1
|
Jayaraman S, Eswaran A, Priya Veeraraghavan V, Fazal M, Al-Rahbi A, Sirasanagandla SR. Implications of petrochemical exposure and epigenetic alterations on human health. FRONTIERS IN TOXICOLOGY 2025; 7:1542871. [PMID: 40182693 PMCID: PMC11966425 DOI: 10.3389/ftox.2025.1542871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
The petrochemical industry and automobiles contribute significantly to hazardous waste, which contains a broad array of organic and inorganic compounds posing serious health risks. Identifying biomarkers of exposure and creating predictive models for toxicity characterization necessitate a thorough understanding of the underlying epigenetic mechanisms. The development of disease is intricately linked to epigenetic processes, such as DNA methylation, histone modifications, and microRNA (mi-RNA) regulation, which mediate gene-environment interactions. While previous studies have investigated these alterations as markers for petrochemical-induced changes, there is still a need for deeper exploration in this area, with particular emphasis on advanced gene-editing technologies. This review highlights the specific epigenetic processes, especially gene-specific DNA methylation changes, associated with prolonged petrochemical exposure. Notably, the demethylation of long interspersed nuclear element 1 (LINE-1), Alu elements, and forkhead box P3 (FOXP3), as well as hypermethylation of interferon gamma (IFN-γ) and hypomethylation of interleukin-4 (IL-4) promoter regions, are discussed. These alterations in DNA methylation patterns serve as valuable biomarkers, potentially offering insights into early detection and personalized treatment options for diseases caused by long-term exposure to petrochemicals. Furthermore, CRISPR-based gene editing techniques, while underexplored, present a promising approach for correcting petrochemical-induced mutations. In addition, AI-driven radiomics holds promise for early disease detection, though it is currently limited by its lack of integration with multi-omics data. In conclusion, it is crucial to refine disease modelling, develop comprehensive risk assessment models, and innovate targeted therapeutic strategies. Future research should focus on enhancing exposure evaluation, incorporating computational tools to analyze molecular changes, and improving our understanding of how these modifications influence disease prevention and treatment.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Anupriya Eswaran
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammed Fazal
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Adham Al-Rahbi
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
2
|
Zheng M, Chen Z, Xie J, Yang Q, Mo M, Liu J, Chen L. The Genetic and Epigenetic Toxicity of Silica Nanoparticles: An Updated Review. Int J Nanomedicine 2024; 19:13901-13923. [PMID: 39735322 PMCID: PMC11681786 DOI: 10.2147/ijn.s486858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/15/2024] [Indexed: 12/31/2024] Open
Abstract
Silica nanoparticles (SiNPs) are widely used in biomedical fields, such as drug delivery, disease diagnosis, and molecular imaging. An increasing number of consumer products containing SiNPs are being used without supervision, and the toxicity of SiNPs to the human body is becoming a major problem. SiNPs contact the human body in various ways and cause damage to the structure and function of genetic material, potentially leading to carcinogenesis, teratogenicity and infertility. This review summarizes SiNPs-induced genetic and epigenetic toxicity, especially to germ cells, and explore their potential mechanisms. SiNPs cause genetic material damage mainly by inducing oxidative stress. Furtherly, the molecular mechanisms of epigenetic toxicity are discussed in detail for the first time. SiNPs alter DNA methylation, miRNA expression, histone modification and inhibit chromatin remodeling by regulating epigenetic-related enzymes and transcription factors. This review is beneficial for investigating potential solutions to avoid toxicity and provide guidance for better application of SiNPs in the biomedical field.
Collapse
Affiliation(s)
- Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Tuminello S, Durmus N, Snuderl M, Chen Y, Shao Y, Reibman J, Arslan AA, Taioli E. DNA Methylation as a Molecular Mechanism of Carcinogenesis in World Trade Center Dust Exposure: Insights from a Structured Literature Review. Biomolecules 2024; 14:1302. [PMID: 39456235 PMCID: PMC11506790 DOI: 10.3390/biom14101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The collapse of the World Trade Center (WTC) buildings in New York City generated a large plume of dust and smoke. WTC dust contained human carcinogens including metals, asbestos, polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs, including polychlorinated biphenyls (PCBs) and dioxins), and benzene. Excess levels of many of these carcinogens have been detected in biological samples of WTC-exposed persons, for whom cancer risk is elevated. As confirmed in this structured literature review (n studies = 80), all carcinogens present in the settled WTC dust (metals, asbestos, benzene, PAHs, POPs) have previously been shown to be associated with DNA methylation dysregulation of key cancer-related genes and pathways. DNA methylation is, therefore, a likely molecular mechanism through which WTC exposures may influence the process of carcinogenesis.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nedim Durmus
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Matija Snuderl
- Department of Pathology, NYU Langone Medical Center, New York, NY 10016, USA;
| | - Yu Chen
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Langone Medical Center, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Langone Medical Center, New York, NY 10016, USA
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
4
|
Boo HJ, Min HY, Lim HB, Lee E, Lee HY. Autocrine insulin-like growth factor 2 signaling as a potential target in the associated development of pulmonary emphysema and cancer in smokers. Inflamm Regen 2024; 44:31. [PMID: 38902841 PMCID: PMC11191215 DOI: 10.1186/s41232-024-00344-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Tobacco smoking causes pulmonary inflammation, resulting in emphysema, an independent risk factor for lung cancer. Induction of insulin-like growth factor 2 (IGF2) in response to lung injury by tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and polycyclic aromatic hydrocarbon benzo[a]pyrene in combination (NB), is critical for the proliferation of alveolar type 2 cells (AT2s) for lung repair. However, persistent IGF2 overexpression during NB-induced severe injury results in hyperproliferation of AT2s without coordinated AT2-to-AT1 differentiation, disrupting alveolar repair, which leads to the concurrent development of emphysema and lung cancer. The current study aims to verify the role of IGF2 signaling in the associated development of emphysema and cancer and develop effective pharmaceuticals for the diseases using animal models that recapitulate the characteristics of these chronic diseases. METHODS The pathogenesis of pulmonary emphysema and cancer was analyzed by lung function testing, histological evaluation, in situ zymography, dihydroethidium staining, and immunofluorescence and immunohistochemistry analyses utilizing mouse models of emphysema and cancer established by moderate exposure to NB for up to seven months. RESULTS Moderate NB exposure induced IGF2 expression in AT2s during the development of pulmonary emphysema and lung cancer in mice. Using AT2-specific insulin receptor knockout mice, we verified the causative role of sustained IGF2 signaling activation in AT2s in emphysema development. IGF2-targeting strategies, including voltage-dependent calcium channel blocker (CCB) and a neutralizing antibody, significantly suppressed the NB-induced development of emphysema and lung cancer. A publicly available database revealed an inverse correlation between the use of calcium channel blockers and a COPD diagnosis. CONCLUSIONS Our work confirms sustained IGF2 signaling activation in AT2s couples impaired lung repair to the concurrent development of emphysema and cancer in mice. Additionally, CCB and IGF2-specific neutralizing antibodies are effective pharmaceuticals for the two diseases.
Collapse
Affiliation(s)
- Hye-Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Heung-Bin Lim
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Euni Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Tuminello S, Ashebir YA, Schroff C, Ramaswami S, Durmus N, Chen Y, Snuderl M, Shao Y, Reibman J, Arslan AA. Genome-wide DNA methylation profiles and breast cancer among World Trade Center survivors. Environ Epidemiol 2024; 8:e313. [PMID: 38841706 PMCID: PMC11152787 DOI: 10.1097/ee9.0000000000000313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Background Increased incidence of cancer has been reported among World Trade Center (WTC)-exposed persons. Aberrant DNA methylation is a hallmark of cancer development. To date, only a few small studies have investigated the relationship between WTC exposure and DNA methylation. The main objective of this study was to assess the DNA methylation profiles of WTC-exposed community members who remained cancer free and those who developed breast cancer. Methods WTC-exposed women were selected from the WTC Environmental Health Center clinic, with peripheral blood collected during routine clinical monitoring visits. The reference group was selected from the NYU Women's Health Study, a prospective cohort study with blood samples collected before 9 November 2001. The Infinium MethylationEPIC array was used for global DNA methylation profiling, with adjustments for cell type composition and other confounders. Annotated probes were used for biological pathway and network analysis. Results A total of 64 WTC-exposed (32 cancer free and 32 with breast cancer) and 32 WTC-unexposed (16 cancer free and 16 with prediagnostic breast cancer) participants were included. Hypermethylated cytosine-phosphate-guanine probe sites (defined as β > 0.8) were more common among WTC-exposed versus unexposed participants (14.3% vs. 4.5%, respectively, among the top 5000 cytosine-phosphate-guanine sites). Cancer-related pathways (e.g., human papillomavirus infection, cGMP-PKG) were overrepresented in WTC-exposed groups (breast cancer patients and cancer-free subjects). Compared to the unexposed breast cancer patients, 47 epigenetically dysregulated genes were identified among WTC-exposed breast cancers. These genes formed a network, including Wnt/β-catenin signaling genes WNT4 and TCF7L2, and dysregulation of these genes contributes to cancer immune evasion. Conclusion WTC exposure likely impacts DNA methylation and may predispose exposed individuals toward cancer development, possibly through an immune-mediated mechanism.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
| | - Yibeltal Arega Ashebir
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
| | - Chanel Schroff
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Sitharam Ramaswami
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York City, New York
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York City, New York
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York City, New York
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York City, New York
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York City, New York
- NYU Perlmutter Comprehensive Cancer Center, New York City, New York
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York City, New York
| |
Collapse
|
6
|
Tuminello S, Nguyen E, Durmus N, Alptekin R, Yilmaz M, Crisanti MC, Snuderl M, Chen Y, Shao Y, Reibman J, Taioli E, Arslan AA. World Trade Center Exposure, DNA Methylation Changes, and Cancer: A Review of Current Evidence. EPIGENOMES 2023; 7:31. [PMID: 38131903 PMCID: PMC10742700 DOI: 10.3390/epigenomes7040031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction: Known carcinogens in the dust and fumes from the destruction of the World Trade Center (WTC) towers on 9 November 2001 included metals, asbestos, and organic pollutants, which have been shown to modify epigenetic status. Epigenome-wide association analyses (EWAS) using uniform (Illumina) methodology have identified novel epigenetic profiles of WTC exposure. Methods: We reviewed all published data, comparing differentially methylated gene profiles identified in the prior EWAS studies of WTC exposure. This included DNA methylation changes in blood-derived DNA from cases of cancer-free "Survivors" and those with breast cancer, as well as tissue-derived DNA from "Responders" with prostate cancer. Emerging molecular pathways related to the observed DNA methylation changes in WTC-exposed groups were explored and summarized. Results: WTC dust exposure appears to be associated with DNA methylation changes across the genome. Notably, WTC dust exposure appears to be associated with increased global DNA methylation; direct dysregulation of cancer genes and pathways, including inflammation and immune system dysregulation; and endocrine system disruption, as well as disruption of cholesterol homeostasis and lipid metabolism. Conclusion: WTC dust exposure appears to be associated with biologically meaningful DNA methylation changes, with implications for carcinogenesis and development of other chronic diseases.
Collapse
Affiliation(s)
- Stephanie Tuminello
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
| | - Emelie Nguyen
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Nedim Durmus
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Muhammed Yilmaz
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Chen
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
- Division of Environmental Medicine, Department of Medicine, NYU Grossman School of Medicine, New York University, New York, NY 10016, USA
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10016, USA
| | - Alan A. Arslan
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA; (S.T.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Department of Obstetrics and Gynecology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
7
|
Boo HJ, Min HY, Park CS, Park JS, Jeong JY, Lee SY, Kim WY, Lee JW, Oh SR, Park RW, Lee HY. Dual Impact of IGF2 on Alveolar Stem Cell Function during Tobacco-Induced Injury Repair and Development of Pulmonary Emphysema and Cancer. Cancer Res 2023; 83:1782-1799. [PMID: 36971490 DOI: 10.1158/0008-5472.can-22-3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Pulmonary emphysema is a destructive inflammatory disease primarily caused by cigarette smoking (CS). Recovery from CS-induced injury requires proper stem cell (SC) activities with a tightly controlled balance of proliferation and differentiation. Here we show that acute alveolar injury induced by two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (N/B), increased IGF2 expression in alveolar type 2 (AT2) cells to promote their SC function and facilitate alveolar regeneration. Autocrine IGF2 signaling upregulated Wnt genes, particularly Wnt3, to stimulate AT2 proliferation and alveolar barrier regeneration after N/B-induced acute injury. In contrast, repetitive N/B exposure provoked sustained IGF2-Wnt signaling through DNMT3A-mediated epigenetic control of IGF2 expression, causing a proliferation/differentiation imbalance in AT2s and development of emphysema and cancer. Hypermethylation of the IGF2 promoter and overexpression of DNMT3A, IGF2, and the Wnt target gene AXIN2 were seen in the lungs of patients with CS-associated emphysema and cancer. Pharmacologic or genetic approaches targeting IGF2-Wnt signaling or DNMT prevented the development of N/B-induced pulmonary diseases. These findings support dual roles of AT2 cells, which can either stimulate alveolar repair or promote emphysema and cancer depending on IGF2 expression levels. SIGNIFICANCE IGF2-Wnt signaling plays a key role in AT2-mediated alveolar repair after cigarette smoking-induced injury but also drives pathogenesis of pulmonary emphysema and cancer when hyperactivated.
Collapse
Affiliation(s)
- Hye-Jin Boo
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Lung Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Rang-Woon Park
- Department of Biochemistry and Cell Biology, School of Medicine, and Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for Concurrent Control of Emphysema and Lung Cancer, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Camila B, Carlos C, Maria-Jose P, Sergio R, Alejandra C, Adriana R. Genotoxicity and hypomethylation of LINE-1 induced by electronic cigarettes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114900. [PMID: 37054467 DOI: 10.1016/j.ecoenv.2023.114900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Currently, the marketing of electronic cigarettes as a safe alternative to smoking has increased, which is associated with greater use of these devices, especially among young people and smokers interested in quitting tobacco cigarettes. Given the growing use of this type of product, there is a need to determine the consequences of electronic cigarettes on human health, especially since many of the compounds contained in the aerosol and liquid of these devices have a high potential to be carcinogenic and genotoxic. Additionally, many of these compounds' aerosol concentrations exceed the safe limits. We have evaluated the levels of genotoxicity and changes in DNA methylation patterns associated with vaping. We analyzed a total of 90 peripheral blood samples from a population of vapers (n = 32), smokers (n = 18), and controls (n = 32), in which the frequencies of genotoxicity were determined by the cytokinesis-blocking micronuclei (CBMN) assay and the patterns of methylation of the repetitive elements of LINE-1 through the Quantitative Methylation Specific PCR (qMSP) assay. Here we show an increase in genotoxicity levels associated with vaping habits. Additionally, the group of vapers showed changes at the epigenetic level specifically associated with the loss of methylation of the LINE-1 elements. These changes in LINE-1 methylation patterns were reflected in its representative RNA expression detected in vapers.
Collapse
Affiliation(s)
- Bernal Camila
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Camero Carlos
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pinzón Maria-Jose
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Rodríguez Sergio
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cañas Alejandra
- Internal Medicine Department, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia; Internal Medicine Department, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Rojas Adriana
- Institute of Human Genetics, School of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
9
|
Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA Methylation, and Air Pollution: A Malicious Triad. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15050. [PMID: 36429769 PMCID: PMC9690025 DOI: 10.3390/ijerph192215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) remains elusive to this day; however, genetic, epigenetic, and environmental factors have been implicated to be involved in disease pathogenesis. Recently, it was demonstrated that in systemic lupus erythematosus (SLE) patients, interferon-regulated genes are hypomethylated in naïve CD4+ T cells, CD19+ B lymphocytes, and CD14+ monocytes. This suggests that interferon-regulated genes may have been epigenetically poised in SLE patients for rapid expression upon stimulation by different environmental factors. Additionally, environmental studies have identified DNA (hypo)methylation changes as a potential mechanism of environmentally induced health effects in utero, during childhood and in adults. Finally, epidemiologic studies have firmly established air pollution as a crucial SLE risk factor, as studies showed an association between fine particulate matter (PM2.5) and traditional SLE biomarkers related to disease flare, hospital admissions, and an increased SLEDAI score. In this review, the relationship between aberrant epigenetic regulation, the environment, and the development of SLE will be discussed.
Collapse
Affiliation(s)
- Leen Rasking
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Céline Roelens
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
| | - Ben Sprangers
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, Leuven University, 3000 Leuven, Belgium
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
- Department of Public Health and Primary Care, Environment and Health Unit, Leuven University, 3000 Leuven, Belgium
| | - Katrien De Vusser
- Depatment of Nephrology and Kidney Transplantation, University Hospital Leuven, 3000 Leuven, Belgium
- Department of Microbiology and Immunology, Leuven University, 3000 Leuven, Belgium
| |
Collapse
|
10
|
Das DN, Ravi N. Influences of polycyclic aromatic hydrocarbon on the epigenome toxicity and its applicability in human health risk assessment. ENVIRONMENTAL RESEARCH 2022; 213:113677. [PMID: 35714684 DOI: 10.1016/j.envres.2022.113677] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The existence of polycyclic aromatic hydrocarbons (PAHs) in ambient air is an escalating concern worldwide because of their ability to cause cancer and induce permanent changes in the genetic material. Growing evidence implies that during early life-sensitive stages, the risk of progression of acute and chronic diseases depends on epigenetic changes initiated by the influence of environmental cues. Several reports deciphered the relationship between exposure to environmental chemicals and epigenetics, and have known toxicants that alter the epigenetic states. Amongst PAHs, benzo[a]pyrene (B[a]P) is accepted as a group 1 cancer-causing agent by the International Agency for the Research on Cancer (IARC). B[a]P is a well-studied pro-carcinogen that is metabolically activated by the aryl hydrocarbon receptor (AhR)/cytochrome P450 pathway. Cytochrome P450 plays a pivotal role in the stimulation step, which is essential for DNA adduct formation. Accruing evidence suggests that epigenetic alterations assume a fundamental part in PAH-promoted carcinogenesis. This interaction between PAHs and epigenetic factors results in an altered profile of these marks, globally and locus-specific. Some of the epigenetic changes due to exposure to PAHs lead to increased disease susceptibility and progression. It is well understood that exposure to environmental carcinogens, such as PAH triggers disease pathways through changes in the genome. Several evidence reported due to the epigenome-wide association studies, that early life adverse environmental events may trigger widespread and persistent variations in transcriptional profiling. Moreover, these variations respond to DNA damage and/or a consequence of epigenetic modifications that need further investigation. Growing evidence has associated PAHs with epigenetic variations involving alterations in DNA methylation, histone modification, and micro RNA (miRNA) regulation. Epigenetic alterations to PAH exposure were related to chronic diseases, such as pulmonary disease, cardiovascular disease, endocrine disruptor, nervous system disorder, and cancer. This hormetic response gives a novel perception concerning the toxicity of PAHs and the biological reaction that may be a distinct reliance on exposure. This review sheds light on understanding the latest evidence about how PAHs can alter epigenetic patterns and human health. In conclusion, as several epigenetic change mechanisms remain unclear yet, further analyses derived from PAHs exposure must be performed to find new targets and disease biomarkers. In spite of the current limitations, numerous evidence supports the perception that epigenetics grips substantial potential for advancing our knowledge about the molecular mechanisms of environmental toxicants, also for predicting health-associated risks due to environmental circumstances exposure and individual susceptibility.
Collapse
Affiliation(s)
- Durgesh Nandini Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan Ravi
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, 63110, USA; Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA; Institute for Public Health, Washington University in St. Louis, St. Louis, MO, 63110, USA; Veterans Affairs St. Louis Hospital, St. Louis, MO, 63106, USA.
| |
Collapse
|
11
|
Ravegnini G, De Iaco P, Gorini F, Dondi G, Klooster I, De Crescenzo E, Bovicelli A, Hrelia P, Perrone AM, Angelini S. Role of Circulating miRNAs in Therapeutic Response in Epithelial Ovarian Cancer: A Systematic Revision. Biomedicines 2021; 9:biomedicines9101316. [PMID: 34680433 PMCID: PMC8533254 DOI: 10.3390/biomedicines9101316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most lethal cancers worldwide, mostly due to nonspecific symptoms and a lack of screening tests, which, taken together, contribute to delayed diagnosis and treatment. The current clinical biomarker is serum CA-125, which allows the identification of most advanced primary and relapsed disease and correlates with disease burden; however, as well highlighted in the literature, CA-125 often lacks sensitivity and specificity, and is not helpful in monitoring chemotherapeutic response or in predicting the risk of relapse. Given that, the identification of novel biomarkers able to foster more precise medical approaches and the personalization of patient management represents an unmet clinical requirement. In this context, circulating miRNAs may represent an interesting opportunity as they can be easily detected in all biological fluids. This is particularly relevant when looking for non-invasive approaches that can be repeated over time, with no pain and stress for the oncological patient. Given that, the present review aims to describe the circulating miRNAs currently identified as associated with therapeutic treatments in OC and presents a complete overview of the available evidence.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
- Correspondence:
| | - Pierandrea De Iaco
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Giulia Dondi
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Isabella Klooster
- Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, USA;
| | - Eugenia De Crescenzo
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Alessandro Bovicelli
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| | - Anna Myriam Perrone
- Division of Oncologic Gynecology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (P.D.I.); (G.D.); (E.D.C.); (A.B.); (A.M.P.)
- Department of Medical and Surgical Sciences, DIMEC, University of Bologna, 40138 Bologna, Italy
- Centro di Studio e Ricerca delle Neoplasie Ginecologiche, University of Bologna, 40138 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (F.G.); (P.H.); (S.A.)
| |
Collapse
|
12
|
Liu Q, Li H, Guo L, Chen Q, Gao X, Li PH, Tang N, Guo X, Deng F, Wu S. Effects of short-term personal exposure to air pollution on platelet mitochondrial DNA methylation levels and the potential mitigation by L-arginine supplementation. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125963. [PMID: 33984786 DOI: 10.1016/j.jhazmat.2021.125963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The potential effect of short-term exposure to air pollution on mitochondrial DNA (mtDNA) methylation remains to be explored. This study adopted an experimental exposure protocol nested with an intervention study on L-arginine (L-Arg) supplementation among 118 participants. Participants walked along a traffic road for 2 hours in the last day of a 14-day intervention to investigate the effects of short-term personal exposure to air pollution on platelet mtDNA methylation and the possible modifying effects of L-Arg supplementation. Results showed that short-term personal exposure to air pollutants was associated with hypomethylation in platelet mtDNA in 110 participants who completed the study protocol. Specifically, 2-h fine particulate matter (PM2.5) exposure during the outdoor walk was significantly associated with hypomethylation in mt12sRNA; 24-h PM2.5 and black carbon (BC) exposures from the start of the walk till next morning were both significantly associated with hypomethylation in the D-loop region; 24-h BC exposure was also significantly associated with hypomethylation in ATP8_P1. Supplementation with L-Arg could mitigate the air pollution effects on platelet mtDNA methylation, especially the D-loop region. These findings suggest that platelet mtDNA methylation may be sensitive effect biomarker for short-term exposure to air pollution and may help deepen the understanding of the epigenetic mechanisms of adverse cardiovascular effects of air pollution.
Collapse
Affiliation(s)
- Qisijing Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongyu Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Liqiong Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China; Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qiao Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Peng-Hui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China.
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| |
Collapse
|
13
|
Shapiro JA. What can evolutionary biology learn from cancer biology? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:19-28. [PMID: 33930405 DOI: 10.1016/j.pbiomolbio.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/15/2022]
Abstract
Detecting and treating cancer effectively involves understanding the disease as one of somatic cell and tumor macroevolution. That understanding is key to avoid triggering an adverse reaction to therapy that generates an untreatable and deadly tumor population. Macroevolution differs from microevolution by karyotype changes rather than isolated localized mutations being the major source of hereditary variation. Cancer cells display major multi-site chromosome rearrangements that appear to have arisen in many different cases abruptly in the history of tumor evolution. These genome restructuring events help explain the punctuated macroevolutionary changes that mark major transitions in cancer progression. At least two different nonrandom patterns of rapid multisite genome restructuring - chromothripsis ("chromosome shattering") and chromoplexy ("chromosome weaving") - are clearly distinct in their distribution within the genome and in the cell biology of the stress-induced processes responsible for their occurrence. These observations tell us that eukaryotic cells have the capacity to reorganize their genomes rapidly in response to calamity. Since chromothripsis and chromoplexy have been identified in the human germline and in other eukaryotes, they provide a model for organismal macroevolution in response to the kinds of stresses that lead to mass extinctions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, United States.
| |
Collapse
|
14
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
15
|
Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, Ghossein RA, Harrell RM, Huang J, Kennedy GC, Kim SY, Kloos RT, LiVolsi VA, Randolph GW, Sadow PM, Shanik MH, Sosa JA, Traweek ST, Walsh PS, Whitney D, Yeh MW, Ladenson PW. Performance of a Genomic Sequencing Classifier for the Preoperative Diagnosis of Cytologically Indeterminate Thyroid Nodules. JAMA Surg 2019; 153:817-824. [PMID: 29799911 DOI: 10.1001/jamasurg.2018.1153] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Importance Use of next-generation sequencing of RNA and machine learning algorithms can classify the risk of malignancy in cytologically indeterminate thyroid nodules to limit unnecessary diagnostic surgery. Objective To measure the performance of a genomic sequencing classifier for cytologically indeterminate thyroid nodules. Design, Setting, and Participants A blinded validation study was conducted on a set of cytologically indeterminate thyroid nodules collected by fine-needle aspiration biopsy between June 2009 and December 2010 from 49 academic and community centers in the United States. All patients underwent surgery without genomic information and were assigned a histopathology diagnosis by an expert panel blinded to all genomic information. There were 210 potentially eligible thyroid biopsy samples with Bethesda III or IV indeterminate cytopathology that constituted a cohort previously used to validate the gene expression classifier. Of these, 191 samples (91.0%) had adequate residual RNA for validation of the genomic sequencing classifier. Algorithm development and independent validation occurred between August 2016 and May 2017. Exposures Thyroid nodule surgical histopathology diagnosis by an expert panel blinded to all genomic data. Main Outcomes and Measures The primary end point was measurement of genomic sequencing classifier sensitivity, specificity, and negative and positive predictive values in biopsies from Bethesda III and IV nodules. The secondary end point was measurement of classifier performance in biopsies from Bethesda II, V, and VI nodules. Results Of the 183 included patients, 142 (77.6%) were women, and the mean (range) age was 51.7 (22.0-85.0) years. The genomic sequencing classifier had a sensitivity of 91% (95% CI, 79-98) and a specificity of 68% (95% CI, 60-76). At 24% cancer prevalence, the negative predictive value was 96% (95% CI, 90-99) and the positive predictive value was 47% (95% CI, 36-58). Conclusions and Relevance The genomic sequencing classifier demonstrates high sensitivity and accuracy for identifying benign nodules. Its 36% increase in specificity compared with the gene expression classifier potentially increases the number of patients with benign nodules who can safely avoid unnecessary diagnostic surgery.
Collapse
Affiliation(s)
- Kepal N Patel
- Division of Endocrine Surgery, Department of Surgery, New York University Langone Medical Center, New York
| | - Trevor E Angell
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua Babiarz
- Department of Research and Development, Veracyte Inc, San Francisco, California
| | - Neil M Barth
- Department of Medical Affairs, Veracyte Inc, San Francisco, California.,Department of Clinical Affairs, Veracyte Inc, San Francisco, California
| | | | - Quan-Yang Duh
- Section of Endocrine Surgery, Department of Surgery, University of California, San Francisco
| | - Ronald A Ghossein
- Division of Head and Neck Pathology, Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - R Mack Harrell
- The Memorial Center for Integrative Endocrine Surgery, Hollywood, Florida.,The Memorial Center for Integrative Endocrine Surgery, Weston, Florida.,The Memorial Center for Integrative Endocrine Surgery, Boca Raton, Florida
| | - Jing Huang
- Department of Research and Development, Veracyte Inc, San Francisco, California
| | - Giulia C Kennedy
- Department of Research and Development, Veracyte Inc, San Francisco, California
| | - Su Yeon Kim
- Department of Research and Development, Veracyte Inc, San Francisco, California
| | - Richard T Kloos
- Department of Medical Affairs, Veracyte Inc, San Francisco, California
| | - Virginia A LiVolsi
- Anatomic Pathology Division, Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia
| | - Gregory W Randolph
- Division of Thyroid and Parathyroid Endocrine Surgery, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston
| | - Peter M Sadow
- Head and Neck Pathology Subspecialty, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Julie A Sosa
- Section of Endocrine Surgery, Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | | | - P Sean Walsh
- Department of Research and Development, Veracyte Inc, San Francisco, California
| | - Duncan Whitney
- Department of Research and Development, Veracyte Inc, San Francisco, California
| | - Michael W Yeh
- Department of Surgery, Endocrine Surgery Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles
| | - Paul W Ladenson
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
16
|
Molecular mechanisms of fumonisin B1-induced toxicities and its applications in the mechanism-based interventions. Toxicon 2019; 167:1-5. [DOI: 10.1016/j.toxicon.2019.06.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/02/2023]
|
17
|
Chen F, Zheng A, Li F, Wen S, Chen S, Tao Z. Screening and identification of potential target genes in head and neck cancer using bioinformatics analysis. Oncol Lett 2019; 18:2955-2966. [PMID: 31452775 PMCID: PMC6676651 DOI: 10.3892/ol.2019.10616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 06/14/2019] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) is the sixth most common cancer worldwide. Recent studies on the pathogenesis of HNC have identified some biochemical associations of this disease, but the molecular mechanisms are not clear. To explore the genetic alterations in head and neck tumors, to identify new high-specificity and high-sensitivity tumor markers, and to investigate potentially effective therapeutic targets, in silico methods were used to study HNC. The GSE58911 microarray dataset was downloaded from the Gene Expression Omnibus online database to identify potential target genes in the carcinogenesis and progression of HNC. Differentially expressed genes (DEGs) were identified and functional enrichment analysis was performed. In addition, a protein-protein interaction network was also constructed, and gene analysis was undertaken using Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 648 differentially expressed genes were identified. Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology functional enrichment analysis of DEGs included muscle system process, extracellular matrix organization, actin binding, structural molecule activity, structural constituent of muscle, extracellular region part, ECM-receptor interaction, amoebiasis, focal adhesion, drug metabolism-cytochrome P450, and chemical carcinogenesis. There were 26 hub genes identified and biological process analysis revealed that these genes were mainly enriched in extracellular matrix organization, serine-type endopeptidase activity, extracellular matrix, and complement and coagulation cascades. Survival analysis revealed that interleukin (IL)-8 (C-X-C motif chemokine ligand 8), IL1B, and serpin family A member 1 may be involved in the carcinogenesis of HNC. In summary, the DEGs and hub genes identified in the present study may increase understanding of the molecular mechanisms of development of HNC and provide potential target genes for clinical diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Fuhai Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Anyuan Zheng
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fen Li
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Silu Wen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shiming Chen
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zezhang Tao
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
18
|
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, Goryacheva IY, Mishra PK. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:760-777. [PMID: 30530146 DOI: 10.1016/j.scitotenv.2018.11.381] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/23/2018] [Accepted: 11/25/2018] [Indexed: 05/28/2023]
Abstract
Air pollution is one of the leading causes of deaths in Southeast Asian countries including India. Exposure to air pollutants affects vital cellular mechanisms and is intimately linked with the etiology of a number of chronic diseases. Earlier work from our laboratory has shown that airborne particulate matter disturbs the mitochondrial machinery and causes significant damage to the epigenome. Mitochondrial reactive oxygen species possess the ability to trigger redox-sensitive signaling mechanisms and induce irreversible epigenomic changes. The electrophilic nature of reactive metabolites can directly result in deprotonation of cytosine at C-5 position or interfere with the DNA methyltransferases activity to cause alterations in DNA methylation. In addition, it also perturbs level of cellular metabolites critically involved in different epigenetic processes like acetylation and methylation of histone code and DNA hypo or hypermethylation. Interestingly, these modifications may persist through downstream generations and result in the transgenerational epigenomic inheritance. This phenomenon of subsequent transfer of epigenetic modifications is mainly associated with the germ cells and relies on the germline stability of the epigenetic states. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution might contribute to transmission of epimutations from gametes to zygotes by involving mitochondrial DNA, parental allele imprinting, histone withholding and non-coding RNAs. However, larger prospective studies using innovative, integrated epigenome-wide metabolomic strategy are highly warranted to assess the air pollution induced transgenerational epigenetic inheritance and associated human health effects.
Collapse
Affiliation(s)
- Anushi Shukla
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Neha Bunkar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajat Kumar
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Koel Chaudhury
- School of Medical Science & Technology, Indian Institute of Technology, Kharagpur, India
| | - Irina Y Goryacheva
- Department of General and Inorganic Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna K Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
19
|
Yang F, Jin H, Que B, Chao Y, Zhang H, Ying X, Zhou Z, Yuan Z, Su J, Wu B, Zhang W, Qi D, Chen D, Min W, Lin S, Ji W. Dynamic m 6A mRNA methylation reveals the role of METTL3-m 6A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 2019; 38:4755-4772. [PMID: 30796352 PMCID: PMC6756049 DOI: 10.1038/s41388-019-0755-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 11/09/2022]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification in mammalian mRNAs. Despite its functional importance in various physiological events, the role of m6A in chemical carcinogenesis remains largely unknown. Here we profiled the dynamic m6A mRNA modification during cellular transformation induced by chemical carcinogens and identified a subset of cell transformation-related, concordantly modulated m6A sites. Notably, the increased m6A in 3'-UTR mRNA of oncogene CDCP1 was found in malignant transformed cells. Mechanistically, the m6A methyltransferase METTL3 and demethylases ALKBH5 mediate the m6A modification in 3'-UTR of CDCP1 mRNA. METTL3 and m6A reader YTHDF1 preferentially recognize m6A residues on CPCP1 3'-UTR and promote CDCP1 translation. We further showed that METTL3 and CDCP1 are upregulated in the bladder cancer patient samples and the expression of METTL3 and CDCP1 is correlated with the progression status of the bladder cancers. Inhibition of the METTL3-m6A-CDCP1 axis resulted in decreased growth and progression of chemical-transformed cells and bladder cancer cells. Most importantly, METTL3-m6A-CDCP1 axis has synergistic effect with chemical carcinogens in promoting malignant transformation of uroepithelial cells and bladder cancer tumorigenesis in vitro and in vivo. Taken together, our results identify dynamic m6A modification in chemical-induced malignant transformation and provide insight into critical roles of the METTL3-m6A-CDCP1 axis in chemical carcinogenesis.
Collapse
Affiliation(s)
- Fan Yang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huan Jin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Department of Physiology, Zunyi Medical College, Guizhou, 563000, China
| | - Biao Que
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Yinghui Chao
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiqing Zhang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoling Ying
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhongyang Zhou
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zusen Yuan
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Jialin Su
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Wu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510080, China
| | - Wenjuan Zhang
- Department of Preventive Medicine, The School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Defeng Qi
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510230, China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wang Min
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Pathology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06519, USA.
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Weidong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Fan J, Zhu M, Wang Y, Li Z, Zhang J, Wang L, Sun Q, Dai J, Jin G, Hu Z, Shen H, Ma H. Genome-wide analysis of expression quantitative trait loci identified potential lung cancer susceptibility variants among Asian populations. Carcinogenesis 2019; 40:263-268. [DOI: 10.1093/carcin/bgy165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/04/2018] [Accepted: 11/30/2018] [Indexed: 01/20/2023] Open
Affiliation(s)
- Jingyi Fan
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuzhuo Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhihua Li
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahui Zhang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lijuan Wang
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Epigenetic Alterations: The Relation Between Occupational Exposure and Biological Effects in Humans. RNA TECHNOLOGIES 2019. [DOI: 10.1007/978-3-030-14792-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Sheng N, Pan Y, Guo Y, Sun Y, Dai J. Hepatotoxic Effects of Hexafluoropropylene Oxide Trimer Acid (HFPO-TA), A Novel Perfluorooctanoic Acid (PFOA) Alternative, on Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8005-8015. [PMID: 29927593 DOI: 10.1021/acs.est.8b01714] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As an alternative to perfluorooctanoic acid (PFOA), hexafluoropropylene oxide trimer acid (HFPO-TA) has been increasingly used for fluoropolymer manufacture in recent years. Its growing detection in environmental matrices and wildlife raises considerable concern about its potential health risks. Here we investigated the effects of HFPO-TA on mouse liver following 28 days of exposure to 0.02, 0.1, or 0.5 mg/kg/d of HFPO-TA via oral gavage. Results showed that HFPO-TA concentrations increased to 1.14, 4.48, and 30.8 μg/mL in serum and 12.0, 32.2, and 100 μg/g in liver, respectively. Liver injury, including hepatomegaly, necrosis, and increase in alanine aminotransferase activity, was observed. Furthermore, total cholesterol and triglycerides decreased in the liver in a dose-dependent manner. Liver transcriptome analysis revealed that 281, 1001, and 2491 genes were differentially expressed (fold change ≥2 and FDR < 0.05) in the three treated groups, respectively, compared with the control group. KEGG enrichment analysis highlighted the PPAR and chemical carcinogenesis pathways in all three treatment groups. Protein levels of genes involved in carcinogenesis, such as AFP, p21, Sirt1 C-MYC, and PCNA, were significantly increased. Compared with previously published toxicological data of PFOA, HFPO-TA showed higher bioaccumulation potential and more serious hepatotoxicity. Taken together, HFPO-TA does not appear to be a safer alternative to PFOA.
Collapse
Affiliation(s)
- Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yitao Pan
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Yan Sun
- Key Laboratory of Organofluorine Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology , Institute of Zoology, Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
23
|
Misawa K, Imai A, Mochizuki D, Mima M, Endo S, Misawa Y, Kanazawa T, Mineta H. Association of TET3 epigenetic inactivation with head and neck cancer. Oncotarget 2018; 9:24480-24493. [PMID: 29849955 PMCID: PMC5966249 DOI: 10.18632/oncotarget.25333] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/21/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to clarify the epigenetic regulation of ten eleven translocation protein (TET) family genes, which can provide insights into the mechanisms of tumorigenesis and the risk of disease recurrence in head and neck squamous cell carcinoma (HNSCC). We generated methylation profiles of TET1, TET2 and TET3 genes in tumor samples obtained from 233 patients with HNSCC; these included 57 hypopharynx, 44 larynx, 69 oral cavity, and 63 oropharynx tumor samples. The mRNA expression and promoter DNA methylation of TET family genes were examined via quantitative RT-PCR and methylation-specific PCR, respectively. Promoter methylation was compared with various clinical characteristics and the TET methylation index (TE-MI). The TE-MI, representing the number of methylation events in TET family genes, was positively correlated with alcohol consumption (P = 0.004), high-risk human papilloma virus (HPV) status (P = 0.004) and disease recurrence (P = 0.002). The simultaneous methylation analysis of TET family genes was correlated with reduced disease-free survival in unfavorable event groups (log-rank test, P = 0.026). In the multivariate Cox proportional hazards analysis, TET3 methylation in T1 and T2 tumor stages, oropharyngeal cancer, and oral cancer patients exhibited high association with poor survival (hazard ratio: 2.64, P = 0.014; 3.55, P = 0.048; 2.63, P = 0.028, respectively). A joint analysis of the tumor suppressor gene methylation index showed a significant trend toward a higher TE-MI. The methylation status of TET3 was independently associated with aggressive tumor behavior and a global effect on DNA methylation status in HNSCC.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Atsushi Imai
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Daiki Mochizuki
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masato Mima
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shiori Endo
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yuki Misawa
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takeharu Kanazawa
- Department of Otolaryngology, Head and Neck Surgery, Jichi Medical University, Tochigi, Japan
| | - Hiroyuki Mineta
- Department of Otolaryngology, Head and Neck Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
24
|
Modernizing Human Cancer Risk Assessment of Therapeutics. Trends Pharmacol Sci 2017; 39:232-247. [PMID: 29242029 DOI: 10.1016/j.tips.2017.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
Abstract
Cancer risk assessment of therapeutics is plagued by poor translatability of rodent models of carcinogenesis. In order to overcome this fundamental limitation, new approaches are needed that enable us to evaluate cancer risk directly in humans and human-based cellular models. Our enhanced understanding of the mechanisms of carcinogenesis and the influence of human genome sequence variation on cancer risk motivates us to re-evaluate how we assess the carcinogenic risk of therapeutics. This review will highlight new opportunities for applying this knowledge to the development of a battery of human-based in vitro models and biomarkers for assessing cancer risk of novel therapeutics.
Collapse
|
25
|
Mechanistic roles of microRNAs in hepatocarcinogenesis: A study of thioacetamide with multiple doses and time-points of rats. Sci Rep 2017; 7:3054. [PMID: 28596526 PMCID: PMC5465221 DOI: 10.1038/s41598-017-02798-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/19/2017] [Indexed: 02/06/2023] Open
Abstract
Environmental chemicals exposure is one of the primary factors for liver toxicity and hepatocarcinoma. Thioacetamide (TAA) is a well-known hepatotoxicant and could be a liver carcinogen in humans. The discovery of early and sensitive microRNA (miRNA) biomarkers in liver injury and tumor progression could improve cancer diagnosis, prognosis, and management. To study this, we performed next generation sequencing of the livers of Sprague-Dawley rats treated with TAA at three doses (4.5, 15 and 45 mg/kg) and four time points (3-, 7-, 14- and 28-days). Overall, 330 unique differentially expressed miRNAs (DEMs) were identified in the entire TAA-treatment course. Of these, 129 DEMs were found significantly enriched for the “liver cancer” annotation. These results were further complemented by pathway analysis (Molecular Mechanisms of Cancer, p53-, TGF-β-, MAPK- and Wnt-signaling). Two miRNAs (rno-miR-34a-5p and rno-miR-455-3p) out of 48 overlapping DEMs were identified to be early and sensitive biomarkers for TAA-induced hepatocarcinogenicity. We have shown significant regulatory associations between DEMs and TAA-induced liver carcinogenesis at an earlier stage than histopathological features. Most importantly, miR-34a-5p is the most suitable early and sensitive biomarker for TAA-induced hepatocarcinogenesis due to its consistent elevation during the entire treatment course.
Collapse
|
26
|
He Z, Li D, Ma J, Chen L, Duan H, Zhang B, Gao C, Li J, Xing X, Zhao J, Wang S, Wang F, Zhang H, Li H, Chen S, Zeng X, Wang Q, Xiao Y, Zheng Y, Chen W. TRIM36 hypermethylation is involved in polycyclic aromatic hydrocarbons-induced cell transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:93-103. [PMID: 28359976 DOI: 10.1016/j.envpol.2017.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Long term exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with the increasing risk of lung cancer. To identify differentially hypermethylated genes associated with PAHs-induced carcinogenicity, we performed genome-wide DNA methylation analysis in 20 μM benzo(a)pyrene (BaP)-transformed human bronchial epithelial (HBE) cells at different stages of cell transformation. Several methylated genes (CNGA4, FLT1, GAREM1, SFMBT2, TRIM36) were differentially hypermethylated and their mRNA was suppressed in cells at both pre-transformed and transformed stages. Similar results were observed in HBE cells transformed by 20 μg/mL coke oven emissions (COEs) mixture collected from a coking manufacturing facility. In particular, hypermethylation of TRIM36 and suppression of TRIM36 expression were gradually enhanced over the time of COEs treatment. We developed bisulfite pyrosequencing assay and assessed TRIM36 methylation quantitatively. We found that hypermethylation of TRIM36 and reduced gene expression was prevalent in several types of human cancers. TRIM36 hypermethylation appeared in 90.0% (23/30) of Non-Small Cell Lung Cancer (NSCLCs) tissues compared to their paired adjacent tissues with an average increase of 1.32 fold. Furthermore, an increased methylation rate (5.90% v.s 7.38%) and reduced levels of TRIM36 mRNA were found in peripheral lymphocytes (PBLCs) of 151 COEs-exposed workers. In all subjects, TRIM36 hypermethylation was positively correlated with the level of urinary 1-hydroxypyrene (P < 0.001), an internal exposure marker of PAHs, and the DNA damage (P = 0.013). These findings suggest that aberrant hypermethylation of TRIM36 might be involved in the acquisition of malignant phenotype and could be served as a biomarker for risk assessment of PAHs exposure.
Collapse
Affiliation(s)
- Zhini He
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Junxiang Ma
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liping Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bo Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chen Gao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Xing
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jian Zhao
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fangping Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Haiyan Zhang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Huiyao Li
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiaowen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yongmei Xiao
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Thoracic Surgery, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Collaborative Innovation Center for Cancer Medicine, China.
| |
Collapse
|
27
|
Wang G, Wang J, Khan MF. Altered miRNA expression in aniline-mediated cell cycle progression in rat spleen. Toxicol Mech Methods 2017; 27:511-517. [PMID: 28463034 DOI: 10.1080/15376516.2017.1324932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aniline exposure is associated with toxicity to the spleen, however, early molecular events in aniline-induced cell cycle progression in the spleen remain unknown. MicroRNAs (miRNAs) have been implicated in tumor development by modulating key cell cycle regulators and controlling cell proliferation. This study was, therefore, undertaken on the expression of miRNAs, regulation of cyclins and cyclin-dependent kinases (CDKs) in an experimental condition that precedes a tumorigenic response. Male SD rats were treated with aniline (1 mmol/kg/day by gavage) for 7 days, and expression of miRNAs, cyclins and CDKs in rat spleens were analyzed. Microarray and/or qPCR analyses showed that aniline exposure led to significantly decreased miRNA expression of let-7a, miR-24, miR-34c, miR-100, miR-125b, and greatly increased miR-181a. The aberrant expression of miRNAs was associated with significantly increased protein expression of cyclins A, B1, D3 and E. Furthermore, remarkably enhanced expression of CDKs like CDK1, CDK2, CDK4, CDK6, especially p-CDK1 and p-CDK2 as well as alternations in the expression of pRB, p27, and CDC25A in the spleens of aniline-treated rats was also observed. The data suggest that aniline exposure leads to aberrant expression of miRNAs in the spleen which could be important in the regulation of cell cycle proteins. Our findings, thus, provide new insight into the role of miRNAs in cell cycle progression, which may contribute to aniline-induced tumorigenic response in the spleen.
Collapse
Affiliation(s)
- Gangduo Wang
- a Department of Pathology , University of Texas Medical Branch , Galveston , TX , USA
| | - Jianling Wang
- a Department of Pathology , University of Texas Medical Branch , Galveston , TX , USA
| | - M Firoze Khan
- a Department of Pathology , University of Texas Medical Branch , Galveston , TX , USA
| |
Collapse
|
28
|
Angelini S, Bermejo JL, Ravegnini G, Sammarini G, Hrelia P. Application of the lymphocyte Cytokinesis-Block Micronucleus Assay to populations exposed to petroleum and its derivatives: Results from a systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:58-72. [DOI: 10.1016/j.mrrev.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023]
|