1
|
Colburn ME, Delaney MA, Anchor GC, Terio KA. Effect of formalin-fixation and paraffin-embedded tissue storage times on RNAscope in situ hybridization signal amplification. J Vet Diagn Invest 2024; 36:498-505. [PMID: 38650110 PMCID: PMC11185121 DOI: 10.1177/10406387241245777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
RNAscope in situ hybridization (ISH) detects target RNA in formalin-fixed, paraffin-embedded (FFPE) tissues. Protocols suggest that prolonged FFPE storage and formalin fixation may impact signal detection, potentially limiting the utility of RNAscope ISH in retrospective studies. To develop parameters for RNAscope use with archived specimens, we evaluated the effect of formalin-fixation time by measuring the signal of a reference gene (16srRNA) in selected tissues fixed in 10% neutral-buffered formalin for 1, 2, 3, 5, 7, 10, 14, 21, 28, 60, 90, 180, and 270 d. The signal intensity and percent area of signal decreased after 180 d. Tissues had detectable signal at 180 d but not at 270 d of formalin fixation. To assess target detection in paraffin blocks, we qualitatively compared the signal of canine distemper virus (CDV) antigen via immunohistochemistry and CDV RNA via RNAscope ISH in replicate sections from blocks stored at room temperature for 6 mo, 1, 3, 6, 8, 11, 13, and 15 y; RNA was detected in FFPE tissues stored for up to 15 y. Our results demonstrate that RNAscope ISH can detect targets in tissues with prolonged paraffin storage intervals and formalin-fixation times.
Collapse
Affiliation(s)
- Megan E. Colburn
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| | - Martha A. Delaney
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| | - Gretchen C. Anchor
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| | - Karen A. Terio
- Zoological Pathology Program, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
2
|
Ji B, Chen J, Gong H, Li X. Streamlined Full-Length Total RNA Sequencing of Paraformaldehyde-Fixed Brain Tissues. Int J Mol Sci 2024; 25:6504. [PMID: 38928210 PMCID: PMC11204141 DOI: 10.3390/ijms25126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.
Collapse
Affiliation(s)
- Bingqing Ji
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (B.J.); (J.C.); (H.G.)
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiale Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (B.J.); (J.C.); (H.G.)
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (B.J.); (J.C.); (H.G.)
- MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215125, China
| | - Xiangning Li
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, HUST-Suzhou Institute for Brainsmatics, JITRI, Chinese Academy of Medical Sciences, Suzhou 215125, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
He Y, Dong L, Yi H, Zhang L, Shi X, Su L, Gan B, Guo R, Wang Y, Luo Q, Li X. Improper preanalytical processes on peripheral blood compromise RNA quality and skew the transcriptional readouts of mRNA and LncRNA. Front Genet 2023; 13:1091685. [PMID: 36685907 PMCID: PMC9845260 DOI: 10.3389/fgene.2022.1091685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Genetic and epigenetic reprogramming caused by disease states in other tissues is always systemically reflected in peripheral blood leukocytes (PBLs). Accurate transcriptional readouts of Messenger RNA (mRNA) and Long non-coding RNA (lncRNA) in peripheral blood leukocytes are fundamental for disease-related study, diagnosis and treatment. However, little is known about the impact of preanalytical variables on RNA quality and downstream messenger RNA and Long non-coding RNA readouts. In this study, we explored the impact of RNA extraction kits and timing of blood placement on peripheral blood leukocyte-derived RNA quality. A novel enhanced evaluation system including RNA yields, purity, RNA integrity number (RIN) values and β-actin copies was employed to more sensitively identify RNA quality differences. The expression levels of informative mRNAs and Long non-coding RNAs in patients with chronic obstructive pulmonary disease (COPD) or triple-negative breast cancer (TNBC) were measured by Quantitative reverse transcription polymerase chain reaction (qRT-PCR) to investigate the impact of RNA quality on transcriptional readouts. Our results showed that the quality of RNA extracted by different kits varies greatly, and commercial kits should be evaluated and managed before batch RNA extraction. In addition, the quality of extracted RNA was highly correlated with the timing of blood placement, and the copy number of β-actin was significantly decreased after leaving blood at RT over 12 h. More importantly, compromised RNA leads to skewed transcriptional readouts of informative mRNAs and Long non-coding RNAs in patients with chronic obstructive pulmonary disease or triple-negative breast cancer. These findings have significant implications for peripheral blood leukocyte-derived RNA quality management and suggest that quality control is necessary prior to the analysis of patient messenger RNA and Long non-coding RNA expression.
Collapse
Affiliation(s)
- Yinli He
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lele Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyang Yi
- National Clinical Research Centre for Infectious Diseases, The Third People’s Hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Linpei Zhang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xue Shi
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Su
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Baoyu Gan
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Ruirui Guo
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Xiaojiao Li, ; Qinying Luo, ; Yawen Wang,
| | - Qinying Luo
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Xiaojiao Li, ; Qinying Luo, ; Yawen Wang,
| | - Xiaojiao Li
- BioBank, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Xiaojiao Li, ; Qinying Luo, ; Yawen Wang,
| |
Collapse
|
4
|
Reproducible and sensitive micro-tissue RNA sequencing from formalin-fixed paraffin-embedded tissues for spatial gene expression analysis. Sci Rep 2022; 12:19511. [PMID: 36376423 PMCID: PMC9663554 DOI: 10.1038/s41598-022-23651-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022] Open
Abstract
Spatial transcriptome analysis of formalin-fixed paraffin-embedded (FFPE) tissues using RNA-sequencing (RNA-seq) provides interactive information on morphology and gene expression, which is useful for clinical applications. However, despite the advantages of long-term storage at room temperature, FFPE tissues may be severely damaged by methylene crosslinking and provide less gene information than fresh-frozen tissues. In this study, we proposed a sensitive FFPE micro-tissue RNA-seq method that combines the punching of tissue sections (diameter: 100 μm) and the direct construction of RNA-seq libraries. We evaluated a method using mouse liver tissues at two years after fixation and embedding and detected approximately 7000 genes in micro-punched tissue-spots (thickness: 10 μm), similar to that detected with purified total RNA (2.5 ng) equivalent to the several dozen cells in the spot. We applied this method to clinical FFPE specimens of lung cancer that had been fixed and embedded 6 years prior, and found that it was possible to determine characteristic gene expression in the microenvironment containing tumor and non-tumor cells of different morphologies. This result indicates that spatial gene expression analysis of the tumor microenvironment is feasible using FFPE tissue sections stored for extensive periods in medical facilities.
Collapse
|
5
|
Wehmas LC, Wood CE, Guan P, Gosink M, Hester SD. Organocatalyst treatment improves variant calling and mutant detection in archival clinical samples. Sci Rep 2022; 12:6509. [PMID: 35443772 PMCID: PMC9021284 DOI: 10.1038/s41598-022-10301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/23/2022] [Indexed: 11/23/2022] Open
Abstract
Formalin fixation of biological specimens damages nucleic acids and limits their use in genomic analyses. Previously, we showed that RNA isolation with an organocatalyst (2-amino-5-methylphenyl phosphonic acid, used to speed up reversal of formalin-induced adducts) and extended heated incubation (ORGΔ) improved RNA-sequencing data from formalin-fixed paraffin-embedded (FFPE) tissue samples. The primary goal of this study was to evaluate whether ORGΔ treatment improves DNA-sequencing data from clinical FFPE samples. We isolated RNA and DNA ± ORGΔ from paired FFPE and frozen human renal and ovarian carcinoma specimens collected as part of the National Cancer Institute Biospecimen Pre-analytical Variables program. Tumor types were microscopically confirmed from adjacent tissue sections. Following extraction, DNA was fragmented and sequenced and differences were compared between frozen and FFPE sample pairs. Treatment with ORGΔ improved concurrent SNP calls in FFPE DNA compared to non-ORGΔ FFPE samples and enhanced confidence in SNP calls for all FFPE DNA samples, beyond that of matched frozen samples. In general, the concordant SNPs identified in paired frozen and FFPE DNA samples agreed for both genotype and homozygosity vs. heterozygosity of calls regardless of ORGΔ treatment. The increased confidence in ORGΔ FFPE DNA variant calls relative to the matched frozen DNA suggests a novel application of this method. With further optimization, this method may improve quality of DNA-sequencing data in FFPE as well as frozen tissue samples.
Collapse
Affiliation(s)
- Leah C Wehmas
- Office of Research and Development, U.S. Environmental Protection Agency, MD-B105-03, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA.
| | - Charles E Wood
- Office of Research and Development, U.S. Environmental Protection Agency, MD-B105-03, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA.,Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Ping Guan
- National Cancer Institute, Bethesda, MD, USA
| | | | - Susan D Hester
- Office of Research and Development, U.S. Environmental Protection Agency, MD-B105-03, 109 T.W. Alexander Drive, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Case study: Targeted RNA-sequencing of aged formalin-fixed paraffin-embedded samples for understanding chemical mode of action. Toxicol Rep 2022; 9:883-894. [DOI: 10.1016/j.toxrep.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
|
7
|
Jang JS, Holicky E, Lau J, McDonough S, Mutawe M, Koster MJ, Warrington KJ, Cuninngham JM. Application of the 3' mRNA-Seq using unique molecular identifiers in highly degraded RNA derived from formalin-fixed, paraffin-embedded tissue. BMC Genomics 2021; 22:759. [PMID: 34689749 PMCID: PMC8543821 DOI: 10.1186/s12864-021-08068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022] Open
Abstract
Background Archival formalin-fixed, paraffin-embedded (FFPE) tissue samples with clinical and histological data are a singularly valuable resource for developing new molecular biomarkers. However, transcriptome analysis remains challenging with standard mRNA-seq methods as FFPE derived-RNA samples are often highly modified and fragmented. The recently developed 3′ mRNA-seq method sequences the 3′ region of mRNA using unique molecular identifiers (UMI), thus generating gene expression data with minimal PCR bias. In this study, we evaluated the performance of 3′ mRNA-Seq using Lexogen QuantSeq 3′ mRNA-Seq Library Prep Kit FWD with UMI, comparing with TruSeq Stranded mRNA-Seq and RNA Exome Capture kit. The fresh-frozen (FF) and FFPE tissues yielded nucleotide sizes range from 13 to > 70% of DV200 values; input amounts ranged from 1 ng to 100 ng for validation. Results The total mapped reads of QuantSeq 3′ mRNA-Seq to the reference genome ranged from 99 to 74% across all samples. After PCR bias correction, 3 to 56% of total sequenced reads were retained. QuantSeq 3′ mRNA-Seq data showed highly reproducible data across replicates in Universal Human Reference RNA (UHR, R > 0.94) at input amounts from 1 ng to 100 ng, and FF and FFPE paired samples (R = 0.92) at 10 ng. Severely degraded FFPE RNA with ≤30% of DV200 value showed good concordance (R > 0.87) with 100 ng input. A moderate correlation was observed when directly comparing QuantSeq 3′ mRNA-Seq data with TruSeq Stranded mRNA-Seq (R = 0.78) and RNA Exome Capture data (R > 0.67). Conclusion In this study, QuantSeq 3′ mRNA-Seq with PCR bias correction using UMI is shown to be a suitable method for gene quantification in both FF and FFPE RNAs. 3′ mRNA-Seq with UMI may be applied to severely degraded RNA from FFPE tissues generating high-quality sequencing data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08068-1.
Collapse
Affiliation(s)
- Jin Sung Jang
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Eileen Holicky
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Julie Lau
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Samantha McDonough
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Mark Mutawe
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew J Koster
- Department of Internal Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth J Warrington
- Department of Internal Medicine, Division of Rheumatology, Mayo Clinic, Rochester, MN, USA
| | - Julie M Cuninngham
- Genome Analysis Core, Medical Genome Facility, Center for Individualized Medicine, Mayo Clinic, Stabile Research Building, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Koppel SJ, Pei D, Wilkins HM, Weidling IW, Wang X, Menta BW, Perez-Ortiz J, Kalani A, Manley S, Novikova L, Koestler DC, Swerdlow RH. A ketogenic diet differentially affects neuron and astrocyte transcription. J Neurochem 2021; 157:1930-1945. [PMID: 33539571 DOI: 10.1111/jnc.15313] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Ketogenic diets (KDs) alter brain metabolism. Multiple mechanisms may account for their effects, and different brain regions may variably respond. Here, we considered how a KD affects brain neuron and astrocyte transcription. We placed male C57Bl6/N mice on either a 3-month KD or chow diet, generated enriched neuron and astrocyte fractions, and used RNA-Seq to assess transcription. Neurons from KD-treated mice generally showed transcriptional pathway activation while their astrocytes showed a mix of transcriptional pathway suppression and activation. The KD especially affected pathways implicated in mitochondrial and endoplasmic reticulum function, insulin signaling, and inflammation. An unbiased analysis of KD-associated expression changes strongly implicated transcriptional pathways altered in AD, which prompted us to explore in more detail the potential molecular relevance of a KD to AD. Our results indicate a KD differently affects neurons and astrocytes, and provide unbiased evidence that KD-induced brain effects are potentially relevant to neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Scott J Koppel
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dong Pei
- Departments of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ian W Weidling
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiaowan Wang
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Blaise W Menta
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Judit Perez-Ortiz
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anuradha Kalani
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sharon Manley
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lesya Novikova
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Departments of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA.,Departments of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Neurology, University of Kansas Medical Center, Kansas City, KS, USA.,Departments of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
9
|
Fattorini P, Forzato C, Tierno D, De Martino E, Azzalini E, Canzonieri V, Stanta G, Bonin S. A Novel HPLC-Based Method to Investigate on RNA after Fixation. Int J Mol Sci 2020; 21:ijms21207540. [PMID: 33066070 PMCID: PMC7588918 DOI: 10.3390/ijms21207540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
RNA isolated from fixed and paraffin-embedded tissues is widely used in biomedical research and molecular pathology for diagnosis. In the present study, we have set-up a method based on high performance liquid chromatography (HPLC) to investigate the effects of different fixatives on RNA. By the application of the presented method, which is based on the Nuclease S1 enzymatic digestion of RNA extracts followed by a HPLC analysis, it is possible to quantify the unmodified nucleotide monophosphates (NMPs) in the mixture and recognize their hydroxymethyl derivatives as well as other un-canonical RNA moieties. The results obtained from a set of mouse livers fixed/embedded with different protocols as well from a set of clinical samples aged 0 to 30 years-old show that alcohol-based fixatives do not induce chemical modification of the nucleic acid under ISO standard recommendations and confirm that pre-analytical conditions play a major role in RNA preservation.
Collapse
Affiliation(s)
- Paolo Fattorini
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
| | - Cristina Forzato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Domenico Tierno
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
- Doctorate of Nanotechnology, University of Trieste, 34100 Trieste, Italy
| | - Eleonora De Martino
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
| | - Eros Azzalini
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
| | - Vincenzo Canzonieri
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
- Pathology Unit, IRCCS CRO Aviano-National Cancer Institute, 33081 Aviano, Italy
| | - Giorgio Stanta
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
| | - Serena Bonin
- DSM-Department of Medical Sciences, University of Trieste, 34149 Trieste, Italy; (P.F.); (D.T.); (E.D.M.); (E.A.); (V.C.); (G.S.)
- Correspondence: ; Tel.: +39-040-399-3266
| |
Collapse
|
10
|
Boneva S, Schlecht A, Böhringer D, Mittelviefhaus H, Reinhard T, Agostini H, Auw-Haedrich C, Schlunck G, Wolf J, Lange C. 3' MACE RNA-sequencing allows for transcriptome profiling in human tissue samples after long-term storage. J Transl Med 2020; 100:1345-1355. [PMID: 32467590 PMCID: PMC7498368 DOI: 10.1038/s41374-020-0446-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
This study aims to compare the potential of standard RNA-sequencing (RNA-Seq) and 3' massive analysis of c-DNA ends (MACE) RNA-sequencing for the analysis of fresh tissue and describes transcriptome profiling of formalin-fixed paraffin-embedded (FFPE) archival human samples by MACE. To compare MACE to standard RNA-Seq on fresh tissue, four healthy conjunctiva from four subjects were collected during vitreoretinal surgery, halved and immediately transferred to RNA lysis buffer without prior fixation and then processed for either standard RNA-Seq or MACE RNA-Seq analysis. To assess the impact of FFPE preparation on MACE, a third part was fixed in formalin and processed for paraffin embedding, and its transcriptional profile was compared with the unfixed specimens analyzed by MACE. To investigate the impact of FFPE storage time on MACE results, 24 FFPE-treated conjunctival samples from 24 patients were analyzed as well. Nineteen thousand six hundred fifty-nine transcribed genes were detected by both MACE and standard RNA-Seq on fresh tissue, while 3251 and 2213 transcripts were identified explicitly by MACE or RNA-Seq, respectively. Standard RNA-Seq tended to yield longer detected transcripts more often than MACE technology despite normalization, indicating that the MACE technology is less susceptible to a length bias. FFPE processing revealed negligible effects on MACE sequencing results. Several quality-control measurements showed that long-term storage in paraffin did not decrease the diversity of MACE libraries. We noted a nonlinear relation between storage time and the number of raw reads with an accelerated decrease within the first 1000 days in paraffin, while the numbers remained relatively stable in older samples. Interestingly, the number of transcribed genes detected was independent on FFPE storage time. RNA of sufficient quality and quantity can be extracted from FFPE samples to obtain comprehensive transcriptome profiling using MACE technology. We thus present MACE as a novel opportunity for utilizing FFPE samples stored in histological archives.
Collapse
Affiliation(s)
- Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Böhringer
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Mittelviefhaus
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Auw-Haedrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Wehmas LC, Hester SD, Wood CE. Direct formalin fixation induces widespread transcriptomic effects in archival tissue samples. Sci Rep 2020; 10:14497. [PMID: 32879405 PMCID: PMC7468282 DOI: 10.1038/s41598-020-71521-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Sequencing technologies now provide unprecedented access to genomic information in archival formalin-fixed paraffin-embedded (FFPE) tissue samples. However, little is known about artifacts induced during formalin fixation, which could bias results. Here we evaluated global changes in RNA-sequencing profiles between matched frozen and FFPE samples. RNA-sequencing was performed on liver samples collected from mice treated with a reference chemical (phenobarbital) or vehicle control for 7 days. Each sample was divided into four parts: (1) fresh-frozen, (2) direct-fixed in formalin for 18 h, (3) frozen then formalin-fixed, and (4) frozen then ethanol-fixed and paraffin-embedded (n = 6/group/condition). Direct fixation resulted in 2,946 differentially expressed genes (DEGs) vs. fresh-frozen, 98% of which were down-regulated. Freezing prior to formalin fixation had ≥ 95% fewer DEGs vs. direct fixation, indicating that most formalin-derived transcriptional effects in the liver occurred during fixation. This finding was supported by retrospective studies of paired frozen and FFPE samples, which identified consistent enrichment in oxidative stress, mitochondrial dysfunction, and transcription initiation pathways with direct fixation. Notably, direct formalin fixation in the parent study did not significantly impact response profiles resulting from chemical exposure. These results advance our understanding of FFPE samples as a resource for genomic research.
Collapse
Affiliation(s)
- Leah C Wehmas
- Office of Research and Development, U.S. Environmental Protection Agency, MD-B105-03, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Susan D Hester
- Office of Research and Development, U.S. Environmental Protection Agency, MD-B105-03, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Charles E Wood
- Office of Research and Development, U.S. Environmental Protection Agency, MD-B105-03, 109 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.,Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| |
Collapse
|
12
|
Wehmas LC, Wood CE, Chorley BN, Yauk CL, Nelson GM, Hester SD. Enhanced Quality Metrics for Assessing RNA Derived From Archival Formalin-Fixed Paraffin-Embedded Tissue Samples. Toxicol Sci 2020; 170:357-373. [PMID: 31093665 DOI: 10.1093/toxsci/kfz113] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues provide an important resource for toxicogenomic research. However, variability in the integrity or quality of RNA obtained from archival FFPE specimens can lead to unreliable data and wasted resources, and standard protocols for measuring RNA integrity do not adequately assess the suitability of FFPE RNA. The main goal of this study was to identify improved methods for evaluating FFPE RNA quality for whole-genome sequencing. We examined RNA quality metrics conducted prior to RNA-sequencing in paired frozen and FFPE samples with varying levels of quality based on age in block and time in formalin. RNA quality was measured by the RNA integrity number (RIN), a modified RIN called the paraffin-embedded RNA metric, the percentage of RNA fragments >100-300 nucleotides in size (DV100-300), and 2 quantitative PCR-based methods. This information was correlated to sequencing read quality, mapping, and gene detection. Among fragmentation-based methods, DV and PCR-based metrics were more informative than RIN or paraffin-embedded RNA metric in determining sequencing success. Across low- and high-quality FFPE samples, a minimum of 80% of RNA fragments >100 nucleotides (DV100 > 80) provided the best indication of gene diversity and read counts upon sequencing. The PCR-based methods further showed quantitative reductions in amplifiable RNA of target genes related to sample age and time in formalin that inform input quantity of FFPE RNA for sequencing. These results should aid in screening and prioritizing archival FFPE samples for retrospective analyses of gene expression.
Collapse
Affiliation(s)
- Leah C Wehmas
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Charles E Wood
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709.,Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT 06877
| | - Brian N Chorley
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa K1A 0K9, Canada
| | - Gail M Nelson
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Susan D Hester
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
13
|
Early microRNA indicators of PPARα pathway activation in the liver. Toxicol Rep 2020; 7:805-815. [PMID: 32642447 PMCID: PMC7334544 DOI: 10.1016/j.toxrep.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA species that play key roles in post-transcriptional regulation of gene expression. MiRNAs also serve as a promising source of early biomarkers for different environmental exposures and health effects, although there is limited information linking miRNA changes to specific target pathways. In this study, we measured liver miRNAs in male B6C3F1 mice exposed to a known chemical activator of the peroxisome proliferator-activated receptor alpha (PPARα) pathway, di(2-ethylhexyl) phthalate (DEHP), for 7 and 28 days at concentrations of 0, 750, 1500, 3000, or 6000 ppm in feed. At the highest dose tested, DEHP altered 61 miRNAs after 7 days and 171 miRNAs after 28 days of exposure, with 48 overlapping miRNAs between timepoints. Analysis of these 48 common miRNAs indicated enrichment in PPARα–related targets and other pathways related to liver injury and cancer. Four of the 10 miRNAs exhibiting a clear dose trend were linked to the PPARα pathway: mmu-miRs-125a-5p, -182−5p, -20a−5p, and -378a−3p. mmu-miRs-182−5p and -378a−3p were subsequently measured using digital drop PCR across a dose range for DEHP and two related phthalates with weaker PPARα activity, di-n-octyl phthalate and n-butyl benzyl phthalate, following 7-day exposures. Analysis of mmu-miRs-182−5p and -378a−3p by transcriptional benchmark dose analysis correctly identified DEHP as having the greatest potency. However, benchmark dose estimates for DEHP based on these miRNAs (average 163; range 126−202 mg/kg-day) were higher on average than values for PPARα target genes (average 74; range 29−183 mg/kg-day). These findings identify putative miRNA biomarkers of PPARα pathway activity and suggest that early miRNA changes may be used to stratify chemical potency.
Collapse
Key Words
- AIC, Akaike Information Criterion
- ALT, alanine aminotransferase
- AOP, adverse outcome pathway
- AST, aspartate aminotransferase
- Acox1, acyl-Coenzyme A oxidase 1
- Adverse outcome pathway (AOP)
- AhR, aryl hydrocarbon receptor
- BBP, n-butyl benzyl phthalate
- BMD, benchmark dose
- BMDA, apical-based benchmark dose
- BMDL, BMD lower confidence interval
- BMDT, transcriptional-based benchmark dose
- BMR, benchmark response
- BROD, benzyloxyresorufin O-debenzylation
- Benchmark dose (BMD)
- Biomarkers
- CAR, constitutive androstane receptor
- DEGs, differentially expressed genes
- DEHP, di (2-thylhexyl) phthalate
- DEmiRs, differentially expressed miRNAs
- DNOP, di-n-octyl phthalate
- EPA, U.S. Environmental Protection Agency
- EROD, ethoxyresorufin O-dealkylation
- GEO, Gene Expression Omnibus
- HCA, hepatocellular adenoma
- HCC, hepatocellular carcinoma
- Hepatocellular carcinoma
- IPA, Ingenuity Pathway Analysis
- Liver toxicity
- MOA, mode of action
- MicroRNAs
- Mode of action (MOA)
- Nrf2, nuclear receptor erythroid 2-like 2
- POD, point-of-departure
- PPARα, peroxisome proliferator-activated receptor alpha
- PROD, pentoxyresorufin O-depentylation
- PXR, pregnane X receptor
- Peroxisome proliferator-activated receptor alpha (PPARα)
- Phthalate
- SDH, sorbitol dehydrogenase
- TMM, trimmed mean of M-values
- ddPCR, droplet digital polymerase chain reaction
- mRNA, messenger RNA
- miRNAs, microRNAs
- mtDNA, mitochondrial
- rRNA, ribosomal RNA
- smallRNA-seq, small RNA sequencing
- tRNA, transfer RNA
Collapse
|
14
|
Furihata C, You X, Toyoda T, Ogawa K, Suzuki T. Using FFPE RNA-Seq with 12 marker genes to evaluate genotoxic and non-genotoxic rat hepatocarcinogens. Genes Environ 2020; 42:15. [PMID: 32256870 PMCID: PMC7104499 DOI: 10.1186/s41021-020-00152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/27/2020] [Indexed: 11/10/2022] Open
Abstract
Introduction Various challenges have been overcome with regard to applying 'omics technologies for chemical risk assessments. Previously we published results detailing targeted mRNA sequencing (RNA-Seq) on a next generation sequencer using intact RNA derived from freshly frozen rat liver tissues. We successfully discriminated genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) using 11 selected marker genes. Based on this, we next attempted to use formalin-fixed paraffin-embedded (FFPE) pathology specimens for RNA-Seq analyses. Findings In this study we performed FFPE RNA-Seq to compare a typical GTHC, 2-acetylaminofluorene (AAF) to genotoxicity equivocal p-cresidine (CRE). CRE is used as a synthetic chemical intermediate, and this compound is classified as an IARC 2B carcinogen and is mutagenic in S. typhimurium, which is non-genotoxic to rat livers as assessed by single strand DNA damage analysis. RNA-Seq was used to examine liver FFPE samples obtained from groups of five 10-week-old male F344 rats that were fed with chemicals (AAF: 0.025% and CRE: 1% in food) for 4 weeks or from controls that were fed a basal diet. We extracted RNAs from FFPE samples and RNA-Seq was performed on a MiniSeq (Illumina) using the TruSeq custom RNA panel. AAF induced remarkable differences in the expression of eight genes (Aen, Bax, Btg2, Ccng1, Gdf15, Mbd1, Phlda3 and Tubb4b) from that in the control group, while CRE only induced expression changes in Gdf15, as shown using Tukey's test. Gene expression profiles for nine genes (Aen, Bax, Btg2, Ccng1, Cdkn1a, Gdf15, Mbd1, Phlda3, and Plk2) differed.between samples treated with AAF and CRE. Finally, principal component analysis (PCA) of 12 genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) using our previous Open TG-GATE data plus FFPE-AAF and FFPE-CRE successfully differentiated FFPE-AAF, as GTHC, from FFPE-CRE, as NGHTC. Conclusion Our results suggest that FFPE RNA-Seq and PCA are useful for evaluating typical rat GTHCs and NGTHCs.
Collapse
Affiliation(s)
- Chie Furihata
- 1Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, 210-9501 Japan.,2School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Sagamihara, Kanagawa 252-5258 Japan
| | - Xinyue You
- 3School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 People's Republic of China
| | - Takeshi Toyoda
- 4Division of Pathology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, 210-9501 Japan
| | - Kumiko Ogawa
- 4Division of Pathology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, 210-9501 Japan
| | - Takayoshi Suzuki
- 1Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, 210-9501 Japan
| |
Collapse
|
15
|
Krewski D, Andersen ME, Tyshenko MG, Krishnan K, Hartung T, Boekelheide K, Wambaugh JF, Jones D, Whelan M, Thomas R, Yauk C, Barton-Maclaren T, Cote I. Toxicity testing in the 21st century: progress in the past decade and future perspectives. Arch Toxicol 2019; 94:1-58. [DOI: 10.1007/s00204-019-02613-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
|
16
|
Abstract
Next generation sequencing (NGS) represents several powerful platforms that have revolutionized RNA and DNA analysis. The parallel sequencing of millions of DNA molecules can provide mechanistic insights into toxicology and provide new avenues for biomarker discovery with growing relevance for risk assessment. The evolution of NGS technologies has improved over the last decade with increased sensitivity and accuracy to foster new biomarker assays from tissue, blood and other biofluids. NGS sequencing technologies can identify transcriptional changes and genomic targets with base pair precision in response to chemical exposure. Further, there are several exciting movements within the toxicology community that incorporate NGS platforms into new strategies for more rapid toxicological characterizations. These include the Tox21 in vitro high throughput transcriptomic screening program, development of organotypic spheroids, alternative animal models, mining archival tissues, liquid biopsy and epigenomics. This review will describe NGS-based technologies, demonstrate how they can be used as tools for target discovery in tissue and blood, and suggest how they might be applied for risk assessment.
Collapse
Affiliation(s)
- B Alex Merrick
- Molecular and Genomic Toxicology Group, Biomolecular Screening Branch, Division National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, Ph: 919-541-1531,
| |
Collapse
|
17
|
Addressing systematic inconsistencies between in vitro and in vivo transcriptomic mode of action signatures. Toxicol In Vitro 2019; 58:1-12. [DOI: 10.1016/j.tiv.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/14/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
|
18
|
Robustness of RNA sequencing on older formalin-fixed paraffin-embedded tissue from high-grade ovarian serous adenocarcinomas. PLoS One 2019; 14:e0216050. [PMID: 31059554 PMCID: PMC6502345 DOI: 10.1371/journal.pone.0216050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissues are among the most widely available clinical specimens. Their potential utility as a source of RNA for transcriptome studies would greatly enhance population-based cancer studies. Although preliminary studies suggest FFPE tissue may be used for RNA sequencing, the effect of storage time on these specimens needs to be determined. We conducted this study to determine whether RNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries was present in sufficient quantity and quality for RNA-Seq analysis. FFPE tissues, stored from 7 to 32 years, were obtained from three SEER sites. RNA was extracted, quantified, quality assessed, and subjected to RNA-Seq (a whole transcriptome sequencing technology). FFPE specimens stored for longer periods of time had poorer RNA sample quality as indicated by negative correlations between specimen storage time and fragment distribution values (DV). In addition, sample contamination was a common issue among the RNA, with 41 of 67 samples having 5% to 48% bacterial contamination. However, regardless of specimen storage time and bacterial contamination, 60% of the samples yielded data that enabled gene expression quantification, identifying more than 10,000 genes, with the correlations among most biological replicates above 0.7. This study demonstrates that FFPE high-grade ovarian serous adenocarcinomas specimens stored in repositories for up to 32 years and under varying storage conditions are a promising source of RNA for RNA-Seq. We also describe certain caveats to be considered when designing RNA-Seq studies using archived FFPE tissues.
Collapse
|
19
|
Kohsaka S, Tatsuno K, Ueno T, Nagano M, Shinozaki-Ushiku A, Ushiku T, Takai D, Ikegami M, Kobayashi H, Kage H, Ando M, Hata K, Ueda H, Yamamoto S, Kojima S, Oseto K, Akaike K, Suehara Y, Hayashi T, Saito T, Takahashi F, Takahashi K, Takamochi K, Suzuki K, Nagayama S, Oda Y, Mimori K, Ishihara S, Yatomi Y, Nagase T, Nakajima J, Tanaka S, Fukayama M, Oda K, Nangaku M, Miyazono K, Miyagawa K, Aburatani H, Mano H. Comprehensive assay for the molecular profiling of cancer by target enrichment from formalin-fixed paraffin-embedded specimens. Cancer Sci 2019; 110:1464-1479. [PMID: 30737998 PMCID: PMC6447855 DOI: 10.1111/cas.13968] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/17/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Tumor molecular profiling is becoming a standard of care for patients with cancer, but the optimal platform for cancer sequencing remains undetermined. We established a comprehensive assay, the Todai OncoPanel (TOP), which consists of DNA and RNA hybridization capture‐based next‐generation sequencing panels. A novel method for target enrichment, named the junction capture method, was developed for the RNA panel to accurately and cost‐effectively detect 365 fusion genes as well as aberrantly spliced transcripts. The TOP RNA panel can also measure the expression profiles of an additional 109 genes. The TOP DNA panel was developed to detect single nucleotide variants and insertions/deletions for 464 genes, to calculate tumor mutation burden and microsatellite instability status, and to infer chromosomal copy number. Clinically relevant somatic mutations were identified in 32.2% (59/183) of patients by prospective TOP testing, signifying the clinical utility of TOP for providing personalized medicine to cancer patients.
Collapse
Affiliation(s)
- Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kenji Tatsuno
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaaki Nagano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiya Takai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Masachika Ikegami
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan.,Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kobayashi
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki Ueda
- Biological Data Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shogo Yamamoto
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Kumiko Oseto
- Department of Clinical Genomics, The University of Tokyo Hospital, Tokyo, Japan
| | - Keisuke Akaike
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Orthopedic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University, Graduate School of Medicine, Tokyo, Japan.,Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Nagayama
- Gastroenterological Center, Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Clinical Genomics, The University of Tokyo Hospital, Tokyo, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
20
|
Wehmas LC, Wood CE, Gagne R, Williams A, Yauk C, Gosink MM, Dalmas D, Hao R, O'Lone R, Hester S. Demodifying RNA for Transcriptomic Analyses of Archival Formalin-Fixed Paraffin-Embedded Samples. Toxicol Sci 2019; 162:535-547. [PMID: 29228314 DOI: 10.1093/toxsci/kfx278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Archival formalin-fixed paraffin-embedded (FFPE) tissue samples offer a vast but largely untapped resource for genomic research. The primary technical issues limiting use of FFPE samples are RNA yield and quality. In this study, we evaluated methods to demodify RNA highly fragmented and crosslinked by formalin fixation. Primary endpoints were RNA recovery, RNA-sequencing quality metrics, and transcriptional responses to a reference chemical (phenobarbital, PB). Frozen mouse liver samples from control and PB groups (n = 6/group) were divided and preserved for 3 months as follows: frozen (FR); 70% ethanol (OH); 10% buffered formalin for 18 h followed by ethanol (18F); or 10% buffered formalin (3F). Samples from OH, 18F, and 3F groups were processed to FFPE blocks and sectioned for RNA isolation. Additional sections from 3F received the following demodification protocols to mitigate RNA damage: short heated incubation with Tris-Acetate-EDTA buffer; overnight heated incubation with an organocatalyst using 2 different isolation kits; or overnight heated incubation without organocatalyst. Ribo-depleted, stranded, total RNA libraries were built and sequenced using the Illumina HiSeq 2500 platform. Overnight incubation (± organocatalyst) increased RNA yield >3-fold and RNA integrity numbers and fragment analysis values by > 1.5- and >3.0-fold, respectively, versus 3F. Postsequencing metrics also showed reduced bias in gene coverage and deletion rates for overnight incubation groups. All demodification groups had increased overlap for differentially expressed genes (77%-84%) and enriched pathways (91%-97%) with FR, with the highest overlap in the organocatalyst groups. These results demonstrate simple changes in RNA isolation methods that can enhance genomic analyses of FFPE samples.
Collapse
Affiliation(s)
- Leah C Wehmas
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Charles E Wood
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Remi Gagne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada K1A 0K9
| | - Carole Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada K1A 0K9
| | | | - Deidre Dalmas
- GlaxoSmithKline, King of Prussia, Pennsylvania 19406
| | | | - Raegan O'Lone
- ILSI Health and Environmental Sciences Institute, Washington, District of Columbia 20005
| | - Susan Hester
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| |
Collapse
|
21
|
Auerbach SS, Paules RS. Genomic dose response: Successes, challenges, and next steps. CURRENT OPINION IN TOXICOLOGY 2018. [DOI: 10.1016/j.cotox.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
Furihata C, Toyoda T, Ogawa K, Suzuki T. Using RNA-Seq with 11 marker genes to evaluate 1,4-dioxane compared with typical genotoxic and non-genotoxic rat hepatocarcinogens. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:51-55. [PMID: 30173864 DOI: 10.1016/j.mrgentox.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022]
Abstract
It has long been unclear whether 1,4-dioxane (DO) is a genotoxic hepatocarcinogen (GTHC). Therefore, the present study aimed to evaluate rat GTHCs and non-genotoxic hepatocarcinogens (NGTHCs) via selected gene expression patterns in the liver, as determined by next generation sequencing-targeted mRNA sequencing (RNA-Seq) and principal component analysis (PCA). Previously, we selected 11 marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate GTHCs and NGTHCs. In the present study, we quantified changes in the expression of these genes following DO treatment, and compared them with treatment with two typical rat GTHCs, N-nitrosodiethylamine (DEN) and 3,3'-dimethylbenzidine·2HCl (DMB), and a typical rat NGTHC, di(2-ethylhexyl)phthalate (DEHP). RNA-Seq was conducted on liver samples from groups of five male, 10-week-old F344 rats after 4 weeks' feeding of chemicals in the water or the food. Rats in the control group were given water and a basal diet. Significant changes in gene expression in experimental groups compared with the control group were observed in eight genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Phlda3 and Plk2), as shown by Tukey's test. Gene expression profiles of the 11 genes under DO treatment differed significantly from those with DEN and DMB, as well as DEHP. Gene expression profiles with DO treatment differed partially from those with typical GTHCs for five genes (Bax, Btg2, Cdkn1a, Lrp1 and Plk2) and were substantially different from treatment with a typical NGTHC (DEHP) for nine genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Mbd1, Phlda3 and Tubb4b) as determined by Tukey's test. Finally, PCA successfully differentiated GTHCs from DEHP and DO with the 11 genes. The present results suggest that RNA-Seq and PCA are useful to evaluate rat typical GTHCs and typical NGTHCs. DO was suggested to result in a different intermediate gene expression profile from typical GTHCs and NGTHC.
Collapse
Affiliation(s)
- Chie Furihata
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan; School of Science and Engineering, Aoyama Gakuin University, Sagamihara, Kanagawa, 252-5258, Japan.
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
23
|
Wehmas LC, DeAngelo AB, Hester SD, Chorley BN, Carswell G, Olson GR, George MH, Carter JH, Eldridge SR, Fisher A, Vallanat B, Wood CE. Metabolic Disruption Early in Life is Associated With Latent Carcinogenic Activity of Dichloroacetic Acid in Mice. Toxicol Sci 2017; 159:354-365. [PMID: 28962523 PMCID: PMC6223632 DOI: 10.1093/toxsci/kfx146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Early-life environmental factors can influence later-life susceptibility to cancer. Recent evidence suggests that metabolic pathways may mediate this type of latency effect. Previously, we reported that short-term exposure to dichloroacetic acid (DCA) increased liver cancer in mice 84 weeks after exposure was stopped. Here, we evaluated time course dynamics for key events related to this effect. This study followed a stop-exposure design in which 28-day-old male B6C3F1 mice were given the following treatments in drinking water for up to 93 weeks: deionized water (dH2O, control); 3.5 g/l DCA continuously; or 3.5 g/l DCA for 4-52 weeks followed by dH2O. Effects were evaluated at eight interim time points. A short-term biomarker study was used to evaluate DCA effects at 6, 15, and 30 days. Liver tumor incidence was higher in all DCA treatment groups, including carcinomas in 82% of mice previously treated with DCA for only 4 weeks. Direct effects of DCA in the short-term study included decreased liver cell proliferation and marked mRNA changes related to mitochondrial dysfunction and altered cell metabolism. However, all observed short-term effects of DCA were ultimately reversible, and prior DCA treatment did not affect liver cell proliferation, apoptosis, necrosis, or DNA sequence variants with age. Key intermediate events resulting from transient DCA exposure do not fit classical cytotoxic, mitogenic, or genotoxic modes of action for carcinogenesis, suggesting a distinct mechanism associated with early-life metabolic disruption.
Collapse
Affiliation(s)
- Leah C. Wehmas
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Anthony B. DeAngelo
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Susan D. Hester
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Brian N. Chorley
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Gleta Carswell
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Greg R. Olson
- Toxicologic Pathology Associates, Jefferson, AK,
USA
| | - Michael H. George
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | | | | | - Anna Fisher
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Beena Vallanat
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| | - Charles E. Wood
- National Health and Environmental Effects Research
Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC,
USA
| |
Collapse
|
24
|
Brachelente C, Cappelli K, Capomaccio S, Porcellato I, Silvestri S, Bongiovanni L, De Maria R, Verini Supplizi A, Mechelli L, Sforna M. Transcriptome Analysis of Canine Cutaneous Melanoma and Melanocytoma Reveals a Modulation of Genes Regulating Extracellular Matrix Metabolism and Cell Cycle. Sci Rep 2017; 7:6386. [PMID: 28743863 PMCID: PMC5526991 DOI: 10.1038/s41598-017-06281-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
Interactions between tumor cells and tumor microenvironment are considered critical in carcinogenesis, tumor invasion and metastasis. To examine transcriptome changes and to explore the relationship with tumor microenvironment in canine cutaneous melanocytoma and melanoma, we extracted RNA from formalin-fixed, paraffin-embedded (FFPE) specimens and analyzed them by means of RNA-seq for transcriptional analysis. Melanocytoma and melanoma samples were compared to detect differential gene expressions and significant enriched pathways were explored to reveal functional relations between differentially expressed genes. The study demonstrated a differential expression of 60 genes in melanomas compared to melanocytomas. The differentially expressed genes cluster in the extracellular matrix-receptor interaction, protein digestion and absorption, focal adhesion and PI3K-Akt (phosphoinositide 3-kinase/protein kinase B) signaling pathways. Genes encoding for several collagen proteins were more commonly differentially expressed. Results of the RNA-seq were validated by qRT-PCR and protein expression of some target molecules was investigated by means of immunohistochemistry. We hypothesize that the developing melanoma actively promotes collagen metabolism and extracellular matrix remodeling as well as enhancing cell proliferation and survival contributing to disease progression and metastasis. In this study, we also detected unidentified genes in human melanoma expression studies and uncover new candidate drug targets for further testing in canine melanoma.
Collapse
Affiliation(s)
| | - Katia Cappelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | | | | | | | - Laura Bongiovanni
- Faculty of Veterinary Medicine, 64100, Teramo, Italy
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | - Luca Mechelli
- Department of Veterinary Medicine, 06126, Perugia, Italy
| | - Monica Sforna
- Department of Veterinary Medicine, 06126, Perugia, Italy
| |
Collapse
|
25
|
Analysis of Gene Expression Signatures in Cancer-Associated Stroma from Canine Mammary Tumours Reveals Molecular Homology to Human Breast Carcinomas. Int J Mol Sci 2017; 18:ijms18051101. [PMID: 28531107 PMCID: PMC5455009 DOI: 10.3390/ijms18051101] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/17/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated stroma (CAS) plays a key role in cancer initiation and progression. Spontaneously occurring canine mammary carcinomas are viewed as excellent models of human breast carcinomas. Considering the importance of CAS for human cancer, it likely plays a central role in canine tumours as well. So far, however, canine CAS lacks characterisation, and it remains unclear whether the biology between CAS from canine and human tumours is comparable. In this proof-of-principle study, using laser-capture microdissection, we isolated CAS and normal stroma from 13 formalin-fixed paraffin embedded canine simple mammary carcinomas and analysed the expression of seven known human CAS markers by RT-qPCR (Reverse Transcription quantitative PCR) and validated some targets by immunohistochemistry. We found that Col1a1 (Collagen1α1), αSMA (alpha Smooth Muscle Actin), FAP (Fibroblast activation protein), PDGFRβ (Platelet-derived growth factor receptor beta), and Caveolin-1 were significantly upregulated in canine CAS, and the expression of CXCL12 (Stromal cell derived factor 1) significantly decreased, whereas MMP2 (Matrix Metalloproteinase 1) and IL6 (Interleukin 6) did not change. Our results suggest strong similarities in CAS biology in canine and human mammary carcinomas but also reveal some differences. To the best of our knowledge, this is the first report to provide a comprehensive expression analysis of the most important CAS markers in canine simple mammary carcinomas and further supports the validity of the dog as model for human cancer.
Collapse
|
26
|
Andry C, Duffy E, Moskaluk CA, McCall S, Roehrl MHA, Remick D. Biobanking-Budgets and the Role of Pathology Biobanks in Precision Medicine. Acad Pathol 2017; 4:2374289517702924. [PMID: 28725790 PMCID: PMC5497908 DOI: 10.1177/2374289517702924] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 12/29/2022] Open
Abstract
Biobanks have become an important component of the routine practice of pathology. At the 2016 meeting of the Association of Pathology Chairs, a series of presentations covered several important aspects of biobanking. An often overlooked aspect of biobanking is the fiscal considerations. A biobank budget must address the costs of consenting, procuring, processing, and preserving high-quality biospecimens. Multiple revenue streams will frequently be necessary to create a sustainable biobank; partnering with other key stakeholders has been shown to be successful at academic institutions which may serve as a model. Biobanking needs to be a deeply science-driven and innovating process so that specimens help transform patient-centered clinical and basic research (ie, fulfill the promise of precision medicine). Pathology’s role must be at the center of the biobanking process. This ensures that optimal research samples are collected while guaranteeing that clinical diagnostics are never impaired. Biobanks will continue to grow as important components in the mission of pathology, especially in the era of precision medicine.
Collapse
Affiliation(s)
- Chris Andry
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth Duffy
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | | | - Shannon McCall
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Daniel Remick
- Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
27
|
The Utilization of Formalin Fixed-Paraffin-Embedded Specimens in High Throughput Genomic Studies. Int J Genomics 2017; 2017:1926304. [PMID: 28246590 PMCID: PMC5299160 DOI: 10.1155/2017/1926304] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/09/2017] [Indexed: 01/09/2023] Open
Abstract
High throughput genomic assays empower us to study the entire human genome in short time with reasonable cost. Formalin fixed-paraffin-embedded (FFPE) tissue processing remains the most economical approach for longitudinal tissue specimen storage. Therefore, the ability to apply high throughput genomic applications to FFPE specimens can expand clinical assays and discovery. Many studies have measured the accuracy and repeatability of data generated from FFPE specimens using high throughput genomic assays. Together, these studies demonstrate feasibility and provide crucial guidance for future studies using FFPE specimens. Here, we summarize the findings of these studies and discuss the limitations of high throughput data generated from FFPE specimens across several platforms that include microarray, high throughput sequencing, and NanoString.
Collapse
|