1
|
Wu H, Hamilton C, Porritt H, Winbo A, Zeltner N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J Physiol 2025; 603:1865-1885. [PMID: 39235952 PMCID: PMC11955871 DOI: 10.1113/jp286416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our lifetime the heart executes cycles of contraction and relaxation to meet the body's ever-changing metabolic needs. This vital function is continuously regulated by the autonomic nervous system. Cardiovascular dysfunction and autonomic dysregulation are also closely associated; however, the degrees of cause and effect are not always readily discernible. Thus, to better understand cardiovascular disorders, it is crucial to develop model systems that can be used to study the neurocardiac interaction in healthy and diseased states. Human pluripotent stem cell (hiPSC) technology offers a unique human-based modelling system that allows for studies of disease effects on the cells of the heart and autonomic neurons as well as of their interaction. In this review, we summarize current understanding of the embryonic development of the autonomic, cardiac and neurocardiac systems, their regulation, as well as recent progress of in vitro modelling systems based on hiPSCs. We further discuss the advantages and limitations of hiPSC-based models in neurocardiac research.
Collapse
Affiliation(s)
- Hsueh‐Fu Wu
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Harrison Porritt
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Department of Chemical and Materials Engineering, Faculty of EngineeringThe University of AucklandAucklandNew Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyWellingtonNew Zealand
| | - Annika Winbo
- Department of PhysiologyThe University of AucklandAucklandNew Zealand
- Manaaki Manawa Centre for Heart ResearchUniversity of AucklandAucklandNew Zealand
| | - Nadja Zeltner
- Center for Molecular MedicineUniversity of GeorgiaAthensGeorgiaUSA
- Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Wang X, Tian H, Pan W, Du B, Chen Z, Zhang R, Zhou P. Applications of carbon dot-mediated cardiomyocyte maturation in regenerative medicine: a review. Nanomedicine (Lond) 2025; 20:319-328. [PMID: 39719674 PMCID: PMC11792849 DOI: 10.1080/17435889.2024.2443378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
The maturation of cardiomyocytes (CMs) plays key roles in regenerative medicine and the treatment of cardiovascular diseases via stem cell-derived CMs. Carbon dots (CDs) have good biocompatibility, optical properties, and electrophysical properties and have been widely applied in bioimaging, biosensors, and biotherapy. In this review, we comprehensively summarize recent advances in promoting the maturation of CMs, mainly human pluripotent stem cell-derived CMs, and related regenerative medicine. Moreover, we explore the innovative application of CDs to enhance the maturation of these CMs. Finally, we look forward to the future design and application of CDs in the maturation of CMs in terms of cell therapies.
Collapse
Affiliation(s)
- Xinyuan Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hao Tian
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Wen Pan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhen Chen
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| | - Rongzhi Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu ProvinceChina
| | - Ping Zhou
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School and Hospital of Stomatology, Lanzhou University, Lanzhou, Gansu Province, China
| |
Collapse
|
3
|
Pushpan CK, Kumar SR. iPSC-Derived Cardiomyocytes as a Disease Model to Understand the Biology of Congenital Heart Defects. Cells 2024; 13:1430. [PMID: 39273002 PMCID: PMC11393881 DOI: 10.3390/cells13171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital heart defects (CHDs), enabling the customization of treatment strategies. The ability to understand the disease process specific to the individual patient of interest provides this technology with a significant advantage over generic animal models. However, its utility as a disease-in-a-dish model requires identifying effective and efficient differentiation protocols that accurately reproduce disease traits. Currently, iPSC-related research relies heavily on the quality of cells and the properties of the differentiation technique In this review, we discuss the utility of iPSCs in bench CHD research, the molecular pathways involved in the differentiation of cardiomyocytes, and their applications in CHD disease modeling, therapeutics, and drug application.
Collapse
Affiliation(s)
- Chithra K. Pushpan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
| | - Subramanyan Ram Kumar
- Division of Cardiothoracic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-7616, USA;
- Dr. C.C. and Mabel, L. Criss Heart Center, Children’s Nebraska, 8200 Dodge St, Omaha, NE 68114, USA
| |
Collapse
|
4
|
Koukorava C, Ahmed K, Almaghrabi S, Pointon A, Haddrick M, Cross MJ. Anticancer drugs and cardiotoxicity: the role of cardiomyocyte and non-cardiomyocyte cells. Front Cardiovasc Med 2024; 11:1372817. [PMID: 39081368 PMCID: PMC11287221 DOI: 10.3389/fcvm.2024.1372817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024] Open
Abstract
Cardiotoxicity can be defined as "chemically induced heart disease", which can occur with many different drug classes treating a range of diseases. It is the primary cause of drug attrition during pre-clinical development and withdrawal from the market. Drug induced cardiovascular toxicity can result from both functional effects with alteration of the contractile and electrical regulation in the heart and structural changes with morphological changes to cardiomyocytes and other cardiac cells. These adverse effects result in conditions such as arrhythmia or a more serious reduction in left ventricular ejection fraction (LVEF), which can lead to heart failure and death. Anticancer drugs can adversely affect cardiomyocyte function as well as cardiac fibroblasts and cardiac endothelial cells, interfering in autocrine and paracrine signalling between these cell types and ultimately altering cardiac cellular homeostasis. This review aims to highlight potential toxicity mechanisms involving cardiomyocytes and non-cardiomyocyte cells by first introducing the physiological roles of these cells within the myocardium and secondly, identifying the physiological pathways perturbed by anticancer drugs in these cells.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
5
|
Cofiño-Fabres C, Boonen T, Rivera-Arbeláez JM, Rijpkema M, Blauw L, Rensen PCN, Schwach V, Ribeiro MC, Passier R. Micro-Engineered Heart Tissues On-Chip with Heterotypic Cell Composition Display Self-Organization and Improved Cardiac Function. Adv Healthc Mater 2024; 13:e2303664. [PMID: 38471185 DOI: 10.1002/adhm.202303664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Advanced in vitro models that recapitulate the structural organization and function of the human heart are highly needed for accurate disease modeling, more predictable drug screening, and safety pharmacology. Conventional 3D Engineered Heart Tissues (EHTs) lack heterotypic cell complexity and culture under flow, whereas microfluidic Heart-on-Chip (HoC) models in general lack the 3D configuration and accurate contractile readouts. In this study, an innovative and user-friendly HoC model is developed to overcome these limitations, by culturing human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs), endothelial (ECs)- and smooth muscle cells (SMCs), together with human cardiac fibroblasts (FBs), underflow, leading to self-organized miniaturized micro-EHTs (µEHTs) with a CM-EC interface reminiscent of the physiological capillary lining. µEHTs cultured under flow display enhanced contractile performance and conduction velocity. In addition, the presence of the EC layer altered drug responses in µEHT contraction. This observation suggests a potential barrier-like function of ECs, which may affect the availability of drugs to the CMs. These cardiac models with increased physiological complexity, will pave the way to screen for therapeutic targets and predict drug efficacy.
Collapse
Affiliation(s)
- Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Tom Boonen
- River BioMedics B.V, Enschede, 7522 NB, The Netherlands
| | - José M Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck Institute for Complex Fluid Dynamics, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Minke Rijpkema
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Lisanne Blauw
- River BioMedics B.V, Enschede, 7522 NB, The Netherlands
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, 2300 RC, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Marcelo C Ribeiro
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
- River BioMedics B.V, Enschede, 7522 NB, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Enschede, 7522 NB, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, 2300 RC, The Netherlands
| |
Collapse
|
6
|
Groen E, Mummery CL, Yiangou L, Davis RP. Three-dimensional cardiac models: a pre-clinical testing platform. Biochem Soc Trans 2024; 52:1045-1059. [PMID: 38778769 PMCID: PMC11346450 DOI: 10.1042/bst20230444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Major advancements in human pluripotent stem cell (hPSC) technology over recent years have yielded valuable tools for cardiovascular research. Multi-cell type 3-dimensional (3D) cardiac models in particular, are providing complementary approaches to animal studies that are better representatives than simple 2-dimensional (2D) cultures of differentiated hPSCs. These human 3D cardiac models can be broadly divided into two categories; namely those generated through aggregating pre-differentiated cells and those that form self-organizing structures during their in vitro differentiation from hPSCs. These models can either replicate aspects of cardiac development or enable the examination of interactions among constituent cell types, with some of these models showing increased maturity compared with 2D systems. Both groups have already emerged as physiologically relevant pre-clinical platforms for studying heart disease mechanisms, exhibiting key functional attributes of the human heart. In this review, we describe the different cardiac organoid models derived from hPSCs, their generation methods, applications in cardiovascular disease research and use in drug screening. We also address their current limitations and challenges as pre-clinical testing platforms and propose potential improvements to enhance their efficacy in cardiac drug discovery.
Collapse
Affiliation(s)
- Eline Groen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300RC Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300RC Leiden, The Netherlands
| |
Collapse
|
7
|
Vanderslice EJ, Golding SGH, Jacot JG. Vascularization of PEGylated fibrin hydrogels increases the proliferation of human iPSC-cardiomyocytes. J Biomed Mater Res A 2024; 112:625-634. [PMID: 38155509 PMCID: PMC10922460 DOI: 10.1002/jbm.a.37662] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
Studies have long sought to develop engineered heart tissue for the surgical correction of structural heart defects, as well as other applications and vascularization of this tissue has presented a challenge. Recent studies suggest that vascular cells and a vascular network may have regenerative effects on implanted cardiomyocytes (CM) and nearby heart tissue separate from perfusion of oxygen and nutrients. The goal of this study was to test whether vascular cells or a formed vascular network in a fibrin-based hydrogel would alter the proliferation of human iPSC-derived CM. First, vascular network formation in a slowly degrading PEGylated fibrin hydrogel was optimized by altering the cell ratio of human umbilical vein endothelial cells to human dermal fibroblasts, the inclusion of growth factors, and the total cell concentration. An endothelial to fibroblast ratio of 5:1 and a total cell concentration of 1.1 × 106 cells/mL without additional growth factors generated robust vascular networks while minimizing the number of cells required. Using this optimized system, human iPSC-derived CM were cultured on hydrogels without vascular cells, hydrogels with unorganized encapsulated vascular cells, or hydrogels with encapsulated vascular cells organized into networks for 7 days. CM proliferation and gene expression were assayed following 7 days of culture on the hydrogels. The presence of vascular cells in the hydrogel, whether unorganized or in vascular networks, significantly increased CM proliferation compared to an acellular hydrogel. Hydrogels with unorganized vascular cells resulted in lower CM maturity evidenced by decreased expression of cardiac troponin t (TNNT2), myosin light chain 7, and phospholamban compared to hydrogels without vascular cells and hydrogels with vascular networks. Altogether, this study details a robust method of forming rudimentary vascular networks in a fibrin-based hydrogel and shows that a hydrogel containing endothelial cells and fibroblasts can induce proliferation in adjacent CM, and these cells do not hinder CM gene expression when organized into a vascular network.
Collapse
Affiliation(s)
- Ethan J. Vanderslice
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
| | - Staunton G. H. Golding
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA 37235
| | - Jeffrey G. Jacot
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 80045
- Department of Pediatrics, Children’s Hospital Colorado, Aurora, CO, USA 80045
| |
Collapse
|
8
|
Cumberland MJ, Euchner J, Azad AJ, T N Vo N, Kirchhof P, Holmes AP, Denning C, Gehmlich K. Generation of a human iPSC-derived cardiomyocyte/fibroblast engineered heart tissue model. F1000Res 2024; 12:1224. [PMID: 38298530 PMCID: PMC10828555 DOI: 10.12688/f1000research.139482.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/02/2024] Open
Abstract
Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an in vitro model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis.
Collapse
Affiliation(s)
- Max J Cumberland
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
| | - Jonas Euchner
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
- Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, England, B15 2TT, UK
| | - Amar J Azad
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
| | - Nguyen T N Vo
- Biodiscovery Institute, University of Nottingham, Nottingham, England, NG7 2RD, UK
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
- Department of Cardiology, University Heart and Vascular Center Hamburg, Universitat Hamburg, Hamburg, Hamburg, 20251, Germany
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
- Institute of Clinical Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, England, NG7 2RD, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, England, OX3 9DU, UK
| |
Collapse
|
9
|
Di Cio S, Marhuenda E, Haddrick M, Gautrot JE. Vascularised cardiac spheroids-on-a-chip for testing the toxicity of therapeutics. Sci Rep 2024; 14:3370. [PMID: 38336810 PMCID: PMC10858047 DOI: 10.1038/s41598-024-53678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
Microfabricated organ-on-a-chips are rapidly becoming the gold standard for the testing of safety and efficacy of therapeutics. A broad range of designs has emerged, but recreating microvascularised tissue models remains difficult in many cases. This is particularly relevant to mimic the systemic delivery of therapeutics, to capture the complex multi-step processes associated with trans-endothelial transport or diffusion, uptake by targeted tissues and associated metabolic response. In this report, we describe the formation of microvascularised cardiac spheroids embedded in microfluidic chips. Different protocols used for embedding spheroids within vascularised multi-compartment microfluidic chips were investigated first to identify the importance of the spheroid processing, and co-culture with pericytes on the integration of the spheroid within the microvascular networks formed. The architecture of the resulting models, the expression of cardiac and endothelial markers and the perfusion of the system was then investigated. This confirmed the excellent stability of the vascular networks formed, as well as the persistent expression of cardiomyocyte markers such as cTNT and the assembly of striated F-actin, myosin and α-actinin cytoskeletal networks typically associated with contractility and beating. The ability to retain beating over prolonged periods of time was quantified, over 25 days, demonstrating not only perfusability but also functional performance of the tissue model. Finally, as a proof-of-concept of therapeutic testing, the toxicity of one therapeutic associated with cardiac disfunction was evaluated, identifying differences between direct in vitro testing on suspended spheroids and vascularised models.
Collapse
Affiliation(s)
- Stefania Di Cio
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Emilie Marhuenda
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Cheshire, SK10 4TG, UK
| | - Julien E Gautrot
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
10
|
Finkel S, Sweet S, Locke T, Smith S, Wang Z, Sandini C, Imredy J, He Y, Durante M, Lagrutta A, Feinberg A, Lee A. FRESH™ 3D bioprinted cardiac tissue, a bioengineered platform for in vitro pharmacology. APL Bioeng 2023; 7:046113. [PMID: 38046544 PMCID: PMC10693443 DOI: 10.1063/5.0163363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
There is critical need for a predictive model of human cardiac physiology in drug development to assess compound effects on human tissues. In vitro two-dimensional monolayer cultures of cardiomyocytes provide biochemical and cellular readouts, and in vivo animal models provide information on systemic cardiovascular response. However, there remains a significant gap in these models due to their incomplete recapitulation of adult human cardiovascular physiology. Recent efforts in developing in vitro models from engineered heart tissues have demonstrated potential for bridging this gap using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in three-dimensional tissue structure. Here, we advance this paradigm by implementing FRESH™ 3D bioprinting to build human cardiac tissues in a medium throughput, well-plate format with controlled tissue architecture, tailored cellular composition, and native-like physiological function, specifically in its drug response. We combined hiPSC-CMs, endothelial cells, and fibroblasts in a cellular bioink and FRESH™ 3D bioprinted this mixture in the format of a thin tissue strip stabilized on a tissue fixture. We show that cardiac tissues could be fabricated directly in a 24-well plate format were composed of dense and highly aligned hiPSC-CMs at >600 million cells/mL and, within 14 days, demonstrated reproducible calcium transients and a fast conduction velocity of ∼16 cm/s. Interrogation of these cardiac tissues with the β-adrenergic receptor agonist isoproterenol showed responses consistent with positive chronotropy and inotropy. Treatment with calcium channel blocker verapamil demonstrated responses expected of hiPSC-CM derived cardiac tissues. These results confirm that FRESH™ 3D bioprinted cardiac tissues represent an in vitro platform that provides data on human physiological response.
Collapse
Affiliation(s)
| | | | - Tyler Locke
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | - Sydney Smith
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | - Zhefan Wang
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| | | | - John Imredy
- In Vitro Safety Pharmacology, Genetic and Cellular Toxicology, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Yufang He
- Division of Technology, Infrastructure, Operations and Experience, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Marc Durante
- Division of Technology, Infrastructure, Operations and Experience, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | - Armando Lagrutta
- In Vitro Safety Pharmacology, Genetic and Cellular Toxicology, Merck & Co. Inc., Rahway, New Jersey 07065, USA
| | | | - Andrew Lee
- FluidForm, Inc., Waltham, Massachusetts 02451, USA
| |
Collapse
|
11
|
Koukorava C, Ward K, Ahmed K, Almaghrabi S, Dauleh S, Pereira SM, Taylor A, Haddrick M, Cross MJ, Wilm B. Mesothelial Cells Exhibit Characteristics of Perivascular Cells in an In Vitro Angiogenesis Assay. Cells 2023; 12:2436. [PMID: 37887280 PMCID: PMC10605208 DOI: 10.3390/cells12202436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Mesothelial cells have been shown to have remarkable plasticity towards mesenchymal cell types during development and in disease situations. Here, we have characterized the potential of mesothelial cells to undergo changes toward perivascular cells using an in vitro angiogenesis assay. We demonstrate that GFP-labeled mesothelial cells (GFP-MCs) aligned closely and specifically with endothelial networks formed when human dermal microvascular endothelial cells (HDMECs) were cultured in the presence of VEGF-A165 on normal human dermal fibroblasts (NHDFs) for a 7-day period. The co-culture with GFP-MCs had a positive effect on branch point formation indicating that the cells supported endothelial tube formation. We interrogated the molecular response of the GFP-MCs to the angiogenic co-culture by qRT-PCR and found that the pericyte marker Ng2 was upregulated when the cells were co-cultured with HDMECs on NHDFs, indicating a change towards a perivascular phenotype. When GFP-MCs were cultured on the NHDF feeder layer, they upregulated the epithelial-mesenchymal transition marker Zeb1 and lost their circularity while increasing their size, indicating a change to a more migratory cell type. We analyzed the pericyte-like behavior of the GFP-MCs in a 3D cardiac microtissue (spheroid) with cardiomyocytes, cardiac fibroblasts and cardiac endothelial cells where the mesothelial cells showed alignment with the endothelial cells. These results indicate that mesothelial cells have the potential to adopt a perivascular phenotype and associate with endothelial cells to potentially support angiogenesis.
Collapse
Affiliation(s)
- Chrysa Koukorava
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Kelly Ward
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Shrouq Almaghrabi
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Sumaya Dauleh
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Sofia M. Pereira
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Malcolm Haddrick
- Medicines Discovery Catapult, Alderley Park, Macclesfield SK10 4ZF, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Department of Women’s and Children’s Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
12
|
Fischer B, Gwinner F, Gepp MM, Schulz A, Danz K, Dehne A, Katsen-Globa A, Neubauer JC, Gentile L, Zimmermann H. A highly versatile biopolymer-based platform for the maturation of human pluripotent stem cell-derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. J Biomed Mater Res A 2023; 111:1600-1615. [PMID: 37317666 DOI: 10.1002/jbm.a.37558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a valuable tool for in vitro modeling of the cardiac niche and possess great potential in tissue engineering applications. However, conventional polystyrene-based cell culture substrates have adverse effects on cardiomyocytes in vitro due to the stress applied by a stiff substrate on contractile cells. Ultra-high viscosity alginates offer a unique versatility as tunable substrates for cardiac cell cultures due to their biocompatibility, flexible biofunctionalization, and stability. In this work, we analyzed the effect of alginate substrates on hPSC-CM maturity and functionality. Alginate substrates in high-throughput compatible culture formats fostered a more mature gene expression and enabled the simultaneous assessment of chronotropic and inotropic effects upon beta-adrenergic stimulation. Furthermore, we produced 3D-printed alginate scaffolds with differing mechanical properties and plated hPSC-CMs on the surface of these to create Heart Patches for tissue engineering applications. These exhibited synchronous macro-contractions in concert with more mature gene expression patterns and extensive intracellular alignment of sarcomeric structures. In conclusion, the combination of biofunctionalized alginates and human cardiomyocytes represents a valuable tool for both in vitro modeling and regenerative medicine, due to its beneficial effects on cardiomyocyte physiology, the possibility to analyze cardiac contractility, and its applicability as Heart Patches.
Collapse
Affiliation(s)
- B Fischer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - F Gwinner
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - M M Gepp
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - A Schulz
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - K Danz
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Dehne
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Katsen-Globa
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - J C Neubauer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - L Gentile
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - H Zimmermann
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
- Chair for Molecular and Cellular Biotechnology, Saarland University, Gebäude A, Saarbrücken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| |
Collapse
|
13
|
Pugsley MK, Koshman YE, Foley CM, Winters BR, Authier S, Curtis MJ. Safety pharmacology 2023 and implementation of the ICH E14/S7B Q&A guidance document. J Pharmacol Toxicol Methods 2023; 123:107300. [PMID: 37524151 DOI: 10.1016/j.vascn.2023.107300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
This editorial prefaces the annual themed issue on safety pharmacology (SP) methods published since 2004 in the Journal of Pharmacological and Toxicological Methods (JPTM). We highlight here the content derived from the recent 2022 Safety Pharmacology Society (SPS) and Canadian Society of Pharmacology and Therapeutics (CSPT) joint meeting held in Montreal, Quebec, Canada. The meeting also generated 179 abstracts (reproduced in the current volume of JPTM). As in previous years the manuscripts reflect various areas of innovation in SP including a comparison of the sensitivity of cross-over and parallel study designs for QTc assessment, use of human-induced pluripotent stem cell (hi-PSC) neuronal cell preparations for use in neuropharmacological safety screening, and hiPSC derived cardiac myocytes in assessing inotropic adversity. With respect to the latter, we anticipate the emergence of a large data set of positive and negative controls that will test whether the imperative to miniaturize, humanize and create a high throughput process is offset by any loss of precision and accuracy.
Collapse
Affiliation(s)
- Michael K Pugsley
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, USA.
| | | | | | - Brett R Winters
- Toxicology & Safety Pharmacology, Cytokinetics, South San Francisco, CA 94080, USA
| | - Simon Authier
- Charles River Laboratories, Laval, QC H7V 4B3, Canada
| | - Michael J Curtis
- Cardiovascular Division, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| |
Collapse
|
14
|
Reyat JS, di Maio A, Grygielska B, Pike J, Kemble S, Rodriguez-Romero A, Simoglou Karali C, Croft AP, Psaila B, Simões F, Rayes J, Khan AO. Modelling the pathology and treatment of cardiac fibrosis in vascularised atrial and ventricular cardiac microtissues. Front Cardiovasc Med 2023; 10:1156759. [PMID: 37727305 PMCID: PMC10506403 DOI: 10.3389/fcvm.2023.1156759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction Recent advances in human cardiac 3D approaches have yielded progressively more complex and physiologically relevant culture systems. However, their application in the study of complex pathological processes, such as inflammation and fibrosis, and their utility as models for drug development have been thus far limited. Methods In this work, we report the development of chamber-specific, vascularised human induced pluripotent stem cell-derived cardiac microtissues, which allow for the multi-parametric assessment of cardiac fibrosis. Results We demonstrate the generation of a robust vascular system in the microtissues composed of endothelial cells, fibroblasts and atrial or ventricular cardiomyocytes that exhibit gene expression signatures, architectural, and electrophysiological resemblance to in vivo-derived anatomical cardiac tissues. Following pro-fibrotic stimulation using TGFβ, cardiac microtissues recapitulated hallmarks of cardiac fibrosis, including myofibroblast activation and collagen deposition. A study of Ca2+ dynamics in fibrotic microtissues using optical mapping revealed prolonged Ca2+ decay, reflecting cardiomyocyte dysfunction, which is linked to the severity of fibrosis. This phenotype could be reversed by TGFβ receptor inhibition or by using the BET bromodomain inhibitor, JQ1. Discussion In conclusion, we present a novel methodology for the generation of chamber-specific cardiac microtissues that is highly scalable and allows for the multi-parametric assessment of cardiac remodelling and pharmacological screening.
Collapse
Affiliation(s)
- Jasmeet S. Reyat
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Alessandro di Maio
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Beata Grygielska
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jeremy Pike
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Samuel Kemble
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Antonio Rodriguez-Romero
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christina Simoglou Karali
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Adam P. Croft
- Rheumatology Research Group, College of Medical and Dental Sciences, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Bethan Psaila
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Filipa Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Julie Rayes
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- The Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Birmingham, United Kingdom
| | - Abdullah O. Khan
- College of Medical and Dental Sciences, Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Zhang X, Aggarwal P, Broeckel U, Abassi YA. Enhancing the functional maturity of hiPSC-derived cardiomyocytes to assess inotropic compounds. J Pharmacol Toxicol Methods 2023; 123:107282. [PMID: 37419294 DOI: 10.1016/j.vascn.2023.107282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) present an attractive in vitro platform to model safety and toxicity assessments-notably screening pro-arrhythmic compounds. The utility of the platform is stymied by a hiPSC-CM contractile apparatus and calcium handling mechanism akin to fetal phenotypes, evidenced by a negative force-frequency relationship. As such, hiPSC-CMs are limited in their ability to assess compounds that modulate contraction mediated by ionotropic compounds (Robertson, Tran, & George, 2013). To address this limitation, we utilize Agilent's xCELLigence Real-Time Cell Analyzer ePacer (RTCA ePacer) to enhance hiPSC-CM functional maturity. A continuous, progressive increase of electrical pacing is applied to hiPSC-CMs for up to 15 days. Contraction and viability are recorded by measurement of impedance using the RTCA ePacer. Our data confirms hiPSC-CMs inherently demonstrate a negative impedance amplitude frequency that is reversed after long-term electrical pacing. The data also indicate positive inotropic compounds increase the contractility of paced cardiomyocytes and calcium handling machinery is improved. Increased expression of genes critical to cardiomyocyte maturation further underscores the maturity of paced cells. In summary, our data suggest the application of continuous electrical pacing can functionally mature hiPSC-CMs, enhancing cellular response to positive inotropic compounds and improving calcium handling. SUMMARY: Long-term electrical stimulation of hiPSC-CM leads to functional maturation enabling predictive assessment of inotropic compounds.
Collapse
|
16
|
Stebbeds W, Raniga K, Standing D, Wallace I, Bayliss J, Brown A, Kasprowicz R, Dalmas Wilk D, Deakyne J, Clements P, Chaudhary KW, Rossman EI, Bahinski A, Francis J. CardioMotion: identification of functional and structural cardiotoxic liabilities in small molecules through brightfield kinetic imaging. Toxicol Sci 2023; 195:61-70. [PMID: 37462734 DOI: 10.1093/toxsci/kfad065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Cardiovascular toxicity is an important cause of drug failures in the later stages of drug development, early clinical safety assessment, and even postmarket withdrawals. Early-stage in vitro assessment of potential cardiovascular liabilities in the pharmaceutical industry involves assessment of interactions with cardiac ion channels, as well as induced pluripotent stem cell-derived cardiomyocyte-based functional assays, such as calcium flux and multielectrode-array assays. These methods are appropriate for the identification of acute functional cardiotoxicity but structural cardiotoxicity, which manifests effects after chronic exposure, is often only captured in vivo. CardioMotion is a novel, label-free, high throughput, in vitro assay and analysis pipeline which records and assesses the spontaneous beating of cardiomyocytes and identifies compounds which impact beating. This is achieved through the acquisition of brightfield images at a high framerate, combined with an optical flow-based python analysis pipeline which transforms the images into waveform data which are then parameterized. Validation of this assay with a large dataset showed that cardioactive compounds with diverse known direct functional and structural mechanisms-of-action on cardiomyocytes are identified (sensitivity = 72.9%), importantly, known structural cardiotoxins also disrupt cardiomyocyte beating (sensitivity = 86%) in this method. Furthermore, the CardioMotion method presents a high specificity of 82.5%.
Collapse
Affiliation(s)
- William Stebbeds
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Kavita Raniga
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
- The Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - David Standing
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Iona Wallace
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - James Bayliss
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Andrew Brown
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | - Richard Kasprowicz
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| | | | - Julianna Deakyne
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | | | | | - Eric I Rossman
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | - Anthony Bahinski
- In vitro in vivo translation, GSK, Upper Providence, PA 19426, USA
| | - Jo Francis
- Screening Profiling and Mechanistic Biology, GSK, Stevenage, SG1 2NY, UK
| |
Collapse
|
17
|
Cofiño-Fabres C, Passier R, Schwach V. Towards Improved Human In Vitro Models for Cardiac Arrhythmia: Disease Mechanisms, Treatment, and Models of Atrial Fibrillation. Biomedicines 2023; 11:2355. [PMID: 37760796 PMCID: PMC10525681 DOI: 10.3390/biomedicines11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart rhythm disorders, arrhythmias, place a huge economic burden on society and have a large impact on the quality of life of a vast number of people. Arrhythmias can have genetic causes but primarily arise from heart tissue remodeling during aging or heart disease. As current therapies do not address the causes of arrhythmias but only manage the symptoms, it is of paramount importance to generate innovative test models and platforms for gaining knowledge about the underlying disease mechanisms which are compatible with drug screening. In this review, we outline the most important features of atrial fibrillation (AFib), the most common cardiac arrhythmia. We will discuss the epidemiology, risk factors, underlying causes, and present therapies of AFib, as well as the shortcomings and opportunities of current models for cardiac arrhythmia, including animal models, in silico and in vitro models utilizing human pluripotent stem cell (hPSC)-derived cardiomyocytes.
Collapse
Affiliation(s)
- Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
- Department of Anatomy and Embryology, Leiden University Medical Centre, 2300 RC Leiden, The Netherlands
| | - Verena Schwach
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, Drienerlolaan 5, 7500 AE Enschede, The Netherlands;
| |
Collapse
|
18
|
Urzì O, Gasparro R, Costanzo E, De Luca A, Giavaresi G, Fontana S, Alessandro R. Three-Dimensional Cell Cultures: The Bridge between In Vitro and In Vivo Models. Int J Mol Sci 2023; 24:12046. [PMID: 37569426 PMCID: PMC10419178 DOI: 10.3390/ijms241512046] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Although historically, the traditional bidimensional in vitro cell system has been widely used in research, providing much fundamental information regarding cellular functions and signaling pathways as well as nuclear activities, the simplicity of this system does not fully reflect the heterogeneity and complexity of the in vivo systems. From this arises the need to use animals for experimental research and in vivo testing. Nevertheless, animal use in experimentation presents various aspects of complexity, such as ethical issues, which led Russell and Burch in 1959 to formulate the 3R (Replacement, Reduction, and Refinement) principle, underlying the urgent need to introduce non-animal-based methods in research. Considering this, three-dimensional (3D) models emerged in the scientific community as a bridge between in vitro and in vivo models, allowing for the achievement of cell differentiation and complexity while avoiding the use of animals in experimental research. The purpose of this review is to provide a general overview of the most common methods to establish 3D cell culture and to discuss their promising applications. Three-dimensional cell cultures have been employed as models to study both organ physiology and diseases; moreover, they represent a valuable tool for studying many aspects of cancer. Finally, the possibility of using 3D models for drug screening and regenerative medicine paves the way for the development of new therapeutic opportunities for many diseases.
Collapse
Affiliation(s)
- Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Roberta Gasparro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Angela De Luca
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Gianluca Giavaresi
- IRCCS Istituto Ortopedico Rizzoli, SC Scienze e Tecnologie Chirurgiche, 40136 Bologna, Italy; (A.D.L.); (G.G.)
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), Section of Biology and Genetics, University of Palermo, 90133 Palermo, Italy; (O.U.); (R.G.); (E.C.); (R.A.)
| |
Collapse
|
19
|
Ho BX, Pang JKS, Chen Y, Loh YH, An O, Yang HH, Seshachalam VP, Koh JLY, Chan WK, Ng SY, Soh BS. Robust generation of human-chambered cardiac organoids from pluripotent stem cells for improved modelling of cardiovascular diseases. Stem Cell Res Ther 2022; 13:529. [PMID: 36544188 PMCID: PMC9773542 DOI: 10.1186/s13287-022-03215-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tissue organoids generated from human pluripotent stem cells are valuable tools for disease modelling and to understand developmental processes. While recent progress in human cardiac organoids revealed the ability of these stem cell-derived organoids to self-organize and intrinsically formed chamber-like structure containing a central cavity, it remained unclear the processes involved that enabled such chamber formation. METHODS Chambered cardiac organoids (CCOs) differentiated from human embryonic stem cells (H7) were generated by modulation of Wnt/ß-catenin signalling under fully defined conditions, and several growth factors essential for cardiac progenitor expansion. Transcriptomic profiling of day 8, day 14 and day 21 CCOs was performed by quantitative PCR and single-cell RNA sequencing. Endothelin-1 (EDN1) known to induce oxidative stress in cardiomyocytes was used to induce cardiac hypertrophy in CCOs in vitro. Functional characterization of cardiomyocyte contractile machinery was performed by immunofluorescence staining and analysis of brightfield and fluorescent video recordings. Quantitative PCR values between groups were compared using two-tailed Student's t tests. Cardiac organoid parameters comparison between groups was performed using two-tailed Mann-Whitney U test when sample size is small; otherwise, Welch's t test was used. Comparison of calcium kinetics parameters derived from the fluorescent data was performed using two-tailed Student's t tests. RESULTS Importantly, we demonstrated that a threshold number of cardiac progenitor was essential to line the circumference of the inner cavity to ensure proper formation of a chamber within the organoid. Single-cell RNA sequencing revealed improved maturation over a time course, as evidenced from increased mRNA expression of cardiomyocyte maturation genes, ion channel genes and a metabolic shift from glycolysis to fatty acid ß-oxidation. Functionally, CCOs recapitulated clinical cardiac hypertrophy by exhibiting thickened chamber walls, reduced fractional shortening, and increased myofibrillar disarray upon treatment with EDN1. Furthermore, electrophysiological assessment of calcium transients displayed tachyarrhythmic phenotype observed as a consequence of rapid depolarization occurring prior to a complete repolarization. CONCLUSIONS Our findings shed novel insights into the role of progenitors in CCO formation and pave the way for the robust generation of cardiac organoids, as a platform for future applications in disease modelling and drug screening in vitro.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- grid.418812.60000 0004 0620 9243Disease Modelling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| | - Jeremy Kah Sheng Pang
- grid.418812.60000 0004 0620 9243Disease Modelling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| | - Ying Chen
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme, National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077 Singapore ,grid.418812.60000 0004 0620 9243Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
| | - Yuin-Han Loh
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore ,grid.418812.60000 0004 0620 9243Epigenetics and Cell Fates Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore
| | - Omer An
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Henry He Yang
- grid.4280.e0000 0001 2180 6431Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599 Singapore
| | - Veerabrahma Pratap Seshachalam
- grid.510300.7Computational Phenomics Group, Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore, 138670 Singapore
| | - Judice L. Y. Koh
- grid.510300.7Computational Phenomics Group, Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), Singapore, 138670 Singapore
| | - Woon-Khiong Chan
- grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| | - Shi Yan Ng
- grid.418812.60000 0004 0620 9243Neurotherapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore, 117456 Singapore ,grid.276809.20000 0004 0636 696XNational Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433 Singapore
| | - Boon Seng Soh
- grid.418812.60000 0004 0620 9243Disease Modelling and Therapeutics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673 Singapore ,grid.4280.e0000 0001 2180 6431Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543 Singapore
| |
Collapse
|
20
|
Xie S, Yang Y, Luo Z, Li X, Liu J, Zhang B, Li W. Role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity: A systematic review. iScience 2022; 25:105283. [PMID: 36300001 PMCID: PMC9589207 DOI: 10.1016/j.isci.2022.105283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cardiotoxicity induced by anticancer drugs interferes with the continuation of optimal treatment, inducing life-threatening risks or leading to long-term morbidity. The heart is a complex pluricellular organ comprised of cardiomyocytes and non-cardiomyocytes. Although the study of these cell populations has been often focusing on cardiomyocytes, the contributions of non-cardiomyocytes to development and disease are increasingly being appreciated as both dynamic and essential. This review summarized the role of non-cardiomyocytes in anticancer drug-induced cardiotoxicity, including the mechanism of direct damage to resident non-cardiomyocytes, cardiomyocytes injury caused by paracrine modality, myocardial inflammation induced by transient cell populations and the protective agents that focused on non-cardiomyocytes.
Collapse
Affiliation(s)
- Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiangyun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
21
|
King O, Cruz-Moreira D, Sayed A, Kermani F, Kit-Anan W, Sunyovszki I, Wang BX, Downing B, Fourre J, Hachim D, Randi AM, Stevens MM, Rasponi M, Terracciano CM. Functional microvascularization of human myocardium in vitro. CELL REPORTS METHODS 2022; 2:100280. [PMID: 36160044 PMCID: PMC9499876 DOI: 10.1016/j.crmeth.2022.100280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/14/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022]
Abstract
In this study, we report static and perfused models of human myocardial-microvascular interaction. In static culture, we observe distinct regulation of electrophysiology of human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) in co-culture with human cardiac microvascular endothelial cells (hCMVECs) and human left ventricular fibroblasts (hLVFBs), including modification of beating rate, action potential, calcium handling, and pro-arrhythmic substrate. Within a heart-on-a-chip model, we subject this three-dimensional (3D) co-culture to microfluidic perfusion and vasculogenic growth factors to induce spontaneous assembly of perfusable myocardial microvasculature. Live imaging of red blood cells within myocardial microvasculature reveals pulsatile flow generated by beating hiPSC-CMs. This study therefore demonstrates a functionally vascularized in vitro model of human myocardium with widespread potential applications in basic and translational research.
Collapse
Affiliation(s)
- Oisín King
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniela Cruz-Moreira
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | - Alaa Sayed
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Fatemeh Kermani
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ilona Sunyovszki
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Brian X. Wang
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | - Barrett Downing
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jerome Fourre
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Hachim
- Department of Materials, Imperial College London, London, UK
| | - Anna M. Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, UK
- Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Marco Rasponi
- Politecnico di Milano, Department of Electronics, Information, and Bioengineering, Milan, Italy
| | | |
Collapse
|
22
|
Kahn-Krell A, Pretorius D, Guragain B, Lou X, Wei Y, Zhang J, Qiao A, Nakada Y, Kamp TJ, Ye L, Zhang J. A three-dimensional culture system for generating cardiac spheroids composed of cardiomyocytes, endothelial cells, smooth-muscle cells, and cardiac fibroblasts derived from human induced-pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:908848. [PMID: 35957645 PMCID: PMC9361017 DOI: 10.3389/fbioe.2022.908848] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 01/22/2023] Open
Abstract
Cardiomyocytes (CMs), endothelial cells (ECs), smooth-muscle cells (SMCs), and cardiac fibroblasts (CFs) differentiated from human induced-pluripotent stem cells (hiPSCs) are the fundamental components of cell-based regenerative myocardial therapy and can be used as in-vitro models for mechanistic studies and drug testing. However, newly differentiated hiPSC-CMs tend to more closely resemble fetal CMs than the mature CMs of adult hearts, and current techniques for improving CM maturation can be both complex and labor-intensive. Thus, the production of CMs for commercial and industrial applications will require more elementary methods for promoting CM maturity. CMs tend to develop a more mature phenotype when cultured as spheroids in a three-dimensional (3D) environment, rather than as two-dimensional monolayers, and the activity of ECs, SMCs, and CFs promote both CM maturation and electrical activity. Here, we introduce a simple and reproducible 3D-culture-based process for generating spheroids containing all four cardiac-cell types (i.e., cardiac spheroids) that is compatible with a wide range of applications and research equipment. Subsequent experiments demonstrated that the inclusion of vascular cells and CFs was associated with an increase in spheroid size, a decline in apoptosis, an improvement in sarcomere maturation and a change in CM bioenergetics.
Collapse
Affiliation(s)
- Asher Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bijay Guragain
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianhua Zhang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yuji Nakada
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J. Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States,Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL, United States,*Correspondence: Jianyi Zhang,
| |
Collapse
|
23
|
Assessing Drug-Induced Mitochondrial Toxicity in Cardiomyocytes: Implications for Preclinical Cardiac Safety Evaluation. Pharmaceutics 2022; 14:pharmaceutics14071313. [PMID: 35890211 PMCID: PMC9319223 DOI: 10.3390/pharmaceutics14071313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023] Open
Abstract
Drug-induced cardiotoxicity not only leads to the attrition of drugs during development, but also contributes to the high morbidity and mortality rates of cardiovascular diseases. Comprehensive testing for proarrhythmic risks of drugs has been applied in preclinical cardiac safety assessment for over 15 years. However, other mechanisms of cardiac toxicity have not received such attention. Of them, mitochondrial impairment is a common form of cardiotoxicity and is known to account for over half of cardiovascular adverse-event-related black box warnings imposed by the U.S. Food and Drug Administration. Although it has been studied in great depth, mitochondrial toxicity assessment has not yet been incorporated into routine safety tests for cardiotoxicity at the preclinical stage. This review discusses the main characteristics of mitochondria in cardiomyocytes, drug-induced mitochondrial toxicities, and high-throughput screening strategies for cardiomyocytes, as well as their proposed integration into preclinical safety pharmacology. We emphasize the advantages of using adult human primary cardiomyocytes for the evaluation of mitochondrial morphology and function, and the need for a novel cardiac safety testing platform integrating mitochondrial toxicity and proarrhythmic risk assessments in cardiac safety evaluation.
Collapse
|
24
|
Daley MC, Mende U, Choi BR, McMullen PD, Coulombe KLK. Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 2022; 40:103-116. [PMID: 35648122 PMCID: PMC10502740 DOI: 10.14573/altex.2109131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022]
Abstract
Environmental factors play a substantial role in determining cardiovascular health, but data informing the risks presented by environmental toxicants is insufficient. In vitro new approach methodologies (NAMs) offer a promising approach with which to address the limitations of traditional in vivo and in vitro assays for assessing cardiotoxicity. Driven largely by the needs of pharmaceutical toxicity testing, considerable progress in developing NAMs for cardiotoxicity analysis has already been made. As the scientific and regulatory interest in NAMs for environmental chemicals continues to grow, a thorough understanding of the unique features of environmental cardiotoxicants and their associated cardiotoxicities is needed. Here, we review the key characteristics of as well as important regulatory and biological considerations for fit-for-purpose NAMs for environmental cardiotoxicity. By emphasizing the challenges and opportunities presented by NAMs for environmental cardiotoxicity we hope to accelerate their development, acceptance, and application.
Collapse
Affiliation(s)
- Mark C Daley
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Koivisto M, Mosallaei M, Toimela T, Tuukkanen S, Heinonen T. Direct Contraction Force Measurements of Engineered Cardiac Tissue Constructs With Inotropic Drug Exposure. Front Pharmacol 2022; 13:871569. [PMID: 35592423 PMCID: PMC9110810 DOI: 10.3389/fphar.2022.871569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Contractility is one of the most crucial functions of the heart because it is directly related to the maintenance of blood perfusion throughout the body. Both increase and decrease in contractility may cause fatal consequences. Therefore, drug discovery would benefit greatly from reliable testing of candidate molecule effects on contractility capacity. In this study, we further developed a dual-axis piezoelectric force sensor together with our human cell–based vascularized cardiac tissue constructs for cardiac contraction force measurements. The capability to detect drug-induced inotropic effects was tested with a set of known positive and negative inotropic compounds of isoprenaline, milrinone, omecamtiv mecarbil, propranolol, or verapamil in different concentrations. Both positive and negative inotropic effects were measurable, showing that our cardiac contraction force measurement system including a piezoelectric cantilever sensor and a human cell–based cardiac tissue constructs has the potential to be used for testing of inotropic drug effects.
Collapse
Affiliation(s)
- Maria Koivisto
- FHAIVE (Finnish Hub for Development and Validation of Integrated Approaches), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Milad Mosallaei
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tarja Toimela
- FHAIVE (Finnish Hub for Development and Validation of Integrated Approaches), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sampo Tuukkanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tuula Heinonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
26
|
Arslan U, Moruzzi A, Nowacka J, Mummery CL, Eckardt D, Loskill P, Orlova VV. Microphysiological stem cell models of the human heart. Mater Today Bio 2022; 14:100259. [PMID: 35514437 PMCID: PMC9062349 DOI: 10.1016/j.mtbio.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Models of heart disease and drug responses are increasingly based on human pluripotent stem cells (hPSCs) since their ability to capture human heart (dys-)function is often better than animal models. Simple monolayer cultures of hPSC-derived cardiomyocytes, however, have shortcomings. Some of these can be overcome using more complex, multi cell-type models in 3D. Here we review modalities that address this, describe efforts to tailor readouts and sensors for monitoring tissue- and cell physiology (exogenously and in situ) and discuss perspectives for implementation in industry and academia.
Collapse
Affiliation(s)
- Ulgu Arslan
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Alessia Moruzzi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Joanna Nowacka
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- Institute for Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen, Germany
- 3R-Center for in Vitro Models and Alternatives to Animal Testing, Tübingen, Germany
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
27
|
Yang H, Stebbeds W, Francis J, Pointon A, Obrezanova O, Beattie KA, Clements P, Harvey JS, Smith GF, Bender A. Deriving waveform parameters from calcium transients in human iPSC-derived cardiomyocytes to predict cardiac activity with machine learning. Stem Cell Reports 2022; 17:556-568. [PMID: 35148844 PMCID: PMC9039838 DOI: 10.1016/j.stemcr.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes have been established to detect dynamic calcium transients by fast kinetic fluorescence assays that provide insights into specific aspects of clinical cardiac activity. However, the precise derivation and use of waveform parameters to predict cardiac activity merit deeper investigation. In this study, we derived, evaluated, and applied 38 waveform parameters in a novel Python framework, including (among others) peak frequency, peak amplitude, peak widths, and a novel parameter, shoulder-tail ratio. We then trained a random forest model to predict cardiac activity based on the 25 parameters selected by correlation analysis. The area under the curve (AUC) obtained for leave-one-compound-out cross-validation was 0.86, thereby replicating the predictions of conventional methods and outperforming fingerprint-based methods by a large margin. This work demonstrates that machine learning is able to automate the assessment of cardiovascular liability from waveform data, reducing any risk of user-to-user variability and bias. An open-source algorithm was developed to derive parameters from waveform data A machine learning model was trained to predict cardiac activity of compounds Three parameters for peak width, height, and shape were found to be most predictive The model can facilitate the assessment of cardiovascular liability
Collapse
Affiliation(s)
- Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Graham F Smith
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK; Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
28
|
Bioengineering approaches to treat the failing heart: from cell biology to 3D printing. Nat Rev Cardiol 2022; 19:83-99. [PMID: 34453134 DOI: 10.1038/s41569-021-00603-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
Successfully engineering a functional, human, myocardial pump would represent a therapeutic alternative for the millions of patients with end-stage heart disease and provide an alternative to animal-based preclinical models. Although the field of cardiac tissue engineering has made tremendous advances, major challenges remain, which, if properly resolved, might allow the clinical implementation of engineered, functional, complex 3D structures in the future. In this Review, we provide an overview of state-of-the-art studies, challenges that have not yet been overcome and perspectives on cardiac tissue engineering. We begin with the most clinically relevant cell sources used in this field and discuss the use of topological, biophysical and metabolic stimuli to obtain mature phenotypes of cardiomyocytes, particularly in relation to organized cytoskeletal and contractile intracellular structures. We then move from the cellular level to engineering planar cardiac patches and discuss the need for proper vascularization and the main strategies for obtaining it. Finally, we provide an overview of several different approaches for the engineering of volumetric organs and organ parts - from whole-heart decellularization and recellularization to advanced 3D printing technologies.
Collapse
|
29
|
Liu C, Feng X, Li G, Gokulnath P, Xiao J. Generating 3D human cardiac constructs from pluripotent stem cells. EBioMedicine 2022; 76:103813. [PMID: 35093634 PMCID: PMC8804169 DOI: 10.1016/j.ebiom.2022.103813] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cell (hPSC) technology has offered nearly infinite opportunities to model all kinds of human diseases in vitro. Cardiomyocytes derived from hPSCs have proved to be efficient tools for cardiac disease modeling, drug screening and pathological mechanism studies. In this review, we discuss the advantages and limitations of 2D hPSC-cardiomyocyte (hPSC-CM) system, and introduce the recent development of three-dimensional (3D) culture platforms derived from hPSCs. Although the development of bioengineering technologies has greatly improved 3D platform construction, there are certainly challenges and room for development for further in-depth research.
Collapse
Affiliation(s)
- Chang Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xing Feng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Priyanka Gokulnath
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China; Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
30
|
Lee SJ, Kim HA, Kim SJ, Lee HA. Improving Generation of Cardiac Organoids from Human Pluripotent Stem Cells Using the Aurora Kinase Inhibitor ZM447439. Biomedicines 2021; 9:biomedicines9121952. [PMID: 34944767 PMCID: PMC8698385 DOI: 10.3390/biomedicines9121952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 01/21/2023] Open
Abstract
Drug-induced cardiotoxicity reduces the success rates of drug development. Thus, the limitations of current evaluation methods must be addressed. Human cardiac organoids (hCOs) derived from induced pluripotent stem cells (hiPSCs) are useful as an advanced drug-testing model; they demonstrate similar electrophysiological functionality and drug reactivity as the heart. How-ever, similar to other organoid models, they have immature characteristics compared to adult hearts, and exhibit batch-to-batch variation. As the cell cycle is important for the mesodermal differentiation of stem cells, we examined the effect of ZM447439, an aurora kinase inhibitor that regulates the cell cycle, on cardiogenic differentiation. We determined the optimal concentration and timing of ZM447439 for the differentiation of hCOs from hiPSCs and developed a novel protocol for efficiently and reproducibly generating beating hCOs with improved electrophysiological functionality, contractility, and yield. We validated their maturity through electro-physiological- and image-based functional assays and gene profiling with next-generation sequencing, and then applied these cells to multi-electrode array platforms to monitor the cardio-toxicity of drugs related to cardiac arrhythmia; the results confirmed the drug reactivity of hCOs. These findings may enable determination of the regulatory mechanism of cell cycles underlying the generation of iPSC-derived hCOs, providing a valuable drug testing platform.
Collapse
Affiliation(s)
- Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyeon-A Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
| | - Sung-Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea
- Correspondence: (S.-J.K.); (H.-A.L.); Tel.: +82-2-740-8230 (S.-J.K.); +82-42-610-8093 (H.-A.L.)
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon 34114, Korea; (S.-J.L.); (H.-A.K.)
- Correspondence: (S.-J.K.); (H.-A.L.); Tel.: +82-2-740-8230 (S.-J.K.); +82-42-610-8093 (H.-A.L.)
| |
Collapse
|
31
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
32
|
Liao Y, Zhu L, Wang Y. Maturation of Stem Cell-Derived Cardiomyocytes: Foe in Translation Medicine. Int J Stem Cells 2021; 14:366-385. [PMID: 34711701 PMCID: PMC8611306 DOI: 10.15283/ijsc21077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/16/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
With the in-depth study of heart development, many human cardiomyocytes (CMs) have been generated in a laboratory environment. CMs derived from pluripotent stem cells (PSCs) have been widely used for a series of applications such as laboratory studies, drug toxicology screening, cardiac disease models, and as an unlimited resource for cell-based cardiac regeneration therapy. However, the low maturity of the induced CMs significantly impedes their applicability. Scientists have been committed to improving the maturation of CMs to achieve the purpose of heart regeneration in the past decades. In this review, we take CMs maturation as the main object of discussion, describe the characteristics of CMs maturation, summarize the key regulatory mechanism of regulating maturation and address the approaches to promote CMs maturation. The maturation of CM is gradually improving due to the incorporation of advanced technologies and is expected to continue.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
33
|
Tadano K, Miyagawa S, Takeda M, Tsukamoto Y, Kazusa K, Takamatsu K, Akashi M, Sawa Y. Cardiotoxicity assessment using 3D vascularized cardiac tissue consisting of human iPSC-derived cardiomyocytes and fibroblasts. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:338-349. [PMID: 34514026 PMCID: PMC8408525 DOI: 10.1016/j.omtm.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/14/2021] [Indexed: 11/17/2022]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are used for cardiac safety assessment but have limitations for the evaluation of drug-induced contractility. Three-dimensional (3D) cardiac tissues are similar to native tissue and valuable for the assessment of contractility. However, a longer time and specialized equipment are required to generate 3D tissues. We previously developed a simple method to generate 3D tissue in a short period by coating the cell surfaces with extracellular matrix proteins. We hypothesized that this 3D cardiac tissue could be used for simultaneous evaluation of drug-induced repolarization and contractility. In the present work, we examined the effects of several compounds with different mechanisms of action by cell motion imaging. Consequently, human ether-a-go-go-related gene (HERG) channel blockers with high arrhythmogenic risk caused prolongation of contraction-relaxation duration and arrhythmia-like waveforms. Positive inotropic drugs, which increase intracellular Ca2+ levels or myocardial Ca2+ sensitivity, caused an increase in maximum contraction speed (MCS) or average deformation distance (ADD) (ouabain, 138% for MCS at 300 nM; pimobendane, 132% for ADD at 3 μM). For negative inotropic drugs, verapamil reduced both MCS and ADD (61% at 100 nM). Thus, this 3D cardiac tissue detected the expected effects of various cardiovascular drugs, suggesting its usefulness for cardiotoxicity evaluation.
Collapse
Affiliation(s)
- Kiyoshi Tadano
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
- Corresponding author: Kiyoshi Tadano, Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan.
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshinari Tsukamoto
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsuyuki Kazusa
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Kazuhiko Takamatsu
- Drug Safety Research Labs, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
34
|
Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format. Stem Cell Reports 2021; 15:983-998. [PMID: 33053362 PMCID: PMC7561618 DOI: 10.1016/j.stemcr.2020.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are commercially available, and cardiac differentiation established routine. Systematic evaluation of several control hiPSC-CM is lacking. We investigated 10 different control hiPSC-CM lines and analyzed function and suitability for drug screening. Five commercial and 5 academic hPSC-CM lines were casted in engineered heart tissue (EHT) format. Spontaneous and stimulated EHT contractions were analyzed, and 7 inotropic indicator compounds investigated on 8 cell lines. Baseline contractile force, kinetics, and rate varied widely among the different lines (e.g., relaxation time range: 118-471 ms). In contrast, the qualitative correctness of responses to BayK-8644, nifedipine, EMD-57033, isoprenaline, and digoxin in terms of force and kinetics varied only between 80% and 93%. Large baseline differences between control cell lines support the request for isogenic controls in disease modeling. Variability appears less relevant for drug screening but needs to be considered, arguing for studies with more than one line.
Collapse
|
35
|
Tavakol DN, Fleischer S, Vunjak-Novakovic G. Harnessing organs-on-a-chip to model tissue regeneration. Cell Stem Cell 2021; 28:993-1015. [PMID: 34087161 DOI: 10.1016/j.stem.2021.05.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue engineering has markedly matured since its early beginnings in the 1980s. In addition to the original goal to regenerate damaged organs, the field has started to explore modeling of human physiology "in a dish." Induced pluripotent stem cell (iPSC) technologies now enable studies of organ regeneration and disease modeling in a patient-specific context. We discuss the potential of "organ-on-a-chip" systems to study regenerative therapies with focus on three distinct organ systems: cardiac, respiratory, and hematopoietic. We propose that the combinatorial studies of human tissues at these two scales would help realize the translational potential of tissue engineering.
Collapse
Affiliation(s)
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY; Department of Medicine, Columbia University, New York, NY.
| |
Collapse
|
36
|
Pitaktong I, Lui C, Lowenthal J, Mattson G, Jung WH, Bai Y, Yeung E, Ong CS, Chen Y, Gerecht S, Hibino N. Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids. Tissue Eng Part C Methods 2021; 26:80-90. [PMID: 31830863 DOI: 10.1089/ten.tec.2019.0228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction: A key obstacle in the creation of engineered cardiac tissues of clinically relevant sizes is limited diffusion of oxygen and nutrients. Thus, there is a need for organized vascularization within a three-dimensional (3D) tissue environment. Human induced pluripotent stem cell (hiPSC)-derived early vascular cells (EVCs) have shown to improve organization of vascular networks within hydrogels. We hypothesize that introduction of EVCs into 3D microtissue spheroids will lead to increased microvascular formation and improve spheroid formation. Methods: HiPSC-derived cardiomyocytes (CMs) were cocultured with human adult ventricular cardiac fibroblasts (FB) and either human umbilical vein endothelial cells (HUVECs) or hiPSC-derived EVCs for 72 h to form mixed cell spheroids. Three different groups of cell ratios were tested: Group 1 (control) consisted of CM:FB:HUVEC 70:15:15, Group 2 consisted of CM:FB:EVC 70:15:15, and Group 3 consisted of CM:FB:EVC 40:15:45. Vascularization, cell distribution, and cardiac function were investigated. Results: Improved microvasculature was found in EVC spheroids with new morphologies of endothelial organization not found in Group 1 spheroids. CMs were found in a core-shell type distribution in Group 1 spheroids, but more uniformly distributed in EVC spheroids. Contraction rate increased into Group 2 spheroids compared to Group 1 spheroids. Conclusion: The triculture of CM, FB, and EVC within a multicellular cardiac spheroid promotes microvascular formation and cardiac spheroid contraction.
Collapse
Affiliation(s)
- Isaree Pitaktong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Cecillia Lui
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Justin Lowenthal
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Gunnar Mattson
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Yang Bai
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Enoch Yeung
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Chin Siang Ong
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Narutoshi Hibino
- Department of Cardiac Surgery, Division of Cardiac Surgery, Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
37
|
Nguyen J, Lin YY, Gerecht S. The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell 2021; 28:1188-1204. [PMID: 34081899 DOI: 10.1016/j.stem.2021.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) sense and respond to fluid flow and regulate immune cell trafficking in all organs. Despite sharing the same mesodermal origin, ECs exhibit heterogeneous tissue-specific characteristics. Human pluripotent stem cells (hPSCs) can potentially be harnessed to capture this heterogeneity and further elucidate endothelium behavior to satisfy the need for increased accuracy and breadth of disease models and therapeutics. Here, we review current strategies for hPSC differentiation to blood vascular ECs and their maturation into continuous, fenestrated, and sinusoidal tissues. We then discuss the contribution of hPSC-derived ECs to recent advances in organoid development and organ-on-chip approaches.
Collapse
Affiliation(s)
- Jane Nguyen
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ying-Yu Lin
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, The Institute for NanoBioTechnology, Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Shankaran A, Prasad K, Chaudhari S, Brand A, Satyamoorthy K. Advances in development and application of human organoids. 3 Biotech 2021; 11:257. [PMID: 33977021 PMCID: PMC8105691 DOI: 10.1007/s13205-021-02815-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Innumerable studies associated with cellular differentiation, tissue response and disease modeling have been conducted in two-dimensional (2D) culture systems or animal models. This has been invaluable in deciphering the normal and disease states in cell biology; the key shortcomings of it being suitability for translational or clinical correlations. The past decade has seen several major advances in organoid culture technologies and this has enhanced our understanding of mimicking organ reconstruction. The term organoid has generally been used to describe cellular aggregates derived from primary tissues or stem cells that can self-organize into organotypic structures. Organoids mimic the cellular microenvironment of tissues better than 2D cell culture systems and represent the tissue physiology. Human organoids of brain, thyroid, gastrointestinal, lung, cardiac, liver, pancreatic and kidney have been established from various diseases, healthy tissues and from pluripotent stem cells (PSCs). Advances in patient-derived organoid culture further provides a unique perspective from which treatment modalities can be personalized. In this review article, we have discussed the current strategies for establishing various types of organoids of ectodermal, endodermal and mesodermal origin. We have also discussed their applications in modeling human health and diseases (such as cancer, genetic, neurodegenerative and infectious diseases), applications in regenerative medicine and evolutionary studies.
Collapse
Affiliation(s)
- Abhijith Shankaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
- Department International Health, Faculty of Medicine, Health and Life Sciences, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, The Netherlands
- United Nations University- Maastricht Economic and Social Research Institute On Innovation and Technology (UNU-MERIT), Boschstraat 24, 6211 AX Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| |
Collapse
|
39
|
A predictive in vitro risk assessment platform for pro-arrhythmic toxicity using human 3D cardiac microtissues. Sci Rep 2021; 11:10228. [PMID: 33986332 PMCID: PMC8119415 DOI: 10.1038/s41598-021-89478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiotoxicity of pharmaceutical drugs, industrial chemicals, and environmental toxicants can be severe, even life threatening, which necessitates a thorough evaluation of the human response to chemical compounds. Predicting risks for arrhythmia and sudden cardiac death accurately is critical for defining safety profiles. Currently available approaches have limitations including a focus on single select ion channels, the use of non-human species in vitro and in vivo, and limited direct physiological translation. We have advanced the robustness and reproducibility of in vitro platforms for assessing pro-arrhythmic cardiotoxicity using human induced pluripotent stem cell-derived cardiomyocytes and human cardiac fibroblasts in 3-dimensional microtissues. Using automated algorithms and statistical analyses of eight comprehensive evaluation metrics of cardiac action potentials, we demonstrate that tissue-engineered human cardiac microtissues respond appropriately to physiological stimuli and effectively differentiate between high-risk and low-risk compounds exhibiting blockade of the hERG channel (E4031 and ranolazine, respectively). Further, we show that the environmental endocrine disrupting chemical bisphenol-A (BPA) causes acute and sensitive disruption of human action potentials in the nanomolar range. Thus, this novel human 3D in vitro pro-arrhythmic risk assessment platform addresses critical needs in cardiotoxicity testing for both environmental and pharmaceutical compounds and can be leveraged to establish safe human exposure levels.
Collapse
|
40
|
Campostrini G, Meraviglia V, Giacomelli E, van Helden RW, Yiangou L, Davis RP, Bellin M, Orlova VV, Mummery CL. Generation, functional analysis and applications of isogenic three-dimensional self-aggregating cardiac microtissues from human pluripotent stem cells. Nat Protoc 2021; 16:2213-2256. [PMID: 33772245 PMCID: PMC7611409 DOI: 10.1038/s41596-021-00497-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/11/2021] [Indexed: 02/01/2023]
Abstract
Tissue-like structures from human pluripotent stem cells containing multiple cell types are transforming our ability to model and understand human development and disease. Here we describe a protocol to generate cardiomyocytes (CMs), cardiac fibroblasts (CFs) and cardiac endothelial cells (ECs), the three principal cell types in the heart, from human induced pluripotent stem cells (hiPSCs) and combine them in three-dimensional (3D) cardiac microtissues (MTs). We include details of how to differentiate, isolate, cryopreserve and thaw the component cells and how to construct and analyze the MTs. The protocol supports hiPSC-CM maturation and allows replacement of one or more of the three heart cell types in the MTs with isogenic variants bearing disease mutations. Differentiation of each cell type takes ~30 d, while MT formation and maturation requires another 20 d. No specialist equipment is needed and the method is inexpensive, requiring just 5,000 cells per MT.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Elisa Giacomelli
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ruben W.J. van Helden
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Richard P. Davis
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Department of Biology, University of Padua, 35121 Padua, Italy,Veneto Institute of Molecular Medicine, 35129 Padua, Italy,Correspondence to , or
| | - Valeria V. Orlova
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Correspondence to , or
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands,Department of Applied Stem Cell Technologies, University of Twente, The Netherlands,Correspondence to , or
| |
Collapse
|
41
|
Gracioso Martins AM, Wilkins MD, Ligler FS, Daniele MA, Freytes DO. Microphysiological System for High-Throughput Computer Vision Measurement of Microtissue Contraction. ACS Sens 2021; 6:985-994. [PMID: 33656335 DOI: 10.1021/acssensors.0c02172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ability to measure microtissue contraction in vitro can provide important information when modeling cardiac, cardiovascular, respiratory, digestive, dermal, and skeletal tissues. However, measuring tissue contraction in vitro often requires the use of high number of cells per tissue construct along with time-consuming microscopy and image analysis. Here, we present an inexpensive, versatile, high-throughput platform to measure microtissue contraction in a 96-well plate configuration using one-step batch imaging. More specifically, optical fiber microprobes are embedded in microtissues, and contraction is measured as a function of the deflection of optical signals emitted from the end of the fibers. Signals can be measured from all the filled wells on the plate simultaneously using a digital camera. An algorithm uses pixel-based image analysis and computer vision techniques for the accurate multiwell quantification of positional changes in the optical microprobes caused by the contraction of the microtissues. Microtissue constructs containing 20,000-100,000 human ventricular cardiac fibroblasts (NHCF-V) in 6 mg/mL collagen type I showed contractile displacements ranging from 20-200 μm. This highly sensitive and versatile platform can be used for the high-throughput screening of microtissues in disease modeling, drug screening for therapeutics, physiology research, and safety pharmacology.
Collapse
Affiliation(s)
- Ana Maria Gracioso Martins
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael D. Wilkins
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Frances S. Ligler
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Michael A. Daniele
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh 27695, North Carolina, United States
| | - Donald O. Freytes
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill/North Carolina State University, Raleigh 27695, North Carolina, United States
- Comparative Medicine Institute, North Carolina State University, Raleigh 27695, North Carolina, United States
| |
Collapse
|
42
|
Campostrini G, Windt LM, van Meer BJ, Bellin M, Mummery CL. Cardiac Tissues From Stem Cells: New Routes to Maturation and Cardiac Regeneration. Circ Res 2021; 128:775-801. [PMID: 33734815 PMCID: PMC8410091 DOI: 10.1161/circresaha.121.318183] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability of human pluripotent stem cells to form all cells of the body has provided many opportunities to study disease and produce cells that can be used for therapy in regenerative medicine. Even though beating cardiomyocytes were among the first cell types to be differentiated from human pluripotent stem cell, cardiac applications have advanced more slowly than those, for example, for the brain, eye, and pancreas. This is, in part, because simple 2-dimensional human pluripotent stem cell cardiomyocyte cultures appear to need crucial functional cues normally present in the 3-dimensional heart structure. Recent tissue engineering approaches combined with new insights into the dialogue between noncardiomyocytes and cardiomyocytes have addressed and provided solutions to issues such as cardiomyocyte immaturity and inability to recapitulate adult heart values for features like contraction force, electrophysiology, or metabolism. Three-dimensional bioengineered heart tissues are thus poised to contribute significantly to disease modeling, drug discovery, and safety pharmacology, as well as provide new modalities for heart repair. Here, we review the current status of 3-dimensional engineered heart tissues.
Collapse
Affiliation(s)
- Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
| | - Laura M. Windt
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
| | - Berend J. van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
- MESA+ Institute (B.J.v.M.), University of Twente, Enschede, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
- Department of Biology, University of Padua, Italy (M.B.)
- Veneto Institute of Molecular Medicine, Padua, Padua, Italy (M.B.)
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands (G.C., L.M.W., B.J.v.M., M.B., C.L.M.)
- Department of Applied Stem Cell Technologies (C.L.M.), University of Twente, Enschede, the Netherlands
| |
Collapse
|
43
|
James EC, Tomaskovic-Crook E, Crook JM. Bioengineering Clinically Relevant Cardiomyocytes and Cardiac Tissues from Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms22063005. [PMID: 33809429 PMCID: PMC8001925 DOI: 10.3390/ijms22063005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
The regenerative capacity of cardiomyocytes is insufficient to functionally recover damaged tissue, and as such, ischaemic heart disease forms the largest proportion of cardiovascular associated deaths. Human-induced pluripotent stem cells (hiPSCs) have enormous potential for developing patient specific cardiomyocytes for modelling heart disease, patient-based cardiac toxicity testing and potentially replacement therapy. However, traditional protocols for hiPSC-derived cardiomyocytes yield mixed populations of atrial, ventricular and nodal-like cells with immature cardiac properties. New insights gleaned from embryonic heart development have progressed the precise production of subtype-specific hiPSC-derived cardiomyocytes; however, their physiological immaturity severely limits their utility as model systems and their use for drug screening and cell therapy. The long-entrenched challenges in this field are being addressed by innovative bioengingeering technologies that incorporate biophysical, biochemical and more recently biomimetic electrical cues, with the latter having the potential to be used to both direct hiPSC differentiation and augment maturation and the function of derived cardiomyocytes and cardiac tissues by mimicking endogenous electric fields.
Collapse
Affiliation(s)
- Emma Claire James
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
| | - Eva Tomaskovic-Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| | - Jeremy Micah Crook
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, University of Wollongong, Wollongong 2500, Australia;
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2500, Australia
- Department of Surgery, St Vincent’s Hospital, The University of Melbourne, Fitzroy 3065, Australia
- Correspondence: (E.T.-C.); (J.M.C.)
| |
Collapse
|
44
|
Zahmatkesh E, Khoshdel-Rad N, Mirzaei H, Shpichka A, Timashev P, Mahmoudi T, Vosough M. Evolution of organoid technology: Lessons learnt in Co-Culture systems from developmental biology. Dev Biol 2021; 475:37-53. [PMID: 33684433 DOI: 10.1016/j.ydbio.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
In recent years, the development of 3D organoids has opened new avenues of investigation into development, physiology, and regenerative medicine. Organoid formation and the process of organogenesis share common developmental pathways; thus, our knowledge of developmental biology can help model the complexity of different organs to refine organoids into a more sophisticated platform. The developmental process is strongly dependent on complex networks and communication of cell-cell and cell-matrix interactions among different cell populations and their microenvironment, during embryogenesis. These interactions affect cell behaviors such as proliferation, survival, migration, and differentiation. Co-culture systems within the organoid technology were recently developed and provided the highly physiologically relevant systems. Supportive cells including various types of endothelial and stromal cells provide the proper microenvironment, facilitate organoid assembly, and improve vascularization and maturation of organoids. This review discusses the role of the co-culture systems in organoid generation, with a focus on how knowledge of developmental biology has directed and continues to shape the development of more evolved 3D co-culture system-derived organoids.
Collapse
Affiliation(s)
- Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia; Institute for Regenerative Medicine, Sechenov University, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow, Russia; Department of Polymers and Composites, N.N.Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Regenrative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
45
|
Abecasis B, Canhão PGM, Almeida HV, Calmeiro T, Fortunato E, Gomes-Alves P, Serra M, Alves PM. Toward a Microencapsulated 3D hiPSC-Derived in vitro Cardiac Microtissue for Recapitulation of Human Heart Microenvironment Features. Front Bioeng Biotechnol 2020; 8:580744. [PMID: 33224931 PMCID: PMC7674657 DOI: 10.3389/fbioe.2020.580744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The combination of cardiomyocytes (CM) and non-myocyte cardiac populations, such as endothelial cells (EC), and mesenchymal cells (MC), has been shown to be critical for recapitulation of the human heart tissue for in vitro cell-based modeling. However, most of the current engineered cardiac microtissues still rely on either (i) murine/human limited primary cell sources, (ii) animal-derived and undefined hydrogels/matrices with batch-to-batch variability, or (iii) culture systems with low compliance with pharmacological high-throughput screenings. In this work, we explored a culture platform based on alginate microencapsulation and suspension culture systems to develop three-dimensional (3D) human cardiac microtissues, which entails the co-culture of human induced pluripotent stem cell (hiPSC) cardiac derivatives including aggregates of hiPSC–CM and single cells of hiPSC–derived EC and MC (hiPSC–EC+MC). We demonstrate that the 3D human cardiac microtissues can be cultured for 15 days in dynamic conditions while maintaining the viability and phenotype of all cell populations. Noteworthy, we show that hiPSC–EC+MC survival was promoted by the co-culture with hiPSC–CM as compared to the control single-cell culture. Additionally, the presence of the hiPSC–EC+MC induced changes in the physical properties of the biomaterial, as observed by an increase in the elastic modulus of the cardiac microtissue when compared to the hiPSC–CM control culture. Detailed characterization of the 3D cardiac microtissues revealed that the crosstalk between hiPSC–CM, hiPSC–EC+MC, and extracellular matrix induced the maturation of hiPSC–CM. The cardiac microtissues displayed functional calcium signaling and respond to known cardiotoxins in a dose-dependent manner. This study is a step forward on the development of novel 3D cardiac microtissues that recapitulate features of the human cardiac microenvironment and is compliant with the larger numbers needed in preclinical research for toxicity assessment and disease modeling.
Collapse
Affiliation(s)
- Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Pedro G M Canhão
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Henrique V Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tomás Calmeiro
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
46
|
Jarrell DK, Vanderslice EJ, VeDepo MC, Jacot JG. Engineering Myocardium for Heart Regeneration-Advancements, Considerations, and Future Directions. Front Cardiovasc Med 2020; 7:586261. [PMID: 33195474 PMCID: PMC7588355 DOI: 10.3389/fcvm.2020.586261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the leading cause of death in the United States among both adults and infants. In adults, 5-year survival after a heart attack is <60%, and congenital heart defects are the top killer of liveborn infants. Problematically, the regenerative capacity of the heart is extremely limited, even in newborns. Furthermore, suitable donor hearts for transplant cannot meet the demand and require recipients to use immunosuppressants for life. Tissue engineered myocardium has the potential to replace dead or fibrotic heart tissue in adults and could also be used to permanently repair congenital heart defects in infants. In addition, engineering functional myocardium could facilitate the development of a whole bioartificial heart. Here, we review and compare in vitro and in situ myocardial tissue engineering strategies. In the context of this comparison, we consider three challenges that must be addressed in the engineering of myocardial tissue: recapitulation of myocardial architecture, vascularization of the tissue, and modulation of the immune system. In addition to reviewing and analyzing current progress, we recommend specific strategies for the generation of tissue engineered myocardial patches for heart regeneration and repair.
Collapse
Affiliation(s)
- Dillon K Jarrell
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ethan J Vanderslice
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mitchell C VeDepo
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey G Jacot
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
47
|
Patino-Guerrero A, Veldhuizen J, Zhu W, Migrino RQ, Nikkhah M. Three-dimensional scaffold-free microtissues engineered for cardiac repair. J Mater Chem B 2020; 8:7571-7590. [PMID: 32724973 PMCID: PMC8314954 DOI: 10.1039/d0tb01528h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases, including myocardial infarction (MI), persist as the leading cause of mortality and morbidity worldwide. The limited regenerative capacity of the myocardium presents significant challenges specifically for the treatment of MI and, subsequently, heart failure (HF). Traditional therapeutic approaches mainly rely on limiting the induced damage or the stress on the remaining viable myocardium through pharmacological regulation of remodeling mechanisms, rather than replacement or regeneration of the injured tissue. The emerging alternative regenerative medicine-based approaches have focused on restoring the damaged myocardial tissue with newly engineered functional and bioinspired tissue units. Cardiac regenerative medicine approaches can be broadly categorized into three groups: cell-based therapies, scaffold-based cardiac tissue engineering, and scaffold-free cardiac tissue engineering. Despite significant advancements, however, the clinical translation of these approaches has been critically hindered by two key obstacles for successful structural and functional replacement of the damaged myocardium, namely: poor engraftment of engineered tissue into the damaged cardiac muscle and weak electromechanical coupling of transplanted cells with the native tissue. To that end, the integration of micro- and nanoscale technologies along with recent advancements in stem cell technologies have opened new avenues for engineering of structurally mature and highly functional scaffold-based (SB-CMTs) and scaffold-free cardiac microtissues (SF-CMTs) with enhanced cellular organization and electromechanical coupling for the treatment of MI and HF. In this review article, we will present the state-of-the-art approaches and recent advancements in the engineering of SF-CMTs for myocardial repair.
Collapse
|
48
|
Tsukamoto Y, Akagi T, Akashi M. Supersensitive Layer-by-Layer 3D Cardiac Tissues Fabricated on a Collagen Culture Vessel Using Human-Induced Pluripotent Stem Cells. Tissue Eng Part C Methods 2020; 26:493-502. [PMID: 32873187 DOI: 10.1089/ten.tec.2020.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The fabrication of artificial cardiac tissue is an active area of research due to the shortage of donors for heart transplantation and for drug development. In our previous study, we fabricated vascularized three-dimensional (3D) cardiac tissue by layer-by-layer (LbL) and cell accumulation technique. However, it was not able to develop sufficient function because it was cultured on a hard plastic substrate. Experiment: Herein, we report the fabrication of high-performance 3D cardiac tissue by LbL and cell accumulation technique using a collagen culture vessel. Results: By using a collagen culture vessel, 3D cardiac tissue could be fabricated on a collagen culture vessel and this tissue showed high functionality due to improved interaction with the vessel. In the case of the plastic culture insert, 3D cardiac tissue was found to be peeled off, but this did not occur on the collagen culture vessel. In addition, the 3D cardiac tissue fabricated on a collagen culture vessel showed contraction that was 20 times larger than the tissue fabricated on a plastic culture insert. As a result of evaluation of cardiotoxicity using E-4031, the sensitivity of arrhythmia detection was increased by using collagen culture vessel. Conclusions: These results are expected to contribute to transplantation and drug discovery research as a 3D cardiac tissue model with a function similar to that of the living heart.
Collapse
Affiliation(s)
- Yoshinari Tsukamoto
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Takami Akagi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
49
|
Branco MA, Cabral JM, Diogo MM. From Human Pluripotent Stem Cells to 3D Cardiac Microtissues: Progress, Applications and Challenges. Bioengineering (Basel) 2020; 7:E92. [PMID: 32785039 PMCID: PMC7552661 DOI: 10.3390/bioengineering7030092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.
Collapse
Affiliation(s)
| | | | - Maria Margarida Diogo
- iBB-Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (M.A.B.); (J.M.S.C.)
| |
Collapse
|
50
|
Modeling Cardiovascular Diseases with hiPSC-Derived Cardiomyocytes in 2D and 3D Cultures. Int J Mol Sci 2020; 21:ijms21093404. [PMID: 32403456 PMCID: PMC7246991 DOI: 10.3390/ijms21093404] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
In the last decade, the generation of cardiac disease models based on human-induced pluripotent stem cells (hiPSCs) has become of common use, providing new opportunities to overcome the lack of appropriate cardiac models. Although much progress has been made toward the generation of hiPSC-derived cardiomyocytes (hiPS-CMs), several lines of evidence indicate that two-dimensional (2D) cell culturing presents significant limitations, including hiPS-CMs immaturity and the absence of interaction between different cell types and the extracellular matrix. More recently, new advances in bioengineering and co-culture systems have allowed the generation of three-dimensional (3D) constructs based on hiPSC-derived cells. Within these systems, biochemical and physical stimuli influence the maturation of hiPS-CMs, which can show structural and functional properties more similar to those present in adult cardiomyocytes. In this review, we describe the latest advances in 2D- and 3D-hiPSC technology for cardiac disease mechanisms investigation, drug development, and therapeutic studies.
Collapse
|