1
|
Zhang J, Du W, Zhang Z, Li T, Li X, Xi S. Research progress of microvascular development in bronchopulmonary dysplasia. Pediatr Investig 2024; 8:299-312. [PMID: 39720284 PMCID: PMC11664543 DOI: 10.1002/ped4.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/06/2024] [Indexed: 12/26/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that arises during the neonatal period, and its underlying mechanisms are still not fully understood. The disorder of microvascular development plays a significant role in the development of BPD. This article presents a comprehensive review of the advancements made in understanding the mechanisms and treatment approaches related to microvascular development in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
| | - Weiwei Du
- Department of PediatricsThe Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxiChina
| | - Zongli Zhang
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| | - Tao Li
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
| | - Xingchao Li
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| | - Shibing Xi
- Department of PediatricsTaihe HospitalHubei University of MedicineShiyanChina
- Institute of Pediatric DiseaseTaihe HospitalHubei University of MedicineShiyanChina
| |
Collapse
|
2
|
Yang X, Wang X, Dong W. Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants. J Matern Fetal Neonatal Med 2024; 37:2349179. [PMID: 38816997 DOI: 10.1080/14767058.2024.2349179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To investigate whether aryl hydrocarbon receptor (AhR) is involved in hyperoxia-mediated oxidative stress by observing the relationship between AhR and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) after oxygen exposure in premature infants. METHODS After 48 h of oxygen inhalation at different concentrations, discarded peripheral blood was collected to separate PBMCs and plasma. ROS were labeled with MitoSOXTM Red and detected by fluorescence microscopy in PBMCs. The level of MDA in plasma was detected by thiobarbituric acid colorimetry, the level of MCP-1 in plasma was detected by enzyme-linked immunosorbent assay (ELISA), the localization of AhR was detected by immunofluorescence, and the level of AhR expression in PBMCs was detected by Western blotting. RESULTS As the volume fraction of inspired oxygen increased, compared with those in the air control group, the levels of ROS, MDA in plasma, and MCP-1 in plasma increased gradually in the low concentration oxygen group, medium concentration oxygen group and high concentration oxygen group. The cytoplasm-nuclear translocation rate of AhR gradually increased, and the expression level of AhR gradually decreased. The levels of ROS in PBMCs, MDA in the plasma and MCP-1 in the plasma of premature infants were positively correlated with the cytoplasm-nuclear translocation rate of AhR but negatively correlated with the level of AhR expression. CONCLUSION Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.
Collapse
Affiliation(s)
- Xi Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xia Wang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
3
|
From Nucleus to Organs: Insights of Aryl Hydrocarbon Receptor Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232314919. [PMID: 36499247 PMCID: PMC9738205 DOI: 10.3390/ijms232314919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.
Collapse
|
4
|
Wang C, Zhang S, Zhu L, Duan J, Huang B, Zhang X. Integrated MicroRNA-mRNA Analyses of Distinct Expression Profiles in Hyperoxia-Induced Bronchopulmonary Dysplasia in Neonatal Mice. Am J Perinatol 2022; 39:1702-1710. [PMID: 33757141 DOI: 10.1055/s-0041-1726124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Bronchopulmonary dysplasia (BPD) is a common chronic lung disease of preterm neonates; the underlying pathogenesis is not fully understood. Recent studies suggested microRNAs (miRNAs) may be involved in BPD. STUDY DESIGN miRNA and mRNA microarrays were performed to analyze the expression profiles of miRNA and mRNA in BPD and control lung tissues after oxygen and air exposure on day 21. Bioinformatics methods, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were performed to predict the potential functions of differentially expressed genes. Then, miRNA-mRNA regulatory network was constructed by protein-protein interaction (PPI) data and TarBase data. RESULTS Our results showed that a total of 192 differentially expressed miRNAs (74 downregulated and 118 upregulated) and 1,225 differentially expressed mRNAs (479 downregulated and 746 upregulated) were identified between BPD mice and normoxia-control mice. GO and KEGG analysis showed that for downregulated genes, the top significant enriched GO terms and KEGG pathways were both mainly related to immune and inflammation processes; for upregulated genes, the top significant enriched GO terms and KEGG pathways were both mainly related to extracellular matrix (ECM) remodeling. PPI network and miRNA-mRNA regulatory network construction revealed that the key genes and pathways associated with inflammation and immune regulation. CONCLUSION Our findings revealed the integrated miRNA-mRNA data of distinct expression profiles in hyperoxia-induced BPD mice, and may provide some clues of the potential biomarkers for BPD, and provide novel insights into the development of new promising biomarkers for the treatment of BPD. KEY POINTS · Integrated advanced bioinformatics methods may offer a better way to understand the molecular expression profiles involved in BPD.. · ECM remodeling, inflammation, and immune regulation may be essential to BPD.. · The miRNA-mRNA regulatory network construction may contribute to develop new biomarkers for the treatment of BPD..
Collapse
Affiliation(s)
- Chengqiang Wang
- Public Health, Guilin Medical University, Lingui, Guilin, People's Republic of China
| | - Sheng Zhang
- Affiliated BaYi Children's Hospital, Seventh Medical Center of People's Liberation Army General Hospital, Dongcheng, Beijing, People's Republic of China.,Beijing Key Laboratory of Pediatric Organ Failure, Dongcheng, Beijing, People's Republic of China
| | - Lina Zhu
- Affiliated BaYi Children's Hospital, Seventh Medical Center of People's Liberation Army General Hospital, Dongcheng, Beijing, People's Republic of China
| | - Jun Duan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Shushan, Hefei, People's Republic of China
| | - Bo Huang
- Public Health, Guilin Medical University, Lingui, Guilin, People's Republic of China
| | - Xiaoying Zhang
- Public Health, Guilin Medical University, Lingui, Guilin, People's Republic of China.,Affiliated BaYi Children's Hospital, Seventh Medical Center of People's Liberation Army General Hospital, Dongcheng, Beijing, People's Republic of China
| |
Collapse
|
5
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
6
|
Guzmán-Navarro G, de León MB, Martín-Estal I, Durán RCD, Villarreal-Alvarado L, Vaquera-Vázquez A, Cuevas-Cerda T, Garza-García K, Cuervo-Pérez LE, Barbosa-Quintana Á, Pérez-Saucedo JE, Lara-Díaz VJ, Castorena-Torres F. Prenatal indole-3-carbinol administration activates aryl hydrocarbon receptor-responsive genes and attenuates lung injury in a bronchopulmonary dysplasia model. Exp Biol Med (Maywood) 2021; 246:695-706. [PMID: 33148012 PMCID: PMC7988727 DOI: 10.1177/1535370220963789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hyperoxia-hypoxia exposure is a proposed cause of alveolar developmental arrest in bronchopulmonary dysplasia in preterm infants, where mitochondrial reactive oxygen species and oxidative stress vulnerability are increased. The aryl hydrocarbon receptor (AhR) is one of the main activators of the antioxidant enzyme system that protects tissues and systems from damage. The present study aimed to determine if the activation of the AhR signaling pathway by prenatal administration of indole-3-carbinol (I3C) protects rat pups from hyperoxia-hypoxia-induced lung injury. To assess the activation of protein-encoding genes related to the AhR signaling pathway (Cyp1a1, Cyp1b1, Ugt1a6, Nqo1, and Gsta1), pup lungs were excised at 0, 24, and 72 h after birth, and mRNA expression levels were quantified by reverse transcription-quantitative polymerase chain reaction assays (RT-qPCR). An adapted Ratner's method was used in rats to evaluate radial alveolar counts (RACs) and the degree of fibrosis. The results reveal that the relative expression of AhR-related genes in rat pups of prenatally I3C-treated dams was significantly different from that of untreated dams. The RAC was significantly lower in the hyperoxia-hypoxia group (4.0 ± 1.0) than that in the unexposed control group (8.0 ± 2.0; P < 0.01). When rat pups of prenatally I3C-treated dams were exposed to hyperoxia-hypoxia, an RAC recovery was observed, and the fibrosis index was similar to that of the unexposed control group. A cytokine antibody array revealed an increase in the NF-κB signaling cascade in I3C-treated pups, suggesting that the pathway could regulate the inflammatory process under the stimulus of this compound. In conclusion, the present study demonstrates that I3C prenatal treatment activates AhR-responsive genes in pup's lungs and hence attenuates lung damage caused by hyperoxia-hypoxia exposure in newborns.
Collapse
Affiliation(s)
- Gabriela Guzmán-Navarro
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey 64720, Mexico
| | - Irene Martín-Estal
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | | | | | | - Tania Cuevas-Cerda
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Karina Garza-García
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | | | | | | - Víctor J Lara-Díaz
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | |
Collapse
|
7
|
He X, Qiu JC, Lu KY, Guo HL, Li L, Jia WW, Ni MM, Liu Y, Xu J, Chen F, Cheng R. Therapy for Apnoea of Prematurity: A Retrospective Study on Effects of Standard Dose and Genetic Variability on Clinical Response to Caffeine Citrate in Chinese Preterm Infants. Adv Ther 2021; 38:607-626. [PMID: 33180318 DOI: 10.1007/s12325-020-01544-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Apnoea of prematurity (AOP) is among the most common diagnoses in the neonatal intensive care unit. Caffeine treatment is a preferred treatment choice. However, neonatal caffeine therapy results in significant intersubject variability. This study aimed to determine the effects of plasma caffeine levels based on standard dose and genetic variability on clinical response to caffeine citrate in Chinese preterm infants. METHODS This single-center and retrospective study examined data from 112 preterm infants (< 35 weeks gestational age) between July 2017 and July 2018. Subjects were divided into apnoea-free (n = 48) and apnoeic (n = 64) groups, and their clinical outcomes were summarized. Liquid chromatography-tandem mass spectrometry was used to measure levels of caffeine and its primary metabolites. Eighty-eight single-nucleotide polymorphisms were chosen for genotyping by a MassARRAY system. RESULTS Preterm infants in the apnoea-free group were associated with a reduction in the incidence of bronchopulmonary dysplasia and a reduced requirement for patent ductus arteriosus ligation. No significant association was observed between plasma-trough-concentration-to-dose (C0/D) ratio and birth weight, gestational age, or postnatal age in either group. Polymorphisms in CYP1A2 and aryl hydrocarbon receptor (AHR) genes did not affect plasma caffeine levels. Polymorphisms in adenosine receptor genes ADORA1 (rs10920568 and rs12744240), ADORA2A (rs34923252 and rs5996696), and ADORA3 (rs10776727 and rs2298191), especially in AHR (rs4410790) and adenosine deaminase (rs521704), play critical roles in the interindividual response to caffeine therapy. CONCLUSIONS Genetic polymorphisms in caffeine's target receptors, but not the exposure levels based on the standard dosing, were associated with variable responses to caffeine therapy in preterm neonates. Future studies are needed to uncover how these genetic variants affect responses to caffeine therapy in this patient population.
Collapse
|
8
|
Toldi G, Hummler H, Pillay T. T Lymphocytes, Multi-Omic Interactions and Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:694034. [PMID: 34169050 PMCID: PMC8217456 DOI: 10.3389/fped.2021.694034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant clinical challenge in neonatal medicine. BPD is clearly a multifactorial disease with numerous antenatal and postnatal components influencing lung development. Extremely immature infants are born in the late canalicular or early saccular stage and usually receive intensive care until the early alveolar stage of lung development, resulting in varying magnitudes of impairment of alveolar septation, lung fibrosis, and abnormal vascular development. The interactions between T lymphocytes, the genome and the epigenome, the microbiome and the metabolome, as well as nutrition and therapeutic interventions such as the exposure to oxygen, volutrauma, antibiotics, corticosteroids, caffeine and omeprazole, play an important role in pathogenesis and disease progression. While our general understanding of these interactions thanks to basic research is improving, this knowledge is yet to be translated into comprehensive prevention and clinical management strategies for the benefit of preterm infants developing BPD and later during infancy and childhood suffering from the disease itself and its sequelae. In this review, we summarise existing evidence on the interplay between T lymphocytes, lung multi-omics and currently used therapeutic interventions in BPD, and highlight avenues for potential future immunology related research in the field.
Collapse
Affiliation(s)
- Gergely Toldi
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Helmut Hummler
- Department of Neonatology, University of Tuebingen, Tuebingen, Germany
| | - Thillagavathie Pillay
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Department of Neonatology, University Hospitals Leicester NHS Foundation Trust, Leicester, United Kingdom.,College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
9
|
Guerrina N, Aloufi N, Shi F, Prasade K, Mehrotra C, Traboulsi H, Matthews J, Eidelman DH, Hamid Q, Baglole CJ. The aryl hydrocarbon receptor reduces LC3II expression and controls endoplasmic reticulum stress. Am J Physiol Lung Cell Mol Physiol 2020; 320:L339-L355. [PMID: 33236922 DOI: 10.1152/ajplung.00122.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose physiological function is poorly understood. The AhR is highly expressed in barrier organs such as the skin, intestine, and lung. The lungs are continuously exposed to environmental pollutants such as cigarette smoke (CS) that can induce cell death mechanisms such as apoptosis, autophagy, and endoplasmic reticulum (ER) stress. CS also contains toxicants that are AhR ligands. We have previously shown that the AhR protects against apoptosis, but whether the AhR also protects against autophagy or ER stress is not known. Using cigarette smoke extract (CSE) as our in vitro surrogate of environmental tobacco exposure, we first assessed the conversion of LC3I to LC3II, a classic feature of both autophagic and ER stress-mediated cell death pathways. LC3II was elevated in CSE-exposed lung structural cells [mouse lung fibroblasts (MLFs), MLE12 and A549 cells] when AhR was absent. However, this heightened LC3II expression could not be explained by increased expression of key autophagy genes (Gabarapl1, Becn1, Map1lc3b), upregulation of upstream autophagic machinery (Atg5-12, Atg3), or impaired autophagic flux, suggesting that LC3II may be autophagy independent. This was further supported by the absence of autophagosomes in Ahr-/- lung cells. However, Ahr-/- lung cells had widespread ER dilation, elevated expression of the ER stress markers CHOP and GADD34, and an accumulation of ubiquitinated proteins. These findings collectively illustrate a novel role for the AhR in attenuating ER stress by a mechanism that may be autophagy independent.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Noof Aloufi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Fangyi Shi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Kashmira Prasade
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Caitlin Mehrotra
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Bolte C, Ustiyan V, Ren X, Dunn AW, Pradhan A, Wang G, Kolesnichenko OA, Deng Z, Zhang Y, Shi D, Greenberg JM, Jobe AH, Kalin TV, Kalinichenko VV. Nanoparticle Delivery of Proangiogenic Transcription Factors into the Neonatal Circulation Inhibits Alveolar Simplification Caused by Hyperoxia. Am J Respir Crit Care Med 2020; 202:100-111. [PMID: 32240596 PMCID: PMC7328311 DOI: 10.1164/rccm.201906-1232oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 04/02/2020] [Indexed: 01/03/2023] Open
Abstract
Rationale: Advances in neonatal critical care have greatly improved the survival of preterm infants, but the long-term complications of prematurity, including bronchopulmonary dysplasia (BPD), cause mortality and morbidity later in life. Although VEGF (vascular endothelial growth factor) improves lung structure and function in rodent BPD models, severe side effects of VEGF therapy prevent its use in patients with BPD.Objectives: To test whether nanoparticle delivery of proangiogenic transcription factor FOXM1 (forkhead box M1) or FOXF1 (forkhead box F1), both downstream targets of VEGF, can improve lung structure and function after neonatal hyperoxic injury.Methods: Newborn mice were exposed to 75% O2 for the first 7 days of life before being returned to a room air environment. On Postnatal Day 2, polyethylenimine-(5) myristic acid/polyethylene glycol-oleic acid/cholesterol nanoparticles containing nonintegrating expression plasmids with Foxm1 or Foxf1 cDNAs were injected intravenously. The effects of the nanoparticles on lung structure and function were evaluated using confocal microscopy, flow cytometry, and the flexiVent small-animal ventilator.Measurements and Main Results: The nanoparticles efficiently targeted endothelial cells and myofibroblasts in the alveolar region. Nanoparticle delivery of either FOXM1 or FOXF1 did not protect endothelial cells from apoptosis caused by hyperoxia but increased endothelial proliferation and lung angiogenesis after the injury. FOXM1 and FOXF1 improved elastin fiber organization, decreased alveolar simplification, and preserved lung function in mice reaching adulthood.Conclusions: Nanoparticle delivery of FOXM1 or FOXF1 stimulates lung angiogenesis and alveolarization during recovery from neonatal hyperoxic injury. Delivery of proangiogenic transcription factors has promise as a therapy for BPD in preterm infants.
Collapse
Affiliation(s)
- Craig Bolte
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Vladimir Ustiyan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Xiaomeng Ren
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Andrew W. Dunn
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Arun Pradhan
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Guolun Wang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Olena A. Kolesnichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Zicheng Deng
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - Yufang Zhang
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
| | - Donglu Shi
- Materials Science and Engineering Program, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio
| | - James M. Greenberg
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Alan H. Jobe
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Tanya V. Kalin
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Pulmonary Biology, and
| | - Vladimir V. Kalinichenko
- Department of Pediatrics, University of Cincinnati and Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Center for Lung Regenerative Medicine
- Division of Pulmonary Biology, and
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
| |
Collapse
|
11
|
Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clin Rev Allergy Immunol 2020; 60:200-219. [PMID: 32378146 DOI: 10.1007/s12016-020-08787-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allergic diseases are highly complex with respect to pathogenesis, inflammation, and response to treatment. Current efforts for allergic disease diagnosis have focused on clinical evidence as a binary outcome. Although outcome status based on clinical phenotypes (observable characteristics) is convenient and inexpensive to measure in large studies, it does not adequately provide insight into the complex molecular determinants of allergic disease. Individuals with similar clinical diagnoses do not necessarily have similar disease etiologies, natural histories, or responses to treatment. This heterogeneity contributes to the ineffective response to treatment leading to an annual estimated cost of $350 billion in the USA alone. There has been a recent focus to deconvolute the clinical heterogeneity of allergic diseases into specific endotypes using molecular and omics approaches. Endotypes are a means to classify patients based on the underlying pathophysiological mechanisms involving distinct functions or treatment response. The advent of high-throughput molecular omics, immunophenotyping, and bioinformatics methods including machine learning algorithms is facilitating the development of endotype-based diagnosis. As we move to the next decade, we should truly start treating clinical endotypes not clinical phenotype. This review highlights current efforts taking place to improve allergic disease endotyping via molecular omics profiling, immunophenotyping, and machine learning approaches in the context of precision diagnostics in allergic diseases. Graphical Abstract.
Collapse
|
12
|
Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol 2020; 34:101530. [PMID: 32354640 PMCID: PMC7327980 DOI: 10.1016/j.redox.2020.101530] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/31/2020] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor regulating the expression of genes, for instance encoding the monooxygenases cytochrome P450 (CYP) 1A1 and CYP1A2, which are important enzymes in metabolism of xenobiotics. The AHR is activated upon binding of polycyclic aromatic hydrocarbons (PAHs), persistent organic pollutants (POPs), and related ubiquitous environmental chemicals, to mediate their biological and toxic effects. In addition, several endogenous and natural compounds can bind to AHR, thereby modulating a variety of physiological processes. In recent years, ambient particulate matter (PM) associated with traffic related air pollution (TRAP) has been found to contain significant amounts of PAHs. PM containing PAHs are of increasing concern as a class of agonists, which can activate the AHR. Several reports show that PM and AHR-mediated induction of CYP1A1 results in excessive generation of reactive oxygen species (ROS), causing oxidative stress. Furthermore, exposure to PM and PAHs induce inflammatory responses and may lead to chronic inflammatory diseases, including asthma, cardiovascular diseases, and increased cancer risk. In this review, we summarize findings showing the critical role that the AHR plays in mediating effects of environmental pollutants and stressors, which pose a risk of impacting the environment and human health. PAHs present on ambient air pollution particles are ligands of the cellular AHR. AHR-dependent induction of CYP1, AKR, NOX and COX-2 genes can be a source of ROS generation. AHR signaling and NRF2 signaling interact to regulate the expression of antioxidant genes. Air pollution and ROS can affect inflammation, which is partially triggered by AHR and associated immune responses. Skin, lung, and the cardiovascular system are major target sites for air pollution-induced inflammation.
Collapse
Affiliation(s)
- Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; Department of Environmental Toxicology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, 95616, USA; School of Veterinary Medicine Department of Anatomy, University of California, One Shields Avenue, Davis, CA, 5616, USA
| | - Charlotte Esser
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | | |
Collapse
|
13
|
Moreira AG, Siddiqui SK, Macias R, Johnson-Pais TL, Wilson D, Gelfond JAL, Vasquez MM, Seidner SR, Mustafa SB. Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS One 2020; 15:e0229521. [PMID: 32142526 PMCID: PMC7064315 DOI: 10.1371/journal.pone.0229521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Resident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g. oxygen support and mechanical ventilation) on the biological properties of lung endogenous mesenchymal stromal cells is (L-MSCs) is poorly understood. New Zealand white preterm rabbits were randomized into the following groups: (i) sacrificed at birth (Fetal), (ii) spontaneously breathing with 50% O2 for 4 hours (SB), or (iii) mechanical ventilation with 50% O2 for 4h (MV). At time of necropsy, L-MSCs were isolated, characterized, and compared. L-MSCs isolated from the MV group had decreased differentiation capacity, ability to form stem cell colonies, and expressed less vascular endothelial growth factor mRNA. Compared to Fetal L-MSCs, 98 and 458 genes were differentially expressed in the L-MSCs derived from the SB and MV groups, respectively. Gene ontology analysis revealed these genes were involved in key regulatory processes including cell cycle, cell division, and angiogenesis. Furthermore, the L-MSCs from the SB and MV groups had smaller mitochondria, nuclear changes, and distended endoplasmic reticula. Short-term hyperoxia/mechanical ventilation after birth alters the biological properties of L-MSCs and stimulates genomic changes that may impact their reparative potential.
Collapse
Affiliation(s)
- Alvaro G. Moreira
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sartaj K. Siddiqui
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Rolando Macias
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Desiree Wilson
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathon A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Margarita M. Vasquez
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven R. Seidner
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shamimunisa B. Mustafa
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
14
|
Veith AC, Bou Aram B, Jiang W, Wang L, Zhou G, Jefcoate CR, Couroucli XI, Lingappan K, Moorthy B. Mice Lacking the Cytochrome P450 1B1 Gene Are Less Susceptible to Hyperoxic Lung Injury Than Wild Type. Toxicol Sci 2019; 165:462-474. [PMID: 29939353 DOI: 10.1093/toxsci/kfy154] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Supplemental oxygen is a life-saving intervention administered to individuals suffering from respiratory distress, including adults with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Despite the clinical benefit, supplemental oxygen can create a hyperoxic environment that increases reactive oxygen species, oxidative stress, and lung injury. We have previously shown that cytochrome P450 (CYP)1A enzymes decrease susceptibility to hyperoxia-induced lung injury. In this investigation, we determined the role of CYP1B1 in hyperoxic lung injury in vivo. Eight- to ten-week old C57BL/6 wild type (WT) and Cyp1b1-/- mice were exposed to hyperoxia (>95% O2) for 24-72 h or maintained in room air (21% O2). Lung injury was assessed by histology and lung weight to body weight (LW/BW) ratios. Extent of inflammation was determined by assessing pulmonary neutrophil infiltration and cytokine levels. Lipid peroxidation markers were quantified by gas chromatography mass spectrometry, and oxidative DNA adducts were quantified by 32P-postlabeling as markers of oxidative stress. We found that Cyp1b1-/- mice displayed attenuation of lung weight and pulmonary edema, particularly after 48-72 h of hyperoxia compared with WT controls. Further, Cyp1b1-/- mice displayed decreased levels of pulmonary oxidative DNA adducts and pulmonary isofurans after 24 h of hyperoxia. Cyp1b1-/- mice also showed increased pulmonary CYP1A1 and 1A2 and mRNA expression. In summary, our results support the hypothesis that Cyp1b1-/- mice display decreased hyperoxic lung injury than wild type counterparts and that CYP1B1 may act as a pro-oxidant during hyperoxia exposure, contributing to increases in oxidative DNA damage and accumulation of lipid hydroperoxides.
Collapse
Affiliation(s)
- Alex C Veith
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | | | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics
| | - Guodong Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
15
|
Guerrina N, Traboulsi H, Eidelman DH, Baglole CJ. The Aryl Hydrocarbon Receptor and the Maintenance of Lung Health. Int J Mol Sci 2018; 19:E3882. [PMID: 30563036 PMCID: PMC6320801 DOI: 10.3390/ijms19123882] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 01/09/2023] Open
Abstract
Much of what is known about the Aryl Hydrocarbon Receptor (AhR) centers on its ability to mediate the deleterious effects of the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin). However, the AhR is both ubiquitously-expressed and evolutionarily-conserved, suggesting that it evolved for purposes beyond strictly mediating responses to man-made environmental toxicants. There is growing evidence that the AhR is required for the maintenance of health, as it is implicated in physiological processes such as xenobiotic metabolism, organ development and immunity. Dysregulation of AhR expression and activity is also associated with a variety of disease states, particularly those at barrier organs such as the skin, gut and lungs. The lungs are particularly vulnerable to inhaled toxicants such as cigarette smoke. However, the role of the AhR in diseases such as chronic obstructive pulmonary disease (COPD)-a respiratory illness caused predominately by cigarette smoking-and lung cancer remains largely unexplored. This review will discuss the growing body of literature that provides evidence that the AhR protects the lungs against the damaging effects of cigarette smoke.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada.
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
16
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
17
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
18
|
Kim JB, Pjanic M, Nguyen T, Miller CL, Iyer D, Liu B, Wang T, Sazonova O, Carcamo-Orive I, Matic LP, Maegdefessel L, Hedin U, Quertermous T. TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate a pro-inflammatory gene expression program in coronary artery smooth muscle cells. PLoS Genet 2017; 13:e1006750. [PMID: 28481916 PMCID: PMC5439967 DOI: 10.1371/journal.pgen.1006750] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/22/2017] [Accepted: 04/07/2017] [Indexed: 01/31/2023] Open
Abstract
Both environmental factors and genetic loci have been associated with coronary artery disease (CAD), however gene-gene and gene-environment interactions that might identify molecular mechanisms of risk are not easily studied by human genetic approaches. We have previously identified the transcription factor TCF21 as the causal CAD gene at 6q23.2 and characterized its downstream transcriptional network that is enriched for CAD GWAS genes. Here we investigate the hypothesis that TCF21 interacts with a downstream target gene, the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that mediates the cellular response to environmental contaminants, including dioxin and polycyclic aromatic hydrocarbons (e.g., tobacco smoke). Perturbation of TCF21 expression in human coronary artery smooth muscle cells (HCASMC) revealed that TCF21 promotes expression of AHR, its heterodimerization partner ARNT, and cooperates with these factors to upregulate a number of inflammatory downstream disease related genes including IL1A, MMP1, and CYP1A1. TCF21 was shown to bind in AHR, ARNT and downstream target gene loci, and co-localization was noted for AHR-ARNT and TCF21 binding sites genome-wide in regions of HCASMC open chromatin. These regions of co-localization were found to be enriched for GWAS signals associated with cardio-metabolic as well as chronic inflammatory disease phenotypes. Finally, we show that similar to TCF21, AHR gene expression is increased in atherosclerotic lesions in mice in vivo using laser capture microdissection, and AHR protein is localized in human carotid atherosclerotic lesions where it is associated with protein kinases with a critical role in innate immune response. These data suggest that TCF21 can cooperate with AHR to activate an inflammatory gene expression program that is exacerbated by environmental stimuli, and may contribute to the overall risk for CAD.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Milos Pjanic
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Trieu Nguyen
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Clint L. Miller
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Dharini Iyer
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| | - Boxiang Liu
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Ting Wang
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Olga Sazonova
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | - Ivan Carcamo-Orive
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
| | | | - Lars Maegdefessel
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute, Solna, Sweden
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
| |
Collapse
|