1
|
Koshta K, Chauhan A, Singh S, Srivastava V. Prenatal arsenic exposure alters EZH2-H3K27me3 occupancy at TNF-α promoter leading to insulin resistance and metabolic syndrome in a mouse model. ENVIRONMENT INTERNATIONAL 2024; 190:108929. [PMID: 39098089 DOI: 10.1016/j.envint.2024.108929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/29/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The global prevalence of Metabolic Syndrome (MetS) is continuously rising and exposure to environmental toxicants such as arsenic could be contributing to this rapid surge. In this study, we have assessed the effects of prenatal arsenic exposure on insulin resistance and MetS parameters in a mouse model, and an underlying mechanism was identified. We found that prenatal arsenic exposure promotes insulin resistance and adipocyte dysfunction which leads to the early onset of MetS in male offspring. Primary adipocytes isolated from 20-week-old arsenic-exposed offspring showed hypertrophy, elevated basal lipolysis, and impaired insulin response along with enhanced expression of Tumor necrosis factor-alpha (TNF-α). TNF-α levels were consistently high at gestational day 15.5 (GD15.5) as well as primary adipocytes of 6-week-old arsenic-exposed male offspring. Along with TNF-α, downstream p-JNK1/2 levels were also increased, which led to inhibitory phosphorylation of IRS1and reduced GLUT4 translocation upon insulin stimulation in adipocytes. Insulin response and downstream signaling were restored upon TNF-α inhibition, confirming its central role. The persistent overexpression of TNF-α in adipocytes of arsenic-exposed mice resulted from diminished EZH2 occupancy and reduced H3K27me3 (gene silencing histone marks) at the TNF-α promoter. This further led to chromatin relaxation, recruitment of c-Jun and CBP/p300, formation of an enhanceosome complex, and TNF-α expression. Our findings show how prenatal arsenic exposure can epigenetically modulate TNF-α expression to promote adipocyte dysfunction and insulin resistance which contributes to the early onset of MetS in offspring.
Collapse
Affiliation(s)
- Kavita Koshta
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Vishvigyan Bhawan, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anchal Chauhan
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Vishvigyan Bhawan, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhveer Singh
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Vishvigyan Bhawan, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas Srivastava
- Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31, Vishvigyan Bhawan, Mahatma Gandhi Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Paz-Sabillón M, Torres-Sánchez L, Piña-Pozas M, Del Razo LM, Quintanilla-Vega B. Prenatal Exposure to Potentially Toxic Metals and Their Effects on Genetic Material in Offspring: a Systematic Review. Biol Trace Elem Res 2023; 201:2125-2150. [PMID: 35713810 DOI: 10.1007/s12011-022-03323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
In recent years, the background level of environmental pollutants, including metals, has increased. Pollutant exposure during the earliest stages of life may determine chronic disease susceptibility in adulthood because of genetic or epigenetic changes. The objective of this review was to identify the association between prenatal and early postnatal exposure to potentially toxic metals (PTMs) and their adverse effects on the genetic material of offspring. A systematic review was carried out following the Cochrane methodology in four databases: PubMed, Scopus, Web of Science, and the Cochrane Library. Eligible papers were those conducted in humans and published in English between 2010/01/01 and 2021/04/30. A total of 57 articles were included, most of which evaluated prenatal exposure. Most commonly evaluated PTMs were As, Cd, and Pb. Main adverse effects on the genetic material of newborns associated with PTM prenatal exposure were alterations in telomere length, gene or protein expression, mitochondrial DNA content, metabolomics, DNA damage, and epigenetic modifications. Many of these effects were sex-specific, being predominant in boys. One article reported a synergistic interaction between As and Hg, and two articles observed antagonistic interactions between PTMs and essential metals, such as Cu, Se, and Zn. The findings in this review highlight that the problem of PTM exposure persists, affecting the most susceptible populations, such as newborns. Some of these associations were observed at low concentrations of PTMs. Most of the studies have focused on single exposures; however, three interactions between essential and nonessential metals were observed, highlighting that metal mixtures need more attention.
Collapse
Affiliation(s)
- Marvin Paz-Sabillón
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Luisa Torres-Sánchez
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Maricela Piña-Pozas
- National Institute of Public Health, Ave. Universidad 655, Santa María Ahuacatitlán, 62100, Cuernavaca, Morelos, Mexico
| | - Luz M Del Razo
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - Betzabet Quintanilla-Vega
- Department of Toxicology, Cinvestav, Ave. IPN 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|
3
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
4
|
Banerjee M, Yaddanapudi K, States JC. Zinc supplementation prevents mitotic accumulation in human keratinocyte cell lines upon environmentally relevant arsenic exposure. Toxicol Appl Pharmacol 2022; 454:116255. [PMID: 36162444 PMCID: PMC9683715 DOI: 10.1016/j.taap.2022.116255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 12/01/2022]
Abstract
Disrupted cell cycle progression underlies the molecular pathogenesis of multiple diseases. Chronic exposure to inorganic arsenic (iAs) is a global health issue leading to multi-organ cancerous and non-cancerous diseases. Exposure to supratherapeutic concentrations of iAs causes cellular accumulation in G2 or M phase of the cell cycle in multiple cell lines by inducing cyclin B1 expression. It is not clear if iAs exposure at doses corresponding to serum levels of chronically exposed populations (∼100 nM) has any effect on cell cycle distribution. In the present study we investigated if environmentally relevant iAs exposure induced cell cycle disruption and mechanisms thereof employing two human keratinocyte cell lines (HaCaT and Ker-CT), flow cytometry, immunoblots and quantitative real-time PCR (qRT-PCR). iAs exposure (100 nM; 24 h) led to mitotic accumulation of cells in both cell lines, along with the stabilization of ANAPC11 ubiquitination targets cyclin B1 and securin, without affecting their steady state mRNA levels. This result suggested that induction of cyclin B1 and securin is modulated at the level of protein degradation. Moreover, zinc supplementation successfully prevented iAs-induced mitotic accumulation and stabilization of cyclin B1 and securin without affecting their mRNA levels. Together, these data suggest that environmentally relevant iAs exposure leads to mitotic accumulation possibly by displacing zinc from the RING finger subunit of anaphase promoting complex/cyclosome (ANAPC11), the cell cycle regulating E3 ubiquitin ligase. This early cell cycle disruptive effect of environmentally relevant iAs concentration could underpin the molecular pathogenesis of multiple diseases associated with chronic iAs exposure.
Collapse
Affiliation(s)
- Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| | - Kavitha Yaddanapudi
- Immuno-Oncology Group, James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA; Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Department of Microbiology/Immunology, University of Louisville, Louisville, KY, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
5
|
Chao A, Grossman J, Carberry C, Lai Y, Williams AJ, Minucci JM, Purucker ST, Szilagyi J, Lu K, Boggess K, Fry RC, Sobus JR, Rager JE. Integrative exposomic, transcriptomic, epigenomic analyses of human placental samples links understudied chemicals to preeclampsia. ENVIRONMENT INTERNATIONAL 2022; 167:107385. [PMID: 35952468 PMCID: PMC9552572 DOI: 10.1016/j.envint.2022.107385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Environmental health research has recently undergone a dramatic shift, with ongoing technological advancements allowing for broader coverage of exposure and molecular biology signatures. Approaches to integrate such measures are still needed to increase understanding between systems-level exposure and biology. OBJECTIVES We address this gap by evaluating placental tissues to identify novel chemical-biological interactions associated with preeclampsia. This study tests the hypothesis that understudied chemicals are present in the human placenta and associated with preeclampsia-relevant disruptions, including overall case status (preeclamptic vs. normotensive patients) and underlying transcriptomic/epigenomic signatures. METHODS A non-targeted analysis based on high-resolution mass spectrometry was used to analyze placental tissues from a cohort of 35 patients with preeclampsia (n = 18) and normotensive (n = 17) pregnancies. Molecular feature data were prioritized for confirmation based on association with preeclampsia case status and confidence of chemical identification. All molecular features were evaluated for relationships to mRNA, microRNA, and CpG methylation (i.e., multi-omic) signature alterations involved in preeclampsia. RESULTS A total of 183 molecular features were identified with significantly differentiated abundance in placental extracts of preeclamptic patients; these features clustered into distinct chemical groupings using unsupervised methods. Of these features, 53 were identified (mapping to 40 distinct chemicals) using chemical standards, fragmentation spectra, and chemical metadata. In general, human metabolites had the largest feature intensities and strongest associations with preeclampsia-relevant multi-omic changes. Exogenous drugs were second most abundant and had fewer associations with multi-omic changes. Other exogenous chemicals (non-drugs) were least abundant and had the fewest associations with multi-omic changes. CONCLUSIONS These global data trends suggest that human metabolites are heavily intertwined with biological processes involved in preeclampsia etiology, while exogenous chemicals may still impact select transcriptomic/epigenomic processes. This study serves as a demonstration of merging systems exposures with systems biology to better understand chemical-disease relationships.
Collapse
Affiliation(s)
- Alex Chao
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Research Triangle Park, NC, USA
| | | | - Celeste Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yunjia Lai
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antony J. Williams
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Research Triangle Park, NC, USA
| | - Jeffrey M. Minucci
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Public Health and Environmental Systems Division, Research Triangle Park, NC, USA
| | - S. Thomas Purucker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Research Triangle Park, NC, USA
| | - John Szilagyi
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim Boggess
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jon R. Sobus
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Research Triangle Park, NC, USA
| | - Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
7
|
Payton AD, Perryman AN, Hoffman JR, Avula V, Wells H, Robinette C, Alexis NE, Jaspers I, Rager JE, Rebuli ME. Cytokine signature clusters as a tool to compare changes associated with tobacco product use in upper and lower airway samples. Am J Physiol Lung Cell Mol Physiol 2022; 322:L722-L736. [PMID: 35318855 PMCID: PMC9054348 DOI: 10.1152/ajplung.00299.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Inhalation exposure to cigarette smoke and e-cigarette aerosol is known to alter the respiratory immune system, particularly cytokine signaling. In assessments of health impacts of tobacco product use, cytokines are often measured using a variety of sample types, from serum to airway mucosa. However, it is currently unclear whether and how well cytokine levels from different sample types and the airway locations they represent are correlated, making comparing studies that utilize differing sample types challenging. To address this challenge, we compared baseline cytokine signatures in upper and lower airways and systemic samples and evaluated how groups of coexpressed cytokines change with tobacco product use. Matched nasal lavage fluid (NLF), nasal epithelial lining fluid (NELF), sputum, and circulating serum samples were collected from 14 nonsmokers, 13 cigarette smokers, and 17 e-cigarette users and analyzed for levels of 22 cytokines. Individual cytokine signatures were first compared across each sample type, followed by identification of cytokine clusters within each sample type. Identified clusters were then evaluated for potential alterations following tobacco product use using eigenvector analyses. Individual cytokine signatures in the respiratory tract were significantly correlated (NLF, NELF, and sputum) compared with randomly permutated signatures, whereas serum was not significantly different from random permutations. Cytokine clusters that were similar across airway sample types were modified by tobacco product use, particularly e-cigarettes, indicating a degree of uniformity in terms of how cytokine host defense and immune cell recruitment responses cooperate in the upper and lower airways. Overall, cluster-based analyses were found to be especially useful in small cohort assessments, providing higher sensitivity than individual signatures to detect biologically meaningful differences between tobacco use groups. This novel cluster analysis approach revealed that eigencytokine patterns in noninvasive upper airway samples simulate cytokine patterns in lower airways.
Collapse
Affiliation(s)
- Alexis D Payton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexia N Perryman
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jessica R Hoffman
- Curriculum for the Environment and Ecology, College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Heather Wells
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Carole Robinette
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Meghan E Rebuli
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
8
|
Ferragut Cardoso AP, Banerjee M, Al-Eryani L, Sayed M, Wilkey DW, Merchant ML, Park JW, States JC. Temporal Modulation of Differential Alternative Splicing in HaCaT Human Keratinocyte Cell Line Chronically Exposed to Arsenic for up to 28 Wk. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:17011. [PMID: 35072517 PMCID: PMC8785870 DOI: 10.1289/ehp9676] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Chronic arsenic exposure via drinking water is associated with an increased risk of developing cancer and noncancer chronic diseases. Pre-mRNAs are often subject to alternative splicing, generating mRNA isoforms encoding functionally distinct protein isoforms. The resulting imbalance in isoform species can result in pathogenic changes in critical signaling pathways. Alternative splicing as a mechanism of arsenic-induced toxicity and carcinogenicity is understudied. OBJECTIVE This study aimed to accurately profile differential alternative splicing events in human keratinocytes induced by chronic arsenic exposure that might play a role in carcinogenesis. METHODS Independent quadruplicate cultures of immortalized human keratinocytes (HaCaT) were maintained continuously for 28 wk with 0 or 100 nM sodium arsenite. RNA-sequencing (RNA-Seq) was performed with poly(A) RNA isolated from cells harvested at 7, 19, and 28 wk with subsequent replicate multivariate analysis of transcript splicing (rMATS) analysis to detect and quantify differential alternative splicing events. Reverse transcriptase-polymerase chain reaction (RT-PCR) for selected alternative splicing events was performed to validate RNA-Seq predictions. Functional enrichment was performed by gene ontology (GO) analysis of the differential alternative splicing event data set at each time point. RESULTS At least 600 differential alternative splicing events were detected at each time point tested, comprising all the five main types of alternative splicing and occurring in both open reading frames (ORFs) and untranslated regions (UTRs). Based on functional relevance ELK4, SHC1, and XRRA1 were selected for validation of predicted alternative splicing events at 7 wk by RT-PCR. Densitometric analysis of RT-PCR data corroborated the rMATS predicted alternative splicing for all three events. Protein expression validation of the selected alternative splicing events was challenging given that very few isoform-specific antibodies are available. GO analysis demonstrated that the enriched terms in differential alternatively spliced mRNAs changed dynamically with the time of exposure. Notably, RNA metabolism and splicing regulation pathways were enriched at the 7-wk time point, when the greatest number of differentially alternatively spliced mRNAs are detected. Our preliminary proteomic analysis demonstrated that the expression of the canonical isoforms of the splice regulators DDX42, RMB25, and SRRM2 were induced upon chronic arsenic exposure, corroborating the splicing predictions. DISCUSSION These results using cultures of HaCaT cells suggest that arsenic exposure disrupted an alternative splice factor network and induced time-dependent genome-wide differential alternative splicing that likely contributed to the changing proteomic landscape in arsenic-induced carcinogenesis. However, significant challenges remain in corroborating alternative splicing data at the proteomic level. https://doi.org/10.1289/EHP9676.
Collapse
Affiliation(s)
- Ana P. Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Laila Al-Eryani
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Mohammed Sayed
- Computer Science and Engineering, University of Louisville, Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Michael L. Merchant
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
- Division of Nephrology & Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Juw W. Park
- Computer Science and Engineering, University of Louisville, Louisville, Kentucky, USA
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, Kentucky, USA
| | - J. Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
9
|
Rager JE, Clark J, Eaves LA, Avula V, Niehoff NM, Kim YH, Jaspers I, Gilmour MI. Mixtures modeling identifies chemical inducers versus repressors of toxicity associated with wildfire smoke. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145759. [PMID: 33611182 PMCID: PMC8243846 DOI: 10.1016/j.scitotenv.2021.145759] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 05/02/2023]
Abstract
Exposure to wildfire smoke continues to be a growing threat to public health, yet the chemical components in wildfire smoke that primarily drive toxicity and associated disease are largely unknown. This study utilized a suite of computational approaches to identify groups of chemicals induced by variable biomass burn conditions that were associated with biological responses in the mouse lung, including pulmonary immune response and injury markers. Smoke condensate samples were collected and characterized, resulting in chemical distribution information for 86 constituents across ten different exposures. Mixtures-relevant statistical methods included (i) a chemical clustering and data-reduction method, weighted chemical co-expression network analysis (WCCNA), (ii) a quantile g-computation approach to address the joint effect of multiple chemicals in different groupings, and (iii) a correlation analysis to compare mixtures modeling results against individual chemical relationships. Seven chemical groups were identified using WCCNA based on co-occurrence showing both positive and negative relationships with biological responses. A group containing methoxyphenols (e.g., coniferyl aldehyde, eugenol, guaiacol, and vanillin) displayed highly significant, negative relationships with several biological responses, including cytokines and lung injury markers. This group was further shown through quantile g-computation methods to associate with reduced biological responses. Specifically, mixtures modeling based on all chemicals excluding those in the methoxyphenol group demonstrated more significant, positive relationships with several biological responses; whereas mixtures modeling based on just those in the methoxyphenol group demonstrated significant negative relationships with several biological responses, suggesting potential protective effects. Mixtures-based analyses also identified other groups consisting of inorganic elements and ionic constituents showing positive relationships with several biological responses, including markers of inflammation. Many of the effects identified through mixtures modeling in this analysis were not captured through individual chemical analyses. Together, this study demonstrates the utility of mixtures-based approaches to identify potential drivers and inhibitors of toxicity relevant to wildfire exposures.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| | - Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren A Eaves
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vennela Avula
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicole M Niehoff
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yong Ho Kim
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| | - Ilona Jaspers
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA; Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Ian Gilmour
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Khan KM, Chakraborty R, Bundschuh J, Bhattacharya P, Parvez F. Health effects of arsenic exposure in Latin America: An overview of the past eight years of research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136071. [PMID: 31918184 PMCID: PMC7063974 DOI: 10.1016/j.scitotenv.2019.136071] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/22/2019] [Accepted: 12/09/2019] [Indexed: 05/03/2023]
Abstract
Studies conducted over the past eight years in Latin America (LA) have continued to produce new knowledge regarding health impacts of arsenic (As) in drinking water. We conducted a systematic review of 92 peer-reviewed English articles published between 2011 and 2018 to expand our understanding on these health effects. Majority of the LA studies on As have been conducted in Chile and Mexico. Additional data have emerged from As-exposed populations in Argentina, Bolivia, Brazil, Colombia, Ecuador, and Uruguay. The present review has documented recent data on the biomarkers of As exposure, genetic susceptibility and genotoxicity, and risk assessment to further characterize the health effects and exposed populations. Some recent findings on the associations of As with bladder and lung cancers, reproductive outcomes, and declined cognitive performance have been consistent with what we reported in our previous systematic review article. We have found highly convincing evidence of in utero As exposure as a significant risk factor for several health outcomes, particularly for bladder cancer, even at moderate level. New data have emerged regarding the associations of As with breast and laryngeal cancers as well as type 2 diabetes. We observed early life As exposure to be associated with kidney injury, carotid intima-media thickness, and various pulmonary outcomes in children. Other childhood effects such as low birth weight, low gestational age, anemia, increased apoptosis, and decreased cognitive functions were also reported. Studies identified genetic variants of As methyltransferase that could determine susceptibility to As related health outcomes. Arsenic-induced DNA damage and alteration of gene and protein expression have also been reported. While the scope of research is still vast, the substantial work done on As exposure and its health effects in LA will help direct further large-scale studies for more comprehensive knowledge and plan appropriate mitigation strategies.
Collapse
Affiliation(s)
- Khalid M Khan
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, Indiana, USA.
| | - Rishika Chakraborty
- Department of Environmental and Occupational Health, School of Public Health, Indiana University-Bloomington, Indiana, USA.
| | - Jochen Bundschuh
- School of Civil Engineering and Surveying, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia; UNESCO Chair on Groundwater Arsenic within the 2030 Agenda for Sustainable Development, University of Southern Queensland, West Street, Toowoomba, 4350, Queensland, Australia.
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44 Stockholm, Sweden.
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA.
| |
Collapse
|
11
|
Aung MT, Meeker JD, Boss J, Bakulski KM, Mukherjee B, Cantonwine DE, McElrath TF, Ferguson KK. Manganese is associated with increased plasma interleukin-1β during pregnancy, within a mixtures analysis framework of urinary trace metals. Reprod Toxicol 2019; 93:43-53. [PMID: 31881266 DOI: 10.1016/j.reprotox.2019.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 02/01/2023]
Abstract
Exposure to trace metals may impact reproductive health outcomes through perturbations in maternal immune signaling molecules. We conducted a cross-sectional study of 390 pregnant women from the LIFECODES birth cohort and investigated the associations between 17 urinary metals and five immune biomarkers measured in the 3rd trimester (median 26 weeks gestation). We used linear regression to estimate pair-wise associations and applied elastic net and Bayesian kernel machine regression to identify important contributing exposures analytes as well as non-linear effects. Maternal urinary manganese, nickel, and barium were positively associated with maternal plasma interleukin-1β (IL-1β). Elastic net and Bayesian kernel machine regression identified manganese as the dominant trace metal in association with IL-1β. An interquartile range difference in manganese (0.6 μg/L) was associated with a 29 % increase in IL-1β (95 % CI: 12.4-48.2). In conclusion, trace metal exposures were associated with biomarkers of immune perturbations, and this warrants further investigation.
Collapse
Affiliation(s)
- Max T Aung
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Jonathan Boss
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Kelly M Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States; Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States.
| |
Collapse
|
12
|
Everson TM, Marsit CJ. Integrating -Omics Approaches into Human Population-Based Studies of Prenatal and Early-Life Exposures. Curr Environ Health Rep 2019; 5:328-337. [PMID: 30054820 DOI: 10.1007/s40572-018-0204-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW We present the study design and methodological suggestions for population-based studies that integrate molecular -omics data and highlight recent studies that have used such data to examine the potential impacts of prenatal environmental exposures on fetal health. RECENT FINDINGS Epidemiologic studies have observed numerous relationships between prenatal exposures (smoking, toxic metals, endocrine disruptors) and fetal and early-life molecular profiles, though such investigations have so far been dominated by epigenomic association studies. However, recent transcriptomic, proteomic, and metabolomic studies have demonstrated their promise for the identification of exposure and response biomarkers. Molecular -omics have opened new avenues of research in environmental health that can improve our understanding of disease etiology and contribute to the development of exposure and response biomarkers. Studies that incorporate multiple -omics data from different molecular domains in longitudinally collected samples hold particular promise.
Collapse
Affiliation(s)
- Todd M Everson
- Departments of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA
| | - Carmen J Marsit
- Departments of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA. .,Departments of Environmental Health and Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Claudia Nance Rollins Room 2021, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Johnson J, Robinson S, Smeester L, Fry R, Boggess K, Vora N. Ubiquitous identification of inorganic arsenic in a cohort of second trimester amniotic fluid in women with preterm and term births. Reprod Toxicol 2019; 87:97-99. [PMID: 31128209 DOI: 10.1016/j.reprotox.2019.05.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 05/21/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Jasmine Johnson
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of North Carolina, United States.
| | - Shannon Robinson
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of North Carolina, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, United States
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, United States
| | - Kim Boggess
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of North Carolina, United States
| | - Neeta Vora
- Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, University of North Carolina, United States
| |
Collapse
|
14
|
Demanelis K, Argos M, Tong L, Shinkle J, Sabarinathan M, Rakibuz-Zaman M, Sarwar G, Shahriar H, Islam T, Rahman M, Yunus M, Graziano JH, Broberg K, Engström K, Jasmine F, Ahsan H, Pierce BL. Association of Arsenic Exposure with Whole Blood DNA Methylation: An Epigenome-Wide Study of Bangladeshi Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57011. [PMID: 31135185 PMCID: PMC6791539 DOI: 10.1289/ehp3849] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Arsenic exposure affects [Formula: see text] people worldwide, including [Formula: see text] in Bangladesh. Arsenic exposure increases the risk of cancer and other chronic diseases, and one potential mechanism of arsenic toxicity is epigenetic dysregulation. OBJECTIVE We assessed associations between arsenic exposure and genome-wide DNA methylation measured at baseline among 396 Bangladeshi adults participating in the Health Effects of Arsenic Longitudinal Study (HEALS) who were exposed by drinking naturally contaminated well water. METHODS Methylation in whole blood DNA was measured at [Formula: see text] using the Illumina InfiniumMethylationEPIC (EPIC) array. To assess associations between arsenic exposure and CpG methylation, we used linear regression models adjusted for covariates and surrogate variables (SVs) (capturing unknown technical and biologic factors). We attempted replication and conducted a meta-analysis using an independent dataset of [Formula: see text] from 400 Bangladeshi individuals with arsenical skin lesions. RESULTS We identified 34 CpGs associated with [Formula: see text] creatinine-adjusted urinary arsenic [[Formula: see text]]. Sixteen of these CpGs annotated to the [Formula: see text] array, and 10 associations were replicated ([Formula: see text]). The top two CpGs annotated upstream of the ABR gene (cg01912040, cg10003262 ). All urinary arsenic-associated CpGs were also associated with arsenic concentration measured in drinking water ([Formula: see text]). Meta-analysis ([Formula: see text] samples) identified 221 urinary arsenic-associated CpGs ([Formula: see text]). The arsenic-associated CpGs from the meta-analysis were enriched in non-CpG islands and shores ([Formula: see text]) and depleted in promoter regions ([Formula: see text]). Among the arsenic-associated CpGs ([Formula: see text]), we observed significant enrichment of genes annotating to the reactive oxygen species pathway, inflammatory response, and tumor necrosis factor [Formula: see text] ([Formula: see text]) signaling via nuclear factor kappa-B ([Formula: see text]) hallmarks ([Formula: see text]). CONCLUSIONS The novel and replicable associations between arsenic exposure and DNA methylation at specific CpGs observed in this work suggest that epigenetic alterations should be further investigated as potential mediators in arsenic toxicity and as biomarkers of exposure and effect in exposed populations. https://doi.org/10.1289/EHP3849.
Collapse
Affiliation(s)
- Kathryn Demanelis
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Tong
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Justin Shinkle
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Mekala Sabarinathan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | | | - Golam Sarwar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Hasan Shahriar
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Tariqul Islam
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Mahfuzar Rahman
- UChicago Research Bangladesh, Mohakhali, Dhaka, Bangladesh
- Research and Evaluation Division, BRAC, Dhaka, Bangladesh
| | - Mohammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karin Broberg
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karin Engström
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Farzana Jasmine
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
| | - Habibul Ahsan
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Brandon L. Pierce
- Department of Public Health Sciences, University of Chicago, Chicago, Illinois, USA
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
- University of Chicago Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
15
|
Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr Environ Health Rep 2019; 5:134-144. [PMID: 29411302 DOI: 10.1007/s40572-018-0184-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Exposure to inorganic arsenic (iAs) via drinking water represents a significant global public health threat with chronic exposure associated with cancer, skin lesions, neurological impairment, and cardiovascular diseases. Particularly susceptible populations include the developing fetus and young children. This review summarizes some of the critical studies of the long-term health effects and underlying biological mechanisms related to developmental exposure to arsenic. It also highlights the complex factors, such as the sex of the exposed individual, that contribute to susceptibility to the later life health effects of iAs. RECENT FINDINGS Studies in animal models, as well as human population-based studies, have established that prenatal and early life iAs exposures are associated with long-term effects, and many of these effects display sexually dimorphic responses. As an underlying molecular basis, recent epidemiologic and toxicologic studies have demonstrated that changes to the epigenome may play a key mechanistic role underlying many of the iAs-associated health outcomes. Developmental exposure to iAs results in early and later life health effects. Mechanisms underlying these outcomes are likely complex, and include disrupted key biological pathways with ties to the epigenome. This highlights the importance of continued research, particularly in animal models, to elucidate the important underpinnings (e.g., timing of exposure, metabolism, dose) of these complex health outcomes and to identify the biological mechanisms underlying sexual dimorphism in iAs-associated diseases. Future research should investigate preventative strategies for the protection from the detrimental health endpoints associated with early life exposure to iAs. Such strategies could include potential interventions focused on dietary supplementation for example the adoption of a folate-rich diet.
Collapse
|
16
|
Liao KW, Chang CH, Tsai MS, Chien LC, Chung MY, Mao IF, Tsai YA, Chen ML. Associations between urinary total arsenic levels, fetal development, and neonatal birth outcomes: A cohort study in Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1373-1379. [PMID: 28898944 DOI: 10.1016/j.scitotenv.2017.08.312] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND Arsenic exposure is a global health concern. Several studies have focused on chronic arsenic exposure in adults; however, limited data are available regarding the potential adverse effects of prenatal exposure on fetuses and neonates. OBJECTIVES To assess which time point maternal arsenic exposure may influence the fetus during pregnancy and birth outcomes. METHODS In this study, total arsenic concentrations were analyzed in urine samples collected from 130 women with singleton pregnancies (22-45years old) in Taiwan from March to December of 2010. All fetal biometric measurements in each trimester period and birth outcomes at delivery were obtained. We applied a generalized estimating equation model and multivariate regression models to evaluate the associations between maternal urinary total arsenic (UtAs) exposure during pregnancy, fetal biometric measurements, and neonatal birth outcomes. RESULTS We observed statistically significant correlations between maternal UtAs levels and the fetal biparietal diameter over all three trimesters (β=-1.046mm, p<0.05). Multiple regression analyses showed a negative association between maternal UtAs levels and chest circumference in the first trimester (β=-0.721cm, p<0.05), and second-trimester UtAs exposure was associated with decreases in birth weight (β=-173.26g, p<0.01), head circumference (β=-0.611cm, p<0.05), and chest circumference (β=-0.654cm, p<0.05). Dose-response relationships were also observed for maternal UtAs exposure and birth outcomes. CONCLUSIONS We identified a negative relationship between maternal UtAs levels during pregnancy, fetal development, and neonatal birth outcomes. These findings should be confirmed in future studies with large sample sizes.
Collapse
Affiliation(s)
- Kai-Wei Liao
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Ming-Song Tsai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, Taipei, Taiwan; School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Chu Chien
- School of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming University, Taipei, Taiwan
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
17
|
Laine JE, Fry RC. A Systems Toxicology-based Approach Reveals Biological Pathways Dysregulated by Prenatal Arsenic Exposure. Ann Glob Health 2018; 82:189-96. [PMID: 27325076 PMCID: PMC4989910 DOI: 10.1016/j.aogh.2016.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Prenatal exposure to inorganic arsenic (iAs) is associated with dysregulated fetal gene and protein expression. Potential biological mechanisms that underlie these changes include, but are not limited to, changes to the epigenome. OBJECTIVE The aim of the present study was to identify whether the expression of key genes, proteins, or both and their associated biological pathways are perturbed by compiling datasets from studies on prenatal arsenic exposure. METHODS We compiled datasets from 12 studies that analyzed the relationship between prenatal iAs exposure and changes to the fetal epigenome (5-methyl cytosine), transcriptome (mRNA expression), and/or proteome (protein expression). FINDINGS Across the 12 studies, a set of 845 unique genes was identified and found to enrich for their role in biological pathways, including the peroxisome proliferator-activated receptor, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, and the glucocorticoid receptor. Tumor necrosis factor was identified as a putative cellular regulator underlying most (n = 277) of the identified iAs-associated gene or protein expression changes. CONCLUSIONS The identification of the common set of genes across numerous human cohorts suggests a conserved biological response to prenatal arsenic exposure. The genes/proteins and their associated pathways may be useful in future mechanistic investigations of iAs associated diseases.
Collapse
Affiliation(s)
- Jessica E Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC.
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Arsenic, a known carcinogen and developmental toxicant, is a major threat to global health. While the contribution of arsenic exposure to chronic diseases and adverse pregnancy and birth outcomes is recognized, its ability to impair critical functions of humoral and cell-mediated immunity-including the specific mechanisms in humans-is not well understood. Arsenic has been shown to increase risk of infectious diseases that have significant health implications during pregnancy and early life. Here, we review the latest research on the mechanisms of arsenic-related immune response alterations that could underlie arsenic-associated increased risk of infection during the vulnerable periods of pregnancy and early life. RECENT FINDINGS The latest evidence points to alteration of antibody production and transplacental transfer as well as failure of T helper cells to produce IL-2 and proliferate. Critical areas for future research include the effects of arsenic exposure during pregnancy and early life on immune responses to natural infection and the immunogenicity and efficacy of vaccines.
Collapse
|
19
|
Bommarito PA, Martin E, Smeester L, Palys T, Baker ER, Karagas MR, Fry RC. Fetal-sex dependent genomic responses in the circulating lymphocytes of arsenic-exposed pregnant women in New Hampshire. Reprod Toxicol 2017; 73:184-195. [PMID: 28793237 PMCID: PMC6130838 DOI: 10.1016/j.reprotox.2017.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/19/2022]
Abstract
Exposure to inorganic arsenic (iAs) during pregnancy is associated with adverse health outcomes present both at birth and later in life. A biological mechanism may include epigenetic and genomic alterations in fetal genes involved in immune functioning. To investigate the role of the maternal immune response to in utero iAs exposure, we conducted an analysis of the expression of immune-related genes in pregnant women from the New Hampshire Birth Cohort Study. A set of 31 genes was identified with altered expression in association with levels of urinary total arsenic, urinary iAs, urinary monomethylated arsenic and urinary dimethylated arsenic. Notably, maternal gene expression signatures differed when stratified on fetal sex, with a more robust inflammatory response observed in male pregnancies. Moreover, the differentially expressed genes were also related to birth outcomes. These findings highlight the sex-dependent nature of the maternal iAs-induced inflammatory response in relationship to fetal outcomes.
Collapse
Affiliation(s)
- Paige A Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas Palys
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Emily R Baker
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Obstetrics and Gynecology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Margaret R Karagas
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Rager JE, Auerbach SS, Chappell GA, Martin E, Thompson CM, Fry RC. Benchmark Dose Modeling Estimates of the Concentrations of Inorganic Arsenic That Induce Changes to the Neonatal Transcriptome, Proteome, and Epigenome in a Pregnancy Cohort. Chem Res Toxicol 2017; 30:1911-1920. [PMID: 28927277 DOI: 10.1021/acs.chemrestox.7b00221] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Prenatal inorganic arsenic (iAs) exposure influences the expression of critical genes and proteins associated with adverse outcomes in newborns, in part through epigenetic mediators. The doses at which these genomic and epigenomic changes occur have yet to be evaluated in the context of dose-response modeling. The goal of the present study was to estimate iAs doses that correspond to changes in transcriptomic, proteomic, epigenomic, and integrated multi-omic signatures in human cord blood through benchmark dose (BMD) modeling. Genome-wide DNA methylation, microRNA expression, mRNA expression, and protein expression levels in cord blood were modeled against total urinary arsenic (U-tAs) levels from pregnant women exposed to varying levels of iAs. Dose-response relationships were modeled in BMDExpress, and BMDs representing 10% response levels were estimated. Overall, DNA methylation changes were estimated to occur at lower exposure concentrations in comparison to other molecular endpoints. Multi-omic module eigengenes were derived through weighted gene co-expression network analysis, representing co-modulated signatures across transcriptomic, proteomic, and epigenomic profiles. One module eigengene was associated with decreased gestational age occurring alongside increased iAs exposure. Genes/proteins within this module eigengene showed enrichment for organismal development, including potassium voltage-gated channel subfamily Q member 1 (KCNQ1), an imprinted gene showing differential methylation and expression in response to iAs. Modeling of this prioritized multi-omic module eigengene resulted in a BMD(BMDL) of 58(45) μg/L U-tAs, which was estimated to correspond to drinking water arsenic concentrations of 51(40) μg/L. Results are in line with epidemiological evidence supporting effects of prenatal iAs occurring at levels <100 μg As/L urine. Together, findings present a variety of BMD measures to estimate doses at which prenatal iAs exposure influences neonatal outcome-relevant transcriptomic, proteomic, and epigenomic profiles.
Collapse
Affiliation(s)
- Julia E Rager
- ToxStrategies, Inc. , Austin, Texas 78759, United States
| | - Scott S Auerbach
- National Toxicology Program, National Institutes of Health , Research Triangle Park, North Carolina 27709, United States
| | | | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27516, United States
| | | | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
21
|
Farzan SF, Brickley EB, Li Z, Gilbert-Diamond D, Gossai A, Chen Y, Howe CG, Palys T, Karagas MR. Maternal and infant inflammatory markers in relation to prenatal arsenic exposure in a U.S. pregnancy cohort. ENVIRONMENTAL RESEARCH 2017; 156:426-433. [PMID: 28410520 PMCID: PMC5477637 DOI: 10.1016/j.envres.2017.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Accumulating evidence indicates that arsenic (As), a potent environmental toxicant, may increase cardiovascular disease risk and adversely affect endothelial function at high levels of exposure. Pregnancy is a vulnerable time for both mother and child; however, studies examining the association between prenatal As exposure and plasma biomarkers of inflammation and endothelial function in mothers and newborns are lacking. METHODS We examined maternal urinary As levels at gestational weeks 24-28 and levels of inflammatory biomarkers in plasma from 563 pregnant women and 500 infants' cord blood. We assessed a multiplexed panel of circulating inflammatory and endothelial function markers, including tumor necrosis factor alpha (TNFα), monocyte chemoattractant protein 1 (MCP1), intercellular adhesion molecule (ICAM1) and vascular cell adhesion molecule (VCAM1). RESULTS Compared with the bottom tertile, the highest tertile of maternal urinary As during pregnancy was associated with a 145.2ng/ml (95% CI 4.1, 286.3; p=0.04) increase in cord blood ICAM1 and 557.3ng/ml (95% CI -56.4, 1171.1; p=0.09) increase in cord blood VCAM1. Among mothers, the highest tertile of maternal urinary As during pregnancy was related to a 141.8ng/ml (95% CI 26.1, 257.5; p=0.02) increase maternal plasma VCAM1 levels. Urinary As was unrelated to MCP1 or TNFα in maternal plasma and cord blood. In structural equation models, the association between maternal urinary As and infant VCAM was mediated by maternal levels of VCAM (βmediation: 0.024, 95% CI: 0.002, 0.050). CONCLUSION Our observations indicate that As exposure during pregnancy may affect markers of vascular health and endothelial function in both pregnant women and children, and suggest further investigation of the potential impacts on cardiovascular health in these susceptible populations.
Collapse
Affiliation(s)
- Shohreh F Farzan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| | - Elizabeth B Brickley
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Zhigang Li
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anala Gossai
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Yu Chen
- Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Caitlin G Howe
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Thomas Palys
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Margaret R Karagas
- Children's Environmental Health & Disease Prevention Research Center at Dartmouth, Hanover, NH, USA and Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
22
|
Smeester L, Bommarito PA, Martin EM, Recio-Vega R, Gonzalez-Cortes T, Olivas-Calderon E, Lantz RC, Fry RC. Chronic early childhood exposure to arsenic is associated with a TNF-mediated proteomic signaling response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:183-187. [PMID: 28433805 PMCID: PMC5796657 DOI: 10.1016/j.etap.2017.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 05/19/2023]
Abstract
Exposure to inorganic arsenic (iAs) in drinking water is a global public health concern and is associated with a range of health outcomes, including immune dysfunction. Children are a particularly sensitive population to the effects of inorganic arsenic, yet the biological mechanisms underlying adverse health outcomes are understudied. Here we used a proteomic approach to examine the effects of iAs exposure on circulating serum protein levels in a cross-sectional children's cohort in Mexico. To identify iAs-associated proteins, levels of total urinary arsenic (U-tAs) and its metabolites were determined and serum proteins assessed for differences in expression. The results indicate an enrichment of Tumor Necrosis Factor-(TNF)-regulated immune and inflammatory response proteins that displayed decreased expression levels in relation to increasing U-tAs. Notably, when analyzed in the context of the proportions of urinary arsenic metabolites in children, the most robust response was observed in relation to the monomethylated arsenicals. This study is among the first serum proteomics assessment in children exposed to iAs.
Collapse
Affiliation(s)
- Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Paige A Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Elizabeth M Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Tania Gonzalez-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Edgar Olivas-Calderon
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - R Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tuscon, AZ 85721, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
23
|
Laine JE, Bailey KA, Olshan AF, Smeester L, Drobná Z, Stýblo M, Douillet C, García-Vargas G, Rubio-Andrade M, Pathmasiri W, McRitchie S, Sumner SJ, Fry RC. Neonatal Metabolomic Profiles Related to Prenatal Arsenic Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:625-633. [PMID: 27997141 PMCID: PMC5460981 DOI: 10.1021/acs.est.6b04374] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Prenatal inorganic arsenic (iAs) exposure is associated with health effects evident at birth and later in life. An understanding of the relationship between prenatal iAs exposure and alterations in the neonatal metabolome could reveal critical molecular modifications, potentially underpinning disease etiologies. In this study, nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis was used to identify metabolites in neonate cord serum associated with prenatal iAs exposure in participants from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort, in Gómez Palacio, Mexico. Through multivariable linear regression, ten cord serum metabolites were identified as significantly associated with total urinary iAs and/or iAs metabolites, measured as %iAs, %monomethylated arsenicals (MMAs), and %dimethylated arsenicals (DMAs). A total of 17 metabolites were identified as significantly associated with total iAs and/or iAs metabolites in cord serum. These metabolites are indicative of changes in important biochemical pathways such as vitamin metabolism, the citric acid (TCA) cycle, and amino acid metabolism. These data highlight that maternal biotransformation of iAs and neonatal levels of iAs and its metabolites are associated with differences in neonate cord metabolomic profiles. The results demonstrate the potential utility of metabolites as biomarkers/indicators of in utero environmental exposure.
Collapse
Affiliation(s)
- Jessica E. Laine
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zuzana Drobná
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gonzalo García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango 35050, Mexico
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango 35050, Mexico
| | - Wimal Pathmasiri
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Susan McRitchie
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Susan J. Sumner
- RTI International, Research Triangle Park, North Carolina 27709, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
24
|
Bommarito PA, Fry RC. Developmental Windows of Susceptibility to Inorganic Arsenic: A Survey of Current Toxicologic and Epidemiologic Data. Toxicol Res (Camb) 2016; 5:1503-1511. [PMID: 29354260 PMCID: PMC5771659 DOI: 10.1039/c6tx00234j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/15/2016] [Indexed: 01/15/2023] Open
Abstract
Globally, millions of people are exposed to elevated levels of inorganic arsenic (iAs) via drinking water. Exposure to iAs is associated with a wide range of negative health outcomes, including cancers, skin lesions, neurological impairment, cardiovascular diseases, and an increased susceptibility to infection. Among those exposed to iAs, the developing fetus and young children represent particularly sensitive subpopulations. Specifically, it has been noted in animal models and human populations that prenatal and early life iAs exposures are associated with diseases occurring during childhood and later in life. Recent epidemiologic and toxicologic studies have also demonstrated that epigenetic alterations may play a key mechanistic role underlying many of the iAs-associated health outcomes, including the carcinogenic and immunologic effects of exposure. This review summarizes some of the key studies related to prenatal and early life iAs exposure and highlights the complexities in isolating the precise developmental windows of exposure associated with these health outcomes.
Collapse
Affiliation(s)
- P. A. Bommarito
- Department of Environmental Sciences and Engineering
, Gillings School of Global Public Health
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
.
| | - R. C. Fry
- Department of Environmental Sciences and Engineering
, Gillings School of Global Public Health
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
.
- Curriculum in Toxicology
, School of Medicine
, University of North Carolina
,
Chapel Hill
, North Carolina
, USA
| |
Collapse
|
25
|
Bandyopadhyay AK, Paul S, Adak S, Giri AK. Reduced LINE-1 methylation is associated with arsenic-induced genotoxic stress in children. Biometals 2016; 29:731-41. [DOI: 10.1007/s10534-016-9950-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/08/2016] [Indexed: 10/21/2022]
|
26
|
Drobná Z, Martin E, Kim KS, Smeester L, Bommarito P, Rubio-Andrade M, García-Vargas GG, Stýblo M, Zou F, Fry RC. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod Toxicol 2016; 61:28-38. [PMID: 26928318 PMCID: PMC4970429 DOI: 10.1016/j.reprotox.2016.02.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/28/2016] [Accepted: 02/23/2016] [Indexed: 02/03/2023]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes.
Collapse
Affiliation(s)
- Zuzana Drobná
- Department of Biological Sciences, North Carolina State University, NC 27695, United States
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kyung Su Kim
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
27
|
Drobná Z, Martin E, Kim KS, Smeester L, Bommarito P, Rubio-Andrade M, García-Vargas GG, Stýblo M, Zou F, Fry RC. Analysis of maternal polymorphisms in arsenic (+3 oxidation state)-methyltransferase AS3MT and fetal sex in relation to arsenic metabolism and infant birth outcomes: Implications for risk analysis. Reprod Toxicol 2016. [PMID: 26928318 DOI: 10.1016/j.reprotox.2016.1002.1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenic (+3 oxidation state) methyltransferase (AS3MT) is the key enzyme in the metabolism of inorganic arsenic (iAs). Polymorphisms of AS3MT influence adverse health effects in adults, but little is known about their role in iAs metabolism in pregnant women and infants. The relationships between seven single nucleotide polymorphisms (SNPs) in AS3MT and urinary concentrations of iAs and its methylated metabolites were assessed in mother-infant pairs of the Biomarkers of Exposure to ARsenic (BEAR) cohort. Maternal alleles for five of the seven SNPs (rs7085104, rs3740400, rs3740393, rs3740390, and rs1046778) were associated with urinary concentrations of iAs metabolites, and alleles for one SNP (rs3740393) were associated with birth outcomes/measures. These associations were strongly dependent upon the male sex of the fetus but independent of fetal genotype for AS3MT. These data highlight a potential sex-dependence of the relationships among maternal genotype, iAs metabolism and infant health outcomes.
Collapse
Affiliation(s)
- Zuzana Drobná
- Department of Biological Sciences, North Carolina State University, NC 27695, United States
| | - Elizabeth Martin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Kyung Su Kim
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
28
|
Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:170-5. [PMID: 26115410 PMCID: PMC4749078 DOI: 10.1289/ehp.1409360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 06/23/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer. OBJECTIVES This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure. DISCUSSION Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects. CONCLUSIONS Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes.
Collapse
Affiliation(s)
- Kathryn A. Bailey
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
| | - Allan H. Smith
- Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Erik J. Tokar
- National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | - Joseph H. Graziano
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Kyoung-Woong Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Apinya Thiantanawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
| | - William A. Suk
- Superfund Research Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
- Address correspondence to R.C. Fry, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Dr., CB 7431, University of North Carolina, Chapel Hill, NC 27599-7295 USA. Telephone: (919) 843-6864. E-mail:
| |
Collapse
|
29
|
Notch EG, Goodale BC, Barnaby R, Coutermarsh B, Berwin B, Taylor VF, Jackson BP, Stanton BA. Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas aeruginosa. PLoS One 2015; 10:e0142392. [PMID: 26554712 PMCID: PMC4640536 DOI: 10.1371/journal.pone.0142392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/21/2015] [Indexed: 01/10/2023] Open
Abstract
Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa.
Collapse
Affiliation(s)
- Emily G. Notch
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts, United States of America
- * E-mail:
| | - Britton C. Goodale
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna Barnaby
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Bonita Coutermarsh
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Brent Berwin
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Vivien F. Taylor
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Center for Environmental Health Sciences, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
30
|
Pleil JD, Beauchamp JD, Miekisch W, Funk WE. Adapting biomarker technologies to adverse outcome pathways (AOPs) research: current thoughts on using
in vivo
discovery for developing
in vitro
target methods. J Breath Res 2015; 9:039001. [DOI: 10.1088/1752-7155/9/3/039001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Rager JE, Tilley SK, Tulenko SE, Smeester L, Ray PD, Yosim A, Currier JM, Ishida MC, González-Horta MDC, Sánchez-Ramírez B, Ballinas-Casarrubias L, Gutiérrez-Torres DS, Drobná Z, Del Razo LM, García-Vargas GG, Kim WY, Zhou YH, Wright FA, Stýblo M, Fry RC. Identification of novel gene targets and putative regulators of arsenic-associated DNA methylation in human urothelial cells and bladder cancer. Chem Res Toxicol 2015; 28:1144-55. [PMID: 26039340 DOI: 10.1021/tx500393y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.
Collapse
Affiliation(s)
- Julia E Rager
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Sloane K Tilley
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Samantha E Tulenko
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Lisa Smeester
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Paul D Ray
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States.,‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew Yosim
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| | - Jenna M Currier
- ‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - María C Ishida
- §Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, México
| | | | - Blanca Sánchez-Ramírez
- §Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua 31125, México
| | | | | | - Zuzana Drobná
- ∥Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Luz M Del Razo
- ⊥Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México, DF 07360, México
| | - Gonzalo G García-Vargas
- #Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango 34000, México
| | - William Y Kim
- ○Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | | | | | - Miroslav Stýblo
- ‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,∥Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca C Fry
- †Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States.,‡Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Prenatal exposure to arsenic and cadmium impacts infectious disease-related genes within the glucocorticoid receptor signal transduction pathway. Int J Mol Sci 2014; 15:22374-91. [PMID: 25479081 PMCID: PMC4284714 DOI: 10.3390/ijms151222374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/04/2014] [Accepted: 11/26/2014] [Indexed: 01/27/2023] Open
Abstract
There is increasing evidence that environmental agents mediate susceptibility to infectious disease. Studies support the impact of prenatal/early life exposure to the environmental metals inorganic arsenic (iAs) and cadmium (Cd) on increased risk for susceptibility to infection. The specific biological mechanisms that underlie such exposure-mediated effects remain understudied. This research aimed to identify key genes/signal transduction pathways that associate prenatal exposure to these toxic metals with changes in infectious disease susceptibility using a Comparative Genomic Enrichment Method (CGEM). Using CGEM an infectious disease gene (IDG) database was developed comprising 1085 genes with known roles in viral, bacterial, and parasitic disease pathways. Subsequently, datasets collected from human pregnancy cohorts exposed to iAs or Cd were examined in relationship to the IDGs, specifically focusing on data representing epigenetic modifications (5-methyl cytosine), genomic perturbations (mRNA expression), and proteomic shifts (protein expression). A set of 82 infection and exposure-related genes was identified and found to be enriched for their role in the glucocorticoid receptor signal transduction pathway. Given their common identification across numerous human cohorts and their known toxicological role in disease, the identified genes within the glucocorticoid signal transduction pathway may underlie altered infectious disease susceptibility associated with prenatal exposures to the toxic metals iAs and Cd in humans.
Collapse
|