1
|
Montano L, Baldini GM, Piscopo M, Liguori G, Lombardi R, Ricciardi M, Esposito G, Pinto G, Fontanarosa C, Spinelli M, Palmieri I, Sofia D, Brogna C, Carati C, Esposito M, Gallo P, Amoresano A, Motta O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. TOXICS 2025; 13:151. [PMID: 40137477 PMCID: PMC11946043 DOI: 10.3390/toxics13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (Eco Food Fertility Project), Oliveto Citra Hospital, 84124 Salerno, Italy
| | - Giorgio Maria Baldini
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Giovanna Liguori
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Daniele Sofia
- Research Department, Sense Square Srl, 84084 Salerno, Italy;
- Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Via P. Bucci, Cubo 44/a Rende, 87036 Arcavacata, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, 20091 Bresso, Italy;
| | - Cosimo Carati
- Student of Department of Medicine Surger, University Cattolica Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy;
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| |
Collapse
|
2
|
Lim J, Shioda T, Malott KF, Shioda K, Odajima J, Leon Parada KN, Nguyen J, Getze S, Lee M, Nguyen J, Reshel Blakeley S, Trinh V, Truong HA, Luderer U. Prenatal exposure to benzo[a]pyrene depletes ovarian reserve and masculinizes embryonic ovarian germ cell transcriptome transgenerationally. Sci Rep 2023; 13:8671. [PMID: 37248279 PMCID: PMC10227008 DOI: 10.1038/s41598-023-35494-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
People are widely exposed to polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP). Prior studies showed that prenatal exposure to BaP depletes germ cells in ovaries, causing earlier onset of ovarian senescence post-natally; developing testes were affected at higher doses than ovaries. Our primary objective was to determine if prenatal BaP exposure results in transgenerational effects on ovaries and testes. We orally dosed pregnant germ cell-specific EGFP-expressing mice (F0) with 0.033, 0.2, or 2 mg/kg-day BaP or vehicle from embryonic day (E) 6.5-11.5 (F1 offspring) or E6.5-15.5 (F2 and F3). Ovarian germ cells at E13.5 and follicle numbers at postnatal day 21 were significantly decreased in F3 females at all doses of BaP; testicular germ cell numbers were not affected. E13.5 germ cell RNA-sequencing revealed significantly increased expression of male-specific genes in female germ cells across generations and BaP doses. Next, we compared the ovarian effects of 2 mg/kg-day BaP dosing to wild type C57BL/6J F0 dams from E6.5-11.5 or E12.5-17.5. We observed no effects on F3 ovarian follicle numbers with either of the shorter dosing windows. Our results demonstrate that F0 BaP exposure from E6.5-15.5 decreased the number of and partially disrupted transcriptomic sexual identity of female germ cells transgenerationally.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
| | - Toshihiro Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kelli F Malott
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA
- Environmental Health Sciences Graduate Program, UCI, Irvine, CA, 92617, USA
| | - Keiko Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Junko Odajima
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, 02129, USA
| | | | - Julie Nguyen
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Melody Lee
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | | | - Vienna Trinh
- Department of Medicine, UCI, Irvine, CA, 92617, USA
| | | | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California, Irvine (UCI), Irvine, CA, 92617, USA.
- Department of Developmental and Cell Biology, UCI, Irvine, CA, 92617, USA.
- Department of Medicine, UCI, Irvine, CA, 92617, USA.
- Center for Occupational and Environmental Health, 856 Health Sciences Rd, Suite 3200, Zot 1830, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Stefansdottir A, Marečková M, Matkovic M, Allen CM, Spears N. In vitro exposure to benzo[a]pyrene damages the developing mouse ovary. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0071. [PMID: 39225137 PMCID: PMC10160542 DOI: 10.1530/raf-22-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/14/2023] [Indexed: 09/04/2024] Open
Abstract
Females are born with a finite number of oocytes, collectively termed the ovarian reserve, established within the developing fetal ovary. Consequently, maternal exposure to reproductive toxicants can have harmful effects on the future fertility of her unborn female fetus. The chemical benzo[a]pyrene (B[a]P) is a prominent component of cigarette smoke. Despite it being a known ovotoxicant, around 8% of women in Europe smoke during pregnancy. The purpose of this research was to examine the effect of B[a]P on the developing ovary, using the mouse as a model and with experiments carried out in vitro. B[a]P-exposure to the fetal ovary prior to follicle formation reduced the number of germ cells and subsequently, the number of healthy primordial follicles, by up to 76%; however, while proliferation of germ cells was not affected, the germ cells contained higher levels of DNA double-strand breaks. Exposure to B[a]P also affected the proportion of oocytes progressing through prophase I of meiosis. B[a]P exposure to neonatal mouse ovaries, after follicle formation, resulted in an 85% reduction in the number of healthy follicles, with a corresponding increase in apoptotic cell death and reduction in somatic cell proliferation. Although there was a trend towards a higher level of oxidative stress in B[a]P-exposed ovaries, this was not statistically significant; likewise, the antioxidant melatonin failed to protect against the B[a]P-induced ovarian damage. Together, the results here demonstrate that B[a]P-exposure damages the developing ovary, both before and shortly after follicle formation, an effect that could lead to a subsequent decrease in fertility.
Collapse
Affiliation(s)
| | | | | | | | - Norah Spears
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
4
|
Malott KF, Leon Parada K, Lee M, Swanson E, Luderer U. Gestational Benzo[a]pyrene Exposure Destroys F1 Ovarian Germ Cells Through Mitochondrial Apoptosis Pathway and Diminishes Surviving Oocyte Quality. Toxicol Sci 2022; 190:23-40. [PMID: 35993611 PMCID: PMC9960072 DOI: 10.1093/toxsci/kfac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Polycyclic aromatic hydrocarbons, including benzo[a]pyrene (BaP), are products of incomplete combustion. In female mouse embryos primordial germ cells proliferate before and after arriving at the gonadal ridge around embryonic (E) 10 and begin entering meiosis at E13.5. Now oocytes, they arrest in the first meiotic prophase beginning at E17.5. We previously reported dose-dependent depletion of ovarian follicles in female mice exposed to 2 or 10 mg/kg-day BaP E6.5-15.5. We hypothesized that embryonic ovaries are more sensitive to gestational BaP exposure during the mitotic developmental window, and that this exposure results in persistent oxidative stress in ovaries and oocytes of exposed F1 female offspring. We orally dosed timed-pregnant female mice with 0 or 2 mg/kg-day BaP in oil from E6.5-11.5 (mitotic window) or E12.5-17.5 (meiotic window). Cultured E13.5 ovaries were utilized to investigate the mechanism of BaP-induced germ cell death. We observed statistically significant follicle depletion and increased ovarian lipid peroxidation in F1 pubertal ovaries following BaP exposure during either prenatal window. Culture of E13.5 ovaries with BaP induced germ cell DNA damage and release of cytochrome c from the mitochondria in oocytes, confirming that BaP exposure induced apoptosis via the mitochondrial pathway. Mitochondrial membrane potential, oocyte lipid droplet (LD) volume, and mitochondrial-LD colocalization were decreased and mitochondrial superoxide levels were increased in the MII oocytes of F1 females exposed gestationally to BaP. Results demonstrate similar sensitivity to germ cell depletion and persistent oxidative stress in F1 ovaries and oocytes following gestational BaP exposure during mitotic or meiotic windows.
Collapse
Affiliation(s)
- Kelli F Malott
- Environmental Health Sciences Graduate Program, University of California, Irvine, Irvine, California 92617, USA,Department of Environmental and Occupational Health, University of California, Irvine, Irvine, California 92617, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92617, USA
| | - Melody Lee
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Edward Swanson
- Department of Medicine, University of California, Irvine, Irvine, California 92617, USA
| | - Ulrike Luderer
- To whom correspondence should be addressed at Center for Occupational and Environmental Health, 100 Theory Drive, Suite 100, Irvine, CA 92617, USA. E-mail:
| |
Collapse
|
5
|
Perono GA, Petrik JJ, Thomas PJ, Holloway AC. The effects of polycyclic aromatic compounds (PACs) on mammalian ovarian function. Curr Res Toxicol 2022; 3:100070. [PMID: 35492299 PMCID: PMC9043394 DOI: 10.1016/j.crtox.2022.100070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/09/2022] Open
Abstract
Toxicity of polycyclic aromatic compounds (PACs) is limited to a subset of PACs. Exposure to these compounds impact major processes necessary for ovarian function. PAC exposure causes follicle loss and aberrant steroid production and angiogenesis. PAC exposure may increase the risk for impaired fertility and ovarian pathologies. The study of PACs as ovarian toxicants should include additional compounds.
Polycyclic aromatic compounds (PACs) are a broad class of contaminants ubiquitously present in the environment due to natural and anthropogenic activities. With increasing industrialization and reliance on petroleum worldwide, PACs are increasingly being detected in different environmental compartments. Previous studies have shown that PACs possess endocrine disruptive properties as these compounds often interfere with hormone signaling and function. In females, the ovary is largely responsible for regulating reproductive and endocrine function and thus, serves as a primary target for PAC-mediated toxicity. Perturbations in the signaling pathways that mediate ovarian folliculogenesis, steroidogenesis and angiogenesis can lead to adverse reproductive outcomes including polycystic ovary syndrome, premature ovarian insufficiency, and infertility. To date, the impact of PACs on ovarian function has focused predominantly on polycyclic aromatic hydrocarbons like benzo(a)pyrene, 3-methylcholanthrene and 7,12-dimethylbenz[a]anthracene. However, investigation into the impact of substituted PACs including halogenated, heterocyclic, and alkylated PACs on mammalian reproduction has been largely overlooked despite the fact that these compounds are found in higher abundance in free-ranging wildlife. This review aims to discuss current literature on the effects of PACs on the ovary in mammals, with a particular focus on folliculogenesis, steroidogenesis and angiogenesis, which are key processes necessary for proper ovarian functions.
Collapse
|
6
|
Lim J, Ramesh A, Shioda T, Leon Parada K, Luderer U. Sex Differences in Embryonic Gonad Transcriptomes and Benzo[a]pyrene Metabolite Levels After Transplacental Exposure. Endocrinology 2022; 163:bqab228. [PMID: 34734245 PMCID: PMC8633617 DOI: 10.1210/endocr/bqab228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are generated during incomplete combustion of organic materials. Prior research has demonstrated that BaP is a prenatal ovarian toxicant and carcinogen. However, the metabolic pathways active in the embryo and its developing gonads and the mechanisms by which prenatal exposure to BaP predisposes to ovarian tumors later in life remain to be fully elucidated. To address these data gaps, we orally dosed pregnant female mice with BaP from embryonic day (E) 6.5 to E11.5 (0, 0.2, or 2 mg/kg/day) for metabolite measurement or E9.5 to E11.5 (0 or 3.33 mg/kg/day) for embryonic gonad RNA sequencing. Embryos were harvested at E13.5 for both experiments. The sum of BaP metabolite concentrations increased significantly with dose in the embryos and placentas, and concentrations were significantly higher in female than male embryos and in embryos than placentas. RNA sequencing revealed that enzymes involved in metabolic activation of BaP are expressed at moderate to high levels in embryonic gonads and that greater transcriptomic changes occurred in the ovaries in response to BaP than in the testes. We identified 490 differentially expressed genes (DEGs) with false discovery rate P-values < 0.05 when comparing BaP-exposed to control ovaries but no statistically significant DEGs between BaP-exposed and control testes. Genes related to monocyte/macrophage recruitment and activity, prolactin family genes, and several keratin genes were among the most upregulated genes in the BaP-exposed ovaries. Results show that developing ovaries are more sensitive than testes to prenatal BaP exposure, which may be related to higher concentrations of BaP metabolites in female embryos.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Toshi Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Rahmani Z, Karimpour Malekshah A, Zargari M, Talebpour Amiri F. Effect of prenatal exposure to Benzo[a]pyrene on ovarian toxicity and reproductive dysfunction: Protective effect of atorvastatin in the embryonic period. ENVIRONMENTAL TOXICOLOGY 2021; 36:1683-1693. [PMID: 33978294 DOI: 10.1002/tox.23164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
As an environmental contaminant, Benzo[a]pyrene (B[a]P; BaP) disrupts the antioxidant signaling and thus leads to the induction of oxidative stress and the damage of DNA in the ovary. low-dose atorvastatin (ATV) has antioxidant and anti-apoptotic properties. The present study aimed to survey the effects of prenatal exposure to BaP on ovarian toxicity and also to investigate the protective role of ATV in reducing ovarian toxicity. In this study, rats were divided into seven groups: control, ATV (10 mg/kg), oil, BaP (10 and 20 mg/kg), and ATV + BaP (10 and 20 mg/kg). BaP and ATV were administrated from gestation day 7-16 (GD7 to GD16), orally. 10 weeks after the birth, female offsprings were examined for oxidative stress markers, sex hormones, ovarian and tubular tissue structure, and the apoptosis markers. Data showed that BaP significantly reduced glutathione, increased malondialdehyde level, and disrupted the tissue structure of the ovary. Moreover, estrogen and progesterone levels significantly decreased in the offsprings rats. Also, BaP increased caspase-3 immunoreactivity. Atorvastatin treatment along with BaP in the embryonic period were able to bring the antioxidant status and sex hormones levels relatively close to normal. Besides, histological findings showed that atorvastatin was able to improve ovarian and oviduct abnormalities caused by BaP. Based on the above studies be concluded that atorvastatin in the embryonic during was able to reduce ovarian damage caused by BaP with antioxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbasali Karimpour Malekshah
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehryar Zargari
- Department of Biochemistry, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Park HJ, Lee WY, Zhang M, Hong KH, Park C, Kim JH, Song H. Evaluation of Resmethrin Toxicity to Neonatal Testes in Organ Culture. Toxicol Sci 2021; 173:53-64. [PMID: 31593228 DOI: 10.1093/toxsci/kfz212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Resmethrin is a widely used pyrethroid insecticide, which causes low toxicity in mammals. However, its toxicity in testes has not been fully investigated. Therefore, we evaluated the toxicity of resmethrin in mouse testes using an in vitro organ culture. Mouse testicular fragments (MTFs) derived from neonates were cultured in medium containing resmethrin for 30 days. Effects on spermatogenesis in the cultured testes were investigated as functions of both time and dose. Resmethrin significantly downregulated the transcription levels of marker genes for spermatogonia and the number of spermatogenic germ cells relative to those of the controls, according to quantitative PCR and immunostaining. In addition, spermatocyte was observed in the control, but not in 50 μM resmethrin-exposed cultures. Levels of the SYCP3 meiotic marker and phosphorylated H2AX decreased by resmethrin treatment, as observed by Western blotting. Toxic or apoptotic effects of resmethrin in Sertoli and Leydig cells from MTFs were not observed by immunostaining and Tunnel assay. No changes in the expression of steroidogenic enzymes were noted. Apoptosis was only detected in the germ cells of resmethrin-treated MTFs. Thus, the highest dose of resmethrin tested (50 μM) completely inhibited spermatogenesis, because of apoptosis of germ cells and spermatocytes. Although the in vivo toxicity of resmethrin has not yet been studied in detail, significant evidence for cytotoxicity was observed in our organ cultures. This methodological approach is useful for the study of reproductive toxicity before proceeding to animal models, as it greatly reduces the use of laboratory animals.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk 54874, Republic of Korea
| | - Mingtian Zhang
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Khan EA, Zhang X, Hanna EM, Bartosova Z, Yadetie F, Jonassen I, Goksøyr A, Arukwe A. Quantitative transcriptomics, and lipidomics in evaluating ovarian developmental effects in Atlantic cod (Gadus morhua) caged at a capped marine waste disposal site. ENVIRONMENTAL RESEARCH 2020; 189:109906. [PMID: 32980003 DOI: 10.1016/j.envres.2020.109906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the present study, a previously capped waste disposal site at Kollevåg (Norway) was selected to study the effects of contaminant leakage on biomarkers associated with Atlantic cod (Gadus morhua) reproductive endocrinology and development. Immature cod were caged for 6 weeks at 3 locations, selected to achieve a spatial gradient of contamination, and compared to a reference station. Quantitative transcriptomic, and lipidomic analysis was used to evaluate the effects of the potential complex contaminant mixture on ovarian developmental and endocrine physiology. The number of expressed transcripts, with 0.75 log2-fold differential expression or more, varied among stations and paralleled the severity of contamination. Particularly, significant bioaccumulation of ∑PCB-7, ∑DDTs and ∑PBDEs were observed at station 1, compared to the other station, including the reference station. Respectively 1416, 698 and 719 differentially expressed genes (DEGs), were observed at stations 1, 2 and 3, compared to the reference station, with transcripts belonging to steroid hormone synthesis pathway being significantly upregulation. Transcription factors such as esr2 and ahr2 were increased at all three stations, with highest fold-change at Station 1. MetaCore pathway maps identified affected pathways that are involved in ovarian physiology, where some unique pathways were significantly affected at each station. For the lipidomics, sphingolipid metabolism was particularly affected at station 1, and these effects paralleled the high contaminant burden at this station. Overall, our findings showed a novel and direct association between contaminant burden and ovarian toxicological and endocrine physiological responses in cod caged at the capped Kollevåg waste disposal site.
Collapse
Affiliation(s)
- Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Eileen M Hanna
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Zdenka Bartosova
- Department of Biotechnology and Food Science, NTNU, N-7491, Trondheim, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5008, Bergen, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, N-5020, Bergen, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491, Trondheim, Norway.
| |
Collapse
|
10
|
Luo ZB, Rahman SU, Xuan MF, Han SZ, Li ZY, Yin XJ, Kang JD. The protective role of ginsenoside compound K in porcine oocyte meiotic maturation failed caused by benzo(a)pyrene during in vitro maturation. Theriogenology 2020; 157:96-109. [PMID: 32810794 DOI: 10.1016/j.theriogenology.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/27/2022]
Abstract
Benzo(a)pyrene (BaP) is a pollutant and carcinogen derived from air pollution. It causes serious damage to reproductive system, especially ovary. Ginseng is always used in food and traditional medicine as a nutraceuticals or herbal medicine. Ginsenoside compound K (CK) is a major bioactive ingredient of ginseng, that shows very specific anti-apoptosis, anti-oxidant, and anti-inflammatory activities and thus, it protects cells from damage. The aim of this study was to investigate the effects of CK on the BaP-induced inhibition of the in vitro maturation of porcine oocytes and their subsequent embryonic development capacity. We found that supplementation with 10 μg mL-1 CK during in vitro maturation significantly increased maturation rate (P < 0.05) and the expression level of related genes after damage induced by 40 μM BaP treatment. In addition, reactive oxygen species (ROS) levels significantly decreased and ATP content and mitochondrial membrane potential (MMP) increased after CK supplementation (P < 0.05). The competence for embryonic development was improved by the induction of pluripotency gene expression and the inhibition of apoptosis after CK supplementation of BaP-treated oocytes. Supplementation with 10 μg mL-1 CK improved porcine oocyte maturation and subsequent embryonic development of parthenogenetic activation (33.01 vs. 20.92, P < 0.05) and in vitro fertilization (24.01 vs. 16.52, P < 0.05) by increasing antioxidant activity and improving mitochondrial function after BaP-induced damage.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Saeed Ur Rahman
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Mei-Fu Xuan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Sheng-Zhong Han
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhou-Yan Li
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jin-Dan Kang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
11
|
Alofe O, Kisanga E, Inayat-Hussain SH, Fukumura M, Garcia-Milian R, Perera L, Vasiliou V, Whirledge S. Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. ENVIRONMENT INTERNATIONAL 2019; 131:104969. [PMID: 31310931 PMCID: PMC6728168 DOI: 10.1016/j.envint.2019.104969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/18/2023]
Abstract
Environmental and occupational exposure to industrial chemicals has been linked to toxic and carcinogenic effects in animal models and human studies. However, current toxicology testing does not thoroughly explore the endocrine disrupting effects of industrial chemicals, which may have low dose effects not predicted when determining the limit of toxicity. The objective of this study was to evaluate the endocrine disrupting potential of a broad range of chemicals used in the petrochemical sector. Therefore, 139 chemicals were classified for reproductive toxicity based on the United Nations Globally Harmonized System for hazard classification. These chemicals were evaluated in PubMed for reported endocrine disrupting activity, and their endocrine disrupting potential was estimated by identifying chemicals with active nuclear receptor endpoints publicly available databases. Evaluation of ToxCast data suggested that these chemicals preferentially alter the activity of the estrogen receptor (ER). Four chemicals were prioritized for in vitro testing using the ER-positive, immortalized human uterine Ishikawa cell line and a range of concentrations below the reported limit of toxicity in humans. We found that 2,6-di-tert-butyl-p-cresol (BHT) and diethanolamine (DEA) repressed the basal expression of estrogen-responsive genes PGR, NPPC, and GREB1 in Ishikawa cells, while tetrachloroethylene (PCE) and 2,2'-methyliminodiethanol (MDEA) induced the expression of these genes. Furthermore, low-dose combinations of PCE and MDEA produced additive effects. All four chemicals interfered with estradiol-mediated induction of PGR, NPPC, and GREB1. Molecular docking demonstrated that these chemicals could bind to the ligand binding site of ERα, suggesting the potential for direct stimulatory or inhibitory effects. We found that these chemicals altered rates of proliferation and regulated the expression of cell proliferation associated genes. These findings demonstrate previously unappreciated endocrine disrupting effects and underscore the importance of testing the endocrine disrupting potential of chemicals in the future to better understand their potential to impact public health.
Collapse
Affiliation(s)
- Olubusayo Alofe
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Edwina Kisanga
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Salmaan H Inayat-Hussain
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Masao Fukumura
- Department of Product Stewardship and Toxicology, Group Health, Safety, Security and Environment, Petroliam Nasional Berhad, Kuala Lumpur, Malaysia
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, CT, USA
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Shannon Whirledge
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
12
|
Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, Rieswijk L, Solomon G, Udagawa O, Zhang L, Zlatnik M, Zeise L, Smith MT. Proposed Key Characteristics of Female Reproductive Toxicants as an Approach for Organizing and Evaluating Mechanistic Data in Hazard Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:75001. [PMID: 31322437 PMCID: PMC6791466 DOI: 10.1289/ehp4971] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Identification of female reproductive toxicants is currently based largely on integrated epidemiological and in vivo toxicology data and, to a lesser degree, on mechanistic data. A uniform approach to systematically search, organize, integrate, and evaluate mechanistic evidence of female reproductive toxicity from various data types is lacking. OBJECTIVE We sought to apply a key characteristics approach similar to that pioneered for carcinogen hazard identification to female reproductive toxicant hazard identification. METHODS A working group of international experts was convened to discuss mechanisms associated with chemical-induced female reproductive toxicity and identified 10 key characteristics of chemicals that cause female reproductive toxicity: 1) alters hormone receptor signaling; alters reproductive hormone production, secretion, or metabolism; 2) chemical or metabolite is genotoxic; 3) induces epigenetic alterations; 4) causes mitochondrial dysfunction; 5) induces oxidative stress; 6) alters immune function; 7) alters cell signal transduction; 8) alters direct cell–cell interactions; 9) alters survival, proliferation, cell death, or metabolic pathways; and 10) alters microtubules and associated structures. As proof of principle, cyclophosphamide and diethylstilbestrol (DES), for which both human and animal studies have demonstrated female reproductive toxicity, display at least 5 and 3 key characteristics, respectively. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), for which the epidemiological evidence is mixed, exhibits 5 key characteristics. DISCUSSION Future efforts should focus on evaluating the proposed key characteristics against additional known and suspected female reproductive toxicants. Chemicals that exhibit one or more of the key characteristics could be prioritized for additional evaluation and testing. A key characteristics approach has the potential to integrate with pathway-based toxicity testing to improve prediction of female reproductive toxicity in chemicals and potentially prevent some toxicants from entering common use. https://doi.org/10.1289/EHP4971.
Collapse
Affiliation(s)
- Ulrike Luderer
- Center for Occupational and Environmental Health, University of California, Irvine, Irvine, California, USA
| | - Brenda Eskenazi
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kenneth S. Korach
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Cliona M. McHale
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Linda Rieswijk
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Institute of Data Science, Maastricht University, Maastricht, Netherlands
| | - Gina Solomon
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute of Environmental Studies, Tsukuba-City, Ibaraki, Japan
| | - Luoping Zhang
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Marya Zlatnik
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, California, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA
| | - Martyn T. Smith
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
13
|
Luderer U, Meier MJ, Lawson GW, Beal MA, Yauk CL, Marchetti F. In Utero Exposure to Benzo[a]pyrene Induces Ovarian Mutations at Doses That Deplete Ovarian Follicles in Mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:410-420. [PMID: 30353947 PMCID: PMC6615722 DOI: 10.1002/em.22261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Accepted: 10/17/2018] [Indexed: 05/07/2023]
Abstract
Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are ubiquitous environmental contaminants formed during incomplete combustion of organic materials. Our prior work showed that transplacental exposure to BaP depletes ovarian follicles and increases prevalence of epithelial ovarian tumors later in life. We used the MutaMouse transgenic rodent model to address the hypothesis that ovarian mutations play a role in tumorigenesis caused by prenatal exposure to BaP. Pregnant MutaMouse females were treated with 0, 10, 20, or 40 mg/(kg day) BaP orally on gestational days 7-16, covering critical windows of ovarian development. Female offspring were euthanized at 10 weeks of age; some ovaries with oviducts were processed for follicle counting; other ovaries/oviducts and bone marrow were processed for determination of lacZ mutant frequency (MF). Mutant plaques were pooled within dose groups and sequenced to determine the mutation spectrum. BaP exposure caused highly significant dose-related decreases in ovarian follicles and increases in ovarian/oviductal and bone marrow mutant frequencies at all doses. Absence of follicles, cell packets, and epithelial tubular structures were observed with 20 and 40 mg/(kg day) BaP. Depletion of ovarian germ cells was inversely associated with ovarian MF. BaP induced primarily G > T and G > C transversions and deletions in ovaries/oviducts and bone marrow cells and produced a mutation signature highly consistent with that of tobacco smoking in human cancers. Overall, our results show that prenatal BaP exposure significantly depletes ovarian germ cells, causes histopathological abnormalities, and increases the burden of ovarian/oviductal mutations, which may be involved in pathogenesis of epithelial ovarian tumors. Environ. Mol. Mutagen. 60:410-420, 2019. © 2018 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Ulrike Luderer
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California Irvine, Irvine, CA 92617
- Department of Developmental and Cell Biology, UC Irvine, Irvine, CA 92617
- Program in Public Health, UC Irvine, Irvine, CA 92617
| | - Matthew J. Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
- Present address: Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, K1S 5B6, Canada
| | - Gregory W. Lawson
- Office for Laboratory Animal Care, University of California Berkeley, Berkeley, CA 94720
| | - Marc A. Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| |
Collapse
|
14
|
Lim J, Luderer U. Glutathione deficiency sensitizes cultured embryonic mouse ovaries to benzo[a]pyrene-induced germ cell apoptosis. Toxicol Appl Pharmacol 2018; 352:38-45. [PMID: 29800640 DOI: 10.1016/j.taap.2018.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/01/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Mice lacking the modifier subunit of glutamate cysteine ligase (Gclm), the rate-limiting enzyme in glutathione (GSH) synthesis, have decreased tissue GSH. We previously showed that Gclm-/- embryos have increased sensitivity to the prenatal in vivo ovarian toxicity of the polycyclic aromatic hydrocarbon benzo[a]pyrene (BaP) compared with Gclm+/+ littermates. We also showed that BaP-induced germ cell death in cultured wild type embryonic ovaries is caspase-dependent. Here, we hypothesized that GSH deficiency increases sensitivity of cultured embryonic ovaries to BaP-induced germ cell death. 13.5 days post coitum (dpc) embryonic ovaries of all Gclm genotypes were fixed immediately or cultured for 24 h in media supplemented with DMSO vehicle or 500 ng/ml BaP. The percentage of activated caspase-3 positive germ cells varied significantly among groups. Within each genotype, DMSO and BaP-treated groups had increased germ cell caspase-3 activation compared to uncultured. Gclm+/- ovaries had significantly increased caspase-3 activation with BaP treatment compared to DMSO, and caspase-3 activation increased non-significantly in Gclm-/- ovaries treated with BaP compared to DMSO. There was no statistically significant effect of BaP treatment on germ cell numbers at 24 h, consistent with our prior observations in wild type ovaries, but Gclm-/- ovaries in both cultured groups had lower germ cell numbers than Gclm+/+ ovaries. There were no statistically significant BaP-treatment or genotype-related differences among groups in lipid peroxidation and germ cell proliferation. These data indicate that Gclm heterozygous or homozygous deletion sensitizes embryonic ovaries to BaP- and tissue culture-induced germ cell apoptosis.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Medicine, University of California Irvine, Irvine, CA 92617, United States
| | - Ulrike Luderer
- Department of Medicine, University of California Irvine, Irvine, CA 92617, United States; Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92617, United States; Program in Public Health, University of California Irvine, Irvine, CA 92617, United States.
| |
Collapse
|