepatocarcinogen ubiquitously found in the environment and heat-processed foods. Furan undergoes cytochrome P450 2E1-catalyzed bioactivation to cis-2-butene-1,4-dial (BDA), which has been shown to form an electrophilic conjugate (GSH-BDA) with glutathione. Both BDA and GSH-BDA yield covalent adducts with lysine residues in proteins. Dose- and time-dependent epigenetic histone alterations have been observed in furan-treated rats. While the covalent modification of histones by chemical carcinogens has long been proposed, histone-carcinogen adducts have eluded detection in vivo. In this study, we investigated if the covalent modification of histones by furan may occur in vivo prior to epigenetic histone alterations. Using a "bottom-up" methodology, involving the analysis of tryptic peptides by liquid chromatography - high resolution mass spectrometry, we obtained evidence for a cross-link between GSH-BDA and lysine 107 of histone H2B isolated from the livers of male F344 rats treated with tumorigenic doses of furan. This cross-link was detected at the shortest treatment period (90 days) in the lowest dose group (0.92mg/kg body weight/day), prior to the identification of epigenetic changes, and occurred at a lysine residue that is a target for epigenetic modifications and crucial for nucleosome stability. Our results represent the first unequivocal proof of the occurrence of carcinogen-modified histones in vivo and suggest that such modification happens at the initial stages of furan-induced carcinogenesis. This type of alteration may be general in scope, opening new insights into the mechanisms of chemical carcinogenesis/toxicity and new opportunities for the development of early compound-specific biomarkers of exposure.
Collapse
Affiliation(s)
- João Nunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Inês L Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Charneira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - M Matilde Marques
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina C Jacob
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
25
|
Dere E, Wilson SK, Anderson LM, Boekelheide K. From the Cover: Sperm Molecular Biomarkers Are Sensitive Indicators of Testicular Injury following Subchronic Model Toxicant Exposure. Toxicol Sci 2016; 153:327-40. [PMID: 27466211 DOI: 10.1093/toxsci/kfw137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional testis histopathology endpoints remain the gold standard for evaluating testicular insult and injury in a non-clinical setting, but are invasive and unfeasible for monitoring these effects clinically in humans. Assessing testicular injury in humans relies on semen and serum hormone analyses, both of which are insensitive and poor indicators of effect. Therefore, we hypothesized that sperm messenger RNA (mRNA) transcripts and DNA methylation marks can be used as translatable and sensitive indicators or testicular injury. Dose-response studies using adult male Fischer 344 rats subchronically exposed to model Sertoli cell toxicants (0.14, 0.21, and 0.33% 2,5-hexanedione, and 30, 50, and 70 mg/kg/day carbendazim), and a model germ cell toxicant (1.4, 3.4, and 5.1 mg/kg/day cyclophosphamide) for 3 months were evaluated for testicular injury by traditional histopathological endpoints, changes in sperm mRNA transcript levels using custom PCR arrays, and alterations in sperm DNA methylation via reduced representation bisulfite sequencing. Testis histopathological evaluation and PCR array analysis of the sperm transcriptome identified dose-dependent changes elicited by toxicant exposure (P < 0.05). Global sperm DNA methylation analysis of subchronic 0.33% 2,5-hexandione and 5.1 mg/kg/day cyclophosphamide exposure using a Monte Carlo approach did not identify differentially methylated regions (methylation difference > 10% and q < 0.05) with robust signatures. Overall, these results suggest that sperm mRNA transcripts are sensitive indicators of low dose toxicant-induced testicular injury in the rat, while sperm DNA methylation changes are not. Additionally, the Monte Carlo analysis is a powerful approach that can be used to assess the robustness of signals resulting from -omic studies.
Collapse
Affiliation(s)
- Edward Dere
- *Division of Urology, Rhode Island Hospital, Providence, Rhode Island 02903 Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Shelby K Wilson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
26
|
Kurdyukov S, Bullock M. DNA Methylation Analysis: Choosing the Right Method. BIOLOGY 2016; 5:biology5010003. [PMID: 26751487 PMCID: PMC4810160 DOI: 10.3390/biology5010003] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 01/10/2023]
Abstract
In the burgeoning field of epigenetics, there are several methods available to determine the methylation status of DNA samples. However, choosing the method that is best suited to answering a particular biological question still proves to be a difficult task. This review aims to provide biologists, particularly those new to the field of epigenetics, with a simple algorithm to help guide them in the selection of the most appropriate assay to meet their research needs. First of all, we have separated all methods into two categories: those that are used for: (1) the discovery of unknown epigenetic changes; and (2) the assessment of DNA methylation within particular regulatory regions/genes of interest. The techniques are then scrutinized and ranked according to their robustness, high throughput capabilities and cost. This review includes the majority of methods available to date, but with a particular focus on commercially available kits or other simple and straightforward solutions that have proven to be useful.
Collapse
Affiliation(s)
- Sergey Kurdyukov
- Genomics Core facility, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia.
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute of Medical Research, University of Sydney, Sydney 2065, Australia.
| |
Collapse
|
27
|
Churchwell MI, Scheri RC, Von Tungeln LS, Gamboa da Costa G, Beland FA, Doerge DR. Evaluation of serum and liver toxicokinetics for furan and liver DNA adduct formation in male Fischer 344 rats. Food Chem Toxicol 2015; 86:1-8. [PMID: 26364877 DOI: 10.1016/j.fct.2015.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 11/26/2022]
Abstract
Furan is a food processing contaminant found in many common cooked foods that induces liver toxicity and liver cancer in animal models treated with sufficient doses. The metabolism of furan occurs primarily in the liver where CYP 2E1 produces a highly reactive bis-electrophile, cis-2-butene-1,4-dial (BDA). BDA reacts with nucleophilic groups in amino acids and DNA in vitro to form covalent adducts. Evidence for BDA-nucleoside adduct formation in vivo is limited but important for assessing the carcinogenic hazard of dietary furan. This study used controlled dosing with furan in Fischer 344 rats to measure serum and liver toxicokinetics and the possible formation of BDA-nucleoside adducts in vivo. After gavage exposure, furan concentrations in the liver were consistently higher than those in whole blood (∼6-fold), which is consistent with portal vein delivery of a lipophilic compound into the liver. Formation of BDA-2'-deoxycytidine in furan-treated rat liver DNA was not observed using LC/MS/MS after single doses as high as 9.2 mg/kg bw or repeated dosing for up to 360 days above a consistent background level (1-2 adducts per 10(8) nucleotides). This absence of BDA-nucleoside adduct formation is consistent with the general lack of evidence for genotoxicity of furan in vivo.
Collapse
Affiliation(s)
- M I Churchwell
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - R C Scheri
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - L S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - G Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - F A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - D R Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
28
|
Dong H, Gill S, Curran IH, Williams A, Kuo B, Wade MG, Yauk CL. Toxicogenomic assessment of liver responses following subchronic exposure to furan in Fischer F344 rats. Arch Toxicol 2015; 90:1351-67. [PMID: 26194646 PMCID: PMC4873526 DOI: 10.1007/s00204-015-1561-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/11/2023]
Abstract
Furan is a widely used industrial chemical and a contaminant in heated foods. Chronic furan exposure causes cholangiocarcinoma and hepatocellular tumors in rats at doses of 2 mg/kg bw/day or greater, with gender differences in frequency and severity. The hepatic transcriptional alterations induced by low doses of furan (doses below those previously tested for induction of liver tumors) and the potential mechanisms underlying gender differences are largely unexplored. We used DNA microarrays to examine the global hepatic mRNA and microRNA transcriptional profiles of male and female rats exposed to 0, 0.03, 0.12, 0.5 or 2 mg/kg bw/day furan over 90 days. Marked gender differences in gene expression responses to furan were observed, with many more altered genes in exposed males than females, confirming the increased sensitivity of males even at the low doses. Pathway analysis supported that key events in furan-induced liver tumors in males include gene expression changes related to oxidative stress, apoptosis and inflammatory response, while pathway changes in females were consistent with primarily adaptive responses. Pathway benchmark doses (BMDs) were estimated and compared to relevant apical endpoints. Transcriptional pathway BMDs could only be examined in males. These median BMDs ranged from 0.08 to 1.43 mg/kg bw/day and approximated those derived from traditional histopathology. MiR-34a (a P53 target) was the only microRNA significantly increased at the 2 mg/kg bw/day, providing evidence to support the importance of apoptosis and cell proliferation in furan hepatotoxicity. Overall, this study demonstrates the use of transcriptional profiling to discern mode of action and mechanisms involved in gender differences.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Santokh Gill
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ivan H Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
29
|
Khot V, Chavan-Gautam P, Joshi S. Proposing interactions between maternal phospholipids and the one carbon cycle: A novel mechanism influencing the risk for cardiovascular diseases in the offspring in later life. Life Sci 2015; 129:16-21. [DOI: 10.1016/j.lfs.2014.09.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 12/13/2022]
|
30
|
de Conti A, Kobets T, Tryndyak V, Burnett SD, Han T, Fuscoe JC, Beland FA, Doerge DR, Pogribny IP. Persistence of furan-induced epigenetic aberrations in the livers of F344 rats. Toxicol Sci 2015; 144:217-26. [PMID: 25539665 PMCID: PMC4372661 DOI: 10.1093/toxsci/kfu313] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Furan is a heterocyclic organic compound produced in the chemical manufacturing industry and also found in a broad range of food products, including infant formulas and baby foods. Previous reports have indicated that the adverse biological effects of furan, including its liver tumorigenicity, may be associated with epigenetic abnormalities. In the present study, we investigated the persistence of epigenetic alterations in rat liver. Male F344 rats were treated by gavage 5 days per week with 8 mg furan/kg body weight (bw)/day for 90 days. After the last treatment, rats were divided randomly into 4 groups; 1 group of rats was sacrificed 24 h after the last treatment, whereas other groups were maintained without further furan treatment for an additional 90, 180, or 360 days. Treatment with furan for 90 days resulted in alterations in histone lysine methylation and acetylation, induction of base-excision DNA repair genes, suggesting oxidative damage to DNA, and changes in the gene expression in the livers. A majority of these furan-induced molecular changes was transient and disappeared after the cessation of furan treatment. In contrast, histone H3 lysine 9 and H3 lysine 56 showed a sustained and time-depended decrease in acetylation, which was associated with formation of heterochromatin and altered gene expression. These results indicate that furan-induced adverse effects may be mechanistically related to sustained changes in histone lysine acetylation that compromise the ability of cells to maintain and control properly the expression of genetic information.
Collapse
Affiliation(s)
- Aline de Conti
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Tetyana Kobets
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Volodymyr Tryndyak
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Sarah D Burnett
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Tao Han
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - James C Fuscoe
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Frederick A Beland
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Daniel R Doerge
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| | - Igor P Pogribny
- *Division of Biochemical Toxicology and Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas 72079
| |
Collapse
|
31
|
Na J, Yang H, Bae S, Lim KM. Analysis of Statistical Methods Currently used in Toxicology Journals. Toxicol Res 2014; 30:185-92. [PMID: 25343012 PMCID: PMC4206745 DOI: 10.5487/tr.2014.30.3.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Statistical methods are frequently used in toxicology, yet it is not clear whether the methods employed by the studies are used consistently and conducted based on sound statistical grounds. The purpose of this paper is to describe statistical methods used in top toxicology journals. More specifically, we sampled 30 papers published in 2014 from Toxicology and Applied Pharmacology, Archives of Toxicology, and Toxicological Science and described methodologies used to provide descriptive and inferential statistics. One hundred thirteen endpoints were observed in those 30 papers, and most studies had sample size less than 10, with the median and the mode being 6 and 3 & 6, respectively. Mean (105/113, 93%) was dominantly used to measure central tendency, and standard error of the mean (64/113, 57%) and standard deviation (39/113, 34%) were used to measure dispersion, while few studies provide justifications regarding why the methods being selected. Inferential statistics were frequently conducted (93/113, 82%), with one-way ANOVA being most popular (52/93, 56%), yet few studies conducted either normality or equal variance test. These results suggest that more consistent and appropriate use of statistical method is necessary which may enhance the role of toxicology in public health.
Collapse
Affiliation(s)
- Jihye Na
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyeri Yang
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - SeungJin Bae
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
32
|
Marrone AK, Beland FA, Pogribny IP. Noncoding RNA response to xenobiotic exposure: an indicator of toxicity and carcinogenicity. Expert Opin Drug Metab Toxicol 2014; 10:1409-22. [PMID: 25171492 DOI: 10.1517/17425255.2014.954312] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Human exposure to certain environmental and occupational chemicals is one of the major risk factors for noncommunicable diseases, including cancer. Therefore, it is desirable to take advantage of subtle exposure-related adverse cellular events for early disease detection and to identify potential dangers caused by new and currently under-evaluated drugs and chemicals. Nongenotoxic events due to carcinogen/toxicant exposure are a general hallmark of sustained cellular stress leading to tumorigenesis. These processes are globally regulated via noncoding RNAs (ncRNAs). Tumorigenesis-associated genotoxic and nongenotoxic events lead to the altered expression of ncRNAs and may provide a mechanistic link between chemical exposure and tumorigenesis. Current advances in toxicogenomics are beginning to provide valuable insight into gene-chemical interactions at the transcriptome level. AREAS COVERED In this review, we summarize recent information about the impact of xenobiotics on ncRNAs. Evidence highlighted in this review suggests a critical role of ncRNAs in response to carcinogen/toxicant exposure. EXPERT OPINION Benefits for the use of ncRNAs in carcinogenicity assessment include remarkable tissue specificity, early appearance, low baseline variability, and their presence and stability in biological fluids, which suggests that the incorporation of ncRNAs in the evaluation of cancer risk assessment may enhance substantially the efficiency of toxicity and carcinogenicity testing.
Collapse
Affiliation(s)
- April K Marrone
- Commissioner Fellow, Research Chemist,National Center for Toxicological Research, Division of Biochemical Toxicology , Jefferson, AR , USA
| | | | | |
Collapse
|