1
|
Nhung TTM, Phat NK, Anh TT, Nghi TD, Thu NQ, Lee A, Nam Tien NT, Anh NK, Nguyen HT, Kim K, Nguyen DN, Kim DH, Park SK, Long NP. Endoplasmic reticulum stress inhibition preserves mitochondrial function and cell survival during the early onset of isoniazid-induced oxidative stress. Chem Biol Interact 2025; 411:111448. [PMID: 40015660 DOI: 10.1016/j.cbi.2025.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/23/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
A comprehensive understanding of isoniazid (INH)-mediated hepatotoxic effects is essential for developing strategies to predict and prevent severe liver toxicity in tuberculosis treatment. In this study, we used multi-omics profiling in vitro to investigate the toxic effects of INH, revealing significant involvement of endoplasmic reticulum (ER) stress, mitochondrial impairment, redox imbalance, and altered metabolism. Additional analysis using transcriptomics data from repeated time-course INH treatments on human hepatic microtissues revealed that cellular responses to ER stress and oxidative stress happened prior to disturbances in mitochondrial complexes. Mechanistic validation studies using time-lapse measurements of cytosolic and mitochondrial reactive oxygen species (ROS) revealed that INH initially triggered cytosolic ROS increasement and Nrf2 signaling pathway activation before mitochondrial ROS accumulation. Molecular imaging showed that INH subsequently disrupted mitochondrial function by impairing respiratory complexes I-IV and caused mitochondrial membrane proton leakage without affecting mitochondrial complex V, leading to mitochondrial depolarization and reduced ATP production. These disturbances enhanced mitochondrial fission and mitophagy. Our findings highlight the potential of inhibiting ER stress during early INH exposure to mitigate cytosolic and mitochondrial oxidative stress. We also revealed the critical role of Nrf2 signaling in protecting hepatocytes under INH-induced oxidative stress by maintaining redox homeostasis and enabling metabolic reprogramming through regulating antioxidant gene expression and cellular lipid abundance. Alternative antioxidant pathways, including selenocompound metabolism, HIF-1 signaling, and the pentose phosphate pathway, also responded to INH-induced oxidative stress. Collectively, our study emphasizes the importance of ER stress, redox imbalance, metabolic changes, and mitochondrial dysfunction that underlie INH-induced hepatotoxicity.
Collapse
Affiliation(s)
- Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Trinh Tam Anh
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Ara Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| | - Kimoon Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Duc Ninh Nguyen
- Comparative Pediatrics, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg 1870, Denmark
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| |
Collapse
|
2
|
Li Y, Li X, Wu Q, Puig M, Moulin F, Choudhuri S, Gingrich J, Guo L, Chen S. 7-Hydroxycannabidiol and 7-carboxycannabidiol induced cytotoxicity via apoptosis and endoplasmic reticulum stress in human hepatic cells. Arch Toxicol 2025:10.1007/s00204-025-04001-7. [PMID: 40029368 DOI: 10.1007/s00204-025-04001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Cannabidiol (CBD), a major component of extract from the plant Cannabis sativa L., has demonstrated efficacy in treating childhood-onset epilepsy; however, animal studies and clinical trials have reported elevated liver enzymes after CBD use, suggesting potential liver toxicity. In a previous study, we demonstrated that CBD caused cytotoxicity with apoptosis and endoplasmic reticulum (ER) stress in human hepatic cells. In the present study, we investigated the toxicity profile of the two main metabolites of CBD, 7-hydroxy-CBD and 7-carboxy-CBD, in primary human hepatocytes and HepG2 cells. Our findings indicated that both metabolites induced cellular damage similar to the parent drug in these cells. 7-Hydroxy-CBD and 7-carboxy-CBD also caused cell cycle disturbances, apoptosis, and ER stress in HepG2 cells. Additionally, we explored the role of cytochrome P450 (CYP) in the metabolism of 7-hydroxy-CBD and 7-carboxy-CBD using HepG2 cell lines expressing 14 individual CYPs. We determined that 7-hydroxy-CBD is metabolized by CYP2D6, and CYP2D6-mediated metabolism attenuated the cytotoxicity, apoptosis, and ER stress induced by 7-hydroxy-CBD. The CYPs did not metabolize 7-carboxy-CBD. In summary, our findings highlight the mechanisms underlying cytotoxicity induced by 7-hydroxy-CBD and 7-carboxy-CBD in hepatic cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, NCTR, U.S. FDA, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, 20993, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Pre-Market and Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U.S. FDA, College Park, MD, 20740, USA
| | - Jeremy Gingrich
- Division of Food Ingredients, Office of Pre-Market and Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U.S. FDA, College Park, MD, 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
3
|
Tak J, Kim YS, Kim SG. Roles of X-box binding protein 1 in liver pathogenesis. Clin Mol Hepatol 2025; 31:1-31. [PMID: 39355873 PMCID: PMC11791611 DOI: 10.3350/cmh.2024.0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/03/2024] Open
Abstract
The prevalence of drug-induced liver injury (DILI) and viral liver infections presents significant challenges in modern healthcare and contributes to considerable morbidity and mortality worldwide. Concurrently, metabolic dysfunctionassociated steatotic liver disease (MASLD) has emerged as a major public health concern, reflecting the increasing rates of obesity and leading to more severe complications such as fibrosis and hepatocellular carcinoma. X-box binding protein 1 (XBP1) is a distinct transcription factor with a basic-region leucine zipper structure, whose activity is regulated by alternative splicing in response to disruptions in endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR) activation. XBP1 interacts with a key signaling component of the highly conserved UPR and is critical in determining cell fate when responding to ER stress in liver diseases. This review aims to elucidate the emerging roles and molecular mechanisms of XBP1 in liver pathogenesis, focusing on its involvement in DILI, viral liver infections, MASLD, fibrosis/cirrhosis, and liver cancer. Understanding the multifaceted functions of XBP1 in these liver diseases offers insights into potential therapeutic strategies to restore ER homeostasis and mitigate liver damage.
Collapse
Affiliation(s)
- Jihoon Tak
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Korea
| |
Collapse
|
4
|
Chen S, Li X, Wu Q, Li Y, Puig M, Moulin F, Choudhuri S, Gingrich J, Guo L. Investigation of cannabidiol-induced cytotoxicity in human hepatic cells. Toxicology 2024; 506:153884. [PMID: 39004336 PMCID: PMC11648445 DOI: 10.1016/j.tox.2024.153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cannabidiol (CBD) is one of the primary cannabinoids present in extracts of the plant Cannabis sativa L. A CBD-based drug, Epidiolex, has been approved by the U.S. FDA for the treatment of seizures in childhood-onset epileptic disorders. Although CBD-associated liver toxicity has been reported in clinical studies, the underlying mechanisms remain unclear. In this study, we demonstrated that CBD causes cytotoxicity in primary human hepatocytes and hepatic HepG2 cells. A 24-h CBD treatment induced cell cycle disturbances, cellular apoptosis, and endoplasmic reticulum (ER) stress in HepG2 cells. A potent ER stress inhibitor, 4-phenylbutyrate, markedly attenuated CBD-induced apoptosis and cell death. Additionally, we investigated the role of cytochrome P450 (CYP)-mediated metabolism in CBD-induced cytotoxicity using HepG2 cell lines engineered to express 14 individual CYPs. We identified CYP2C9, 2C19, 2D6, 2C18, and 3A5 as participants in CBD metabolism. Notably, cells overexpressing CYP2C9, 2C19, and 2C18 produced 7-hydroxy-CBD, while cells overexpressing CYP2C9, 2C19, 2D6, and 2C18 generated 7-carboxy-CBD. Furthermore, CBD-induced cytotoxicity was significantly attenuated in the cells expressing CYP2D6. Taken together, these data suggest that cell cycle disturbances, apoptosis, and ER stress are associated with CBD-induced cytotoxicity, and CYP2D6-mediated metabolism plays a critical role in decreasing the cytotoxicity of CBD.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, NCTR, U.S. FDA, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Jeremy Gingrich
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| |
Collapse
|
5
|
Identifying multiscale translational safety biomarkers using a network-based systems approach. iScience 2023; 26:106094. [PMID: 36895646 PMCID: PMC9988559 DOI: 10.1016/j.isci.2023.106094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/30/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Animal testing is the current standard for drug and chemicals safety assessment, but hazards translation to human is uncertain. Human in vitro models can address the species translation but might not replicate in vivo complexity. Herein, we propose a network-based method addressing these translational multiscale problems that derives in vivo liver injury biomarkers applicable to in vitro human early safety screening. We applied weighted correlation network analysis (WGCNA) to a large rat liver transcriptomic dataset to obtain co-regulated gene clusters (modules). We identified modules statistically associated with liver pathologies, including a module enriched for ATF4-regulated genes as associated with the occurrence of hepatocellular single-cell necrosis, and as preserved in human liver in vitro models. Within the module, we identified TRIB3 and MTHFD2 as a novel candidate stress biomarkers, and developed and used BAC-eGFPHepG2 reporters in a compound screening, identifying compounds showing ATF4-dependent stress response and potential early safety signals.
Collapse
|
6
|
Ren Z, Chen S, Qin X, Li F, Guo L. Study of the roles of cytochrome P450 (CYPs) in the metabolism and cytotoxicity of perhexiline. Arch Toxicol 2022; 96:3219-3231. [PMID: 36083301 PMCID: PMC10395006 DOI: 10.1007/s00204-022-03369-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/25/2022] [Indexed: 12/21/2022]
Abstract
Perhexiline is a prophylactic antianginal agent developed in the 1970s. Although, therapeutically, it remained a success, the concerns of its severe adverse effects including hepatotoxicity caused the restricted use of the drug, and eventually its withdrawal from the market in multiple countries. In the clinical setting, cytochrome P450 (CYP) 2D6 is considered as a possible risk factor for the adverse effects of perhexiline. However, the role of CYP-mediated metabolism in the toxicity of perhexiline, particularly in the intact cells, remains unclear. Using our previously established HepG2 cell lines that individually express 14 CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7) and human liver microsomes, we identified that CYP2D6 plays a major role in the hydroxylation of perhexiline. We also determined that CYP1A2, 2C19, and 3A4 contribute to the metabolism of perhexiline. The toxic effect of perhexiline was reduced significantly in CYP2D6-overexpressing HepG2 cells, in comparison to the control cells. In contrast, overexpression of CYP1A2, 2C19, and 3A4 did not show a significant protective effect against the toxicity of perhexiline. Pre-incubation with quinidine, a well-recognized CYP2D6 inhibitor, significantly attenuated the protective effect in CYP2D6-overexpressing HepG2 cells. Furthermore, perhexiline-induced mitochondrial damage, apoptosis, and ER stress were also attenuated in CYP2D6-overexpressing HepG2 cells. These findings suggest that CYP2D6-mediated metabolism protects the cells from perhexiline-induced cytotoxicity and support the clinical observation that CYP2D6 poor metabolizers may have higher risk for perhexiline-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xuan Qin
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030, USA
| | - Feng Li
- Department of Pathology and Immunology, Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030, USA
| | - Lei Guo
- Division of Biochemical Toxicology, HFT-110, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
7
|
Huang Q, Chen Y, Zhang Z, Xue Z, Hua Z, Luo X, Li Y, Lu C, Lu A, Liu Y. The endoplasmic reticulum participated in drug metabolic toxicity. Cell Biol Toxicol 2022; 38:945-961. [PMID: 35040016 DOI: 10.1007/s10565-021-09689-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023]
Abstract
Covalent binding of reactive metabolites formed by drug metabolic activation with biological macromolecules is considered to be an important mechanism of drug metabolic toxicity. Recent studies indicate that the endoplasmic reticulum (ER) could play an important role in drug toxicity by participating in the metabolic activation of drugs and could be a primarily attacked target by reactive metabolites. In this article, we summarize the generation and mechanism of reactive metabolites in ER stress and their associated cell death and inflammatory cascade, as well as the systematic modulation of unfolded protein response (UPR)-mediated adaptive pathways.
Collapse
Affiliation(s)
- Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
HiPSC-Derived Hepatocyte-like Cells Can Be Used as a Model for Transcriptomics-Based Study of Chemical Toxicity. TOXICS 2021; 10:toxics10010001. [PMID: 35051043 PMCID: PMC8780865 DOI: 10.3390/toxics10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 11/25/2021] [Indexed: 01/13/2023]
Abstract
Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.
Collapse
|
9
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
10
|
Xiao F, Li H, Feng Z, Huang L, Kong L, Li M, Wang D, Liu F, Zhu Z, Wei Y, Zhang W. Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/DDIT3 signaling cascade. Sci Rep 2021; 11:488. [PMID: 33436794 PMCID: PMC7803743 DOI: 10.1038/s41598-020-80066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malignant cancer types, hepatocellular carcinoma (HCC) is highly invasive and capable of metastasizing to distant organs. Intermedin (IMD), an endogenous peptide belonging to the calcitonin family, has been suggested playing important roles in cancer cell survival and invasion, including in HCC. However, how IMD affects the behavior of HCC cells and the underlying mechanisms have not been fully elucidated. Here, we show that IMD maintains an important homeostatic state by activating the ERK1/2-EGR1 (early growth response 1) signaling cascade, through which HCC cells acquire a highly invasive ability via significantly enhanced filopodia formation. The inhibition of IMD blocks the phosphorylation of ERK1/2, resulting in EGR1 downregulation and endoplasmic reticulum stress (ER) stress, which is evidenced by the upregulation of ER stress marker DDIT3 (DNA damage-inducible transcript 3). The high level of DDIT3 induces HCC cells into an ER-stress related apoptotic pathway. Along with our previous finding that IMD plays critical roles in the vascular remodeling process that improves tumor blood perfusion, IMD may facilitate the acquisition of increased invasive abilities and a survival benefit by HCC cells, and it is easier for HCC cells to obtain blood supply via the vascular remodeling activities of IMD. According to these results, blockade of IMD activity may have therapeutic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongyu Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Denian Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhijun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
11
|
A mechanism of perhexiline's cytotoxicity in hepatic cells involves endoplasmic reticulum stress and p38 signaling pathway. Chem Biol Interact 2020; 334:109353. [PMID: 33309543 DOI: 10.1016/j.cbi.2020.109353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 12/22/2022]
Abstract
Perhexiline is a coronary vasodilator for angina treatment that was first developed in the 1960s. Perhexiline enjoyed worldwide success before reports of severe side effects, such as hepatotoxicity and neurotoxicity, caused its withdrawal from most of the markets. The underlying mechanism of the cytotoxicity of perhexiline, however, is not yet well understood. Here we demonstrated that perhexiline induced cellular damage in primary human hepatocytes, HepaRG cells and HepG2 cells. Analysis of gene and protein expression levels of endoplasmic reticulum (ER) stress markers showed that perhexiline caused ER stress in primary human hepatocytes and HepG2 cells. The splicing of XBP1 mRNA, a hallmark of ER stress, was observed upon perhexiline treatment. Using Gluc-Fluc-HepG2 cell line, we demonstrated that protein secretion was impaired upon perhexiline treatment, suggesting functional deficits in ER. Inhibition of ER stress using ER inhibitor 4-PBA or salubrinal attenuated the cytotoxicity of perhexiline. Directly knocking down ATF4 using siRNA also partially rescued HepG2 cells upon perhexiline exposure. In addition, inhibition of ER stress using either inhibitors or siRNA transfection attenuated perhexiline-induced increase in caspase 3/7 activity, indicating that ER stress contributed to perhexiline-induced apoptosis. Moreover, perhexiline treatment resulted in activation of p38 and JNK signaling pathways, two branches of MAPK cascade. Pre-treating HepG2 cells with p38 inhibitor SB239063 attenuated perhexiline-induced apoptosis and cell death. The inhibitor also prevented the activation of CHOP and ATF4. Overall, our study demonstrated that ER stress is one important mechanism underlying the hepatotoxicity of perhexiline, and p38 signaling pathway contributes to this process. Our finding shed light on the role of both ER stress and p38 signaling pathway in drug-induced liver injury.
Collapse
|
12
|
Mitochondrial dysfunction and apoptosis underlie the hepatotoxicity of perhexiline. Toxicol In Vitro 2020; 69:104987. [PMID: 32861758 DOI: 10.1016/j.tiv.2020.104987] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Perhexiline is an anti-anginal drug developed in the late 1960s. Despite its therapeutic success, it caused severe hepatoxicity in selective patients, which resulted in its withdrawal from the market. In the current study we explored the molecular mechanisms underlying the cytotoxicity of perhexiline. In primary human hepatocytes, HepaRG cells, and HepG2 cells, perhexiline induced cell death in a concentration- and time-dependent manner. Perhexiline treatment also caused a significant increase in caspase 3/7 activity at 2 h and 4 h. Pretreatment with specific caspase inhibitors suggested that both intrinsic and extrinsic apoptotic pathways contributed to perhexiline-induced cytotoxicity, which was confirmed by increased expression of TNF-α, cleavage of caspase 3 and 9 upon perhexiline treatment. Moreover, perhexiline caused mitochondrial dysfunction, demonstrated by the classic glucose-galactose assay at 4 h and 24 h. Results from JC-1 staining suggested perhexiline caused loss of mitochondrial potential. Blocking mitochondrial permeability transition pore using inhibitor bongkrekic acid attenuated the cytotoxicity of perhexiline. Western blotting analysis also showed decreased expression level of pro-survival proteins Bcl-2 and Mcl-1, and increased expression of pro-apoptotic protein Bad. Direct measurement of the activity of individual components of the mitochondrial respiratory complex demonstrated that perhexiline strongly inhibited Complex IV and Complex V and moderately inhibited Complex II and Complex II + III. Overall, our data demonstrated that both mitochondrial dysfunction and apoptosis underlies perhexiline-induced hepatotoxicity.
Collapse
|
13
|
Liu X, Lv H, Guo Y, Teka T, Wang X, Huang Y, Han L, Pan G. Structure-Based Reactivity Profiles of Reactive Metabolites with Glutathione. Chem Res Toxicol 2020; 33:1579-1593. [PMID: 32347096 DOI: 10.1021/acs.chemrestox.0c00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Therapeutic agents can be transformed into reactive metabolites under the action of various metabolic enzymes in vivo and then covalently combine with biological macromolecules (such as protein or DNA), resulting in increasing toxicity. The screening of reactive metabolites in drug discovery and development stages and monitoring of biotransformation in post-market drugs has become an important research field. Generally, reactive metabolites are electrophilic and can be captured by small nucleophiles. Glutathione (GSH) is a small peptide composed of three amino acids (i.e., glutamic acid, cysteine, and glycine). It has a thiol group which can react with electrophilic groups of reactive metabolic intermediates (such as benzoquinone, N-acetyl-p-benzoquinoneimine, and Michael acceptor) to form a stable binding conjugate. This paper aims to provide a review on structure-based reactivity profiles of reactive metabolites with GSH. Furthermore, this review also reveals the relationship between drugs' molecular structures and reactive metabolic toxicity from the perspective of metabolism, giving a reference for drug design and development.
Collapse
Affiliation(s)
- Xiaomei Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hong Lv
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tekleab Teka
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| | - Lifeng Han
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China
| |
Collapse
|
14
|
Yang H, Niemeijer M, van de Water B, Beltman JB. ATF6 Is a Critical Determinant of CHOP Dynamics during the Unfolded Protein Response. iScience 2020; 23:100860. [PMID: 32058971 PMCID: PMC7005498 DOI: 10.1016/j.isci.2020.100860] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/09/2019] [Accepted: 01/16/2020] [Indexed: 11/12/2022] Open
Abstract
The unfolded protein response (UPR) pathway senses unfolded proteins and regulates proteostasis and cell fate through activity of the transcription factors ATF4, ATF6, and XBP1 within a complex network of three main branches. Here, we investigated contributions of the three branches to UPR activity in single cells using microscopy-based quantification and dynamic modeling. BAC-GFP HepG2 reporter cell lines were exposed to tunicamycin, and activation of various UPR components was monitored for 24 h. We constructed a dynamic model to describe the adaptive UPR signaling network, for which incorporation of all three branches was required to match the data. Our calibrated model suggested that ATF6 shapes the early dynamics of pro-apoptotic CHOP. We confirmed this hypothesis by measurements beyond 24 h, by perturbing single siRNA knockdowns and by ATF6 measurements. Overall, our work indicates that ATF6 is an important regulator of CHOP, which in turn regulates cell fate decisions. A mathematical model of the unfolded protein response describes microscopy data Integration of modeling and experimental work offers insights into UPR regulation ATF6 shapes the early dynamics of the CHOP response
Collapse
Affiliation(s)
- Huan Yang
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Marije Niemeijer
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
15
|
Methods for Establishing and Using a Stable Cell Line Expressing Both Gaussia Luciferase and Firefly Luciferase to Screen for Endoplasmic Reticulum Stress. Methods Mol Biol 2020; 2102:531-555. [PMID: 31989575 DOI: 10.1007/978-1-0716-0223-2_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endoplasmic reticulum (ER) stress is one of the major mechanisms underlying the etiology of multiple diseases and drug-induced toxicity. Gaussia luciferase (Gluc) is a naturally secreted protein that has been used as a reporter for the secretory pathway of ER to enable efficient and real-time monitoring of the ER function. The Gluc assay has been widely used and optimized in various labs. In this chapter, we provide an example of the application of the Gluc assay by establishing a stable cell line expressing both Gluc and firefly luciferase (Fluc) to study ER stress in liver cells. We describe the detailed procedures used in our laboratory for Gluc- and Fluc-containing lentivirus production and titration, for establishing a HepG2-based stable cell line through lentivirus transduction and the validation process. In addition, we provide an example of using the established stable cell line to investigate ER stress.
Collapse
|
16
|
Jia Z, Zhao C, Wang M, Zhao X, Zhang W, Han T, Xia Q, Han Z, Lin R, Li X. Hepatotoxicity assessment of Rhizoma Paridis in adult zebrafish through proteomes and metabolome. Biomed Pharmacother 2020; 121:109558. [DOI: 10.1016/j.biopha.2019.109558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
|
17
|
Mao J, Hu Y, Ruan L, Ji Y, Lou Z. Role of endoplasmic reticulum stress in depression (Review). Mol Med Rep 2019; 20:4774-4780. [PMID: 31702816 PMCID: PMC6854536 DOI: 10.3892/mmr.2019.10789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Depression is a devastating mood disorder that causes profound disability worldwide. Despite the increasing number of antidepressant medications available, the treatment options for depression are limited. Therefore, understanding the etiology and pathophysiology of depression, and exploiting potential novel agents to treat and prevent this disorder are imperative. Endoplasmic reticulum (ER) stress activates the unfolded protein response and mediates the pathogenesis of psychiatric diseases, including depression. Emerging evidence in human and animal models suggests an intriguing link between ER stress and depression. The ER serves as an important subcellular organelle for the synthesis, folding, modification, and transport of proteins, a process that is highly developed in neuronal cells. Perturbations of ER homeostasis lead to ER stress, and ER stress helps to restore the normal ER function by restoring the protein-folding capacity of the ER. This biological defense mechanism is imperative to prevent the disease. However, excessive or persistent ER stress eventually causes cell death. If the damage occurs in the hippocampus, the amygdala and striatum and other areas of the neurons will be involved in the development of depression. In this review article, we explore how ER stress might have an important role in the pathophysiology of depression and how different drugs affect depression through ER stress.
Collapse
Affiliation(s)
- Jiaxin Mao
- Department of Mental Health and Psychiatry, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yanran Hu
- Department of Mental Health and Psychiatry, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liemin Ruan
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Medical School of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Yunxin Ji
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Medical School of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Medical School of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
18
|
Zhang Y, den Braver-Sewradj SP, den Braver MW, Hiemstra S, Vermeulen NPE, van de Water B, Commandeur JNM, Vos JC. Glutathione S-Transferase P1 Protects Against Amodiaquine Quinoneimines-Induced Cytotoxicity but Does Not Prevent Activation of Endoplasmic Reticulum Stress in HepG2 Cells. Front Pharmacol 2018; 9:388. [PMID: 29720942 PMCID: PMC5915463 DOI: 10.3389/fphar.2018.00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
Formation of the reactive amodiaquine quinoneimine (AQ-QI) and N-desethylamodiaquine quinoneimine (DEAQ-QI) plays an important role in the toxicity of the anti-malaria drug amodiaquine (AQ). Glutathione conjugation protects against AQ-induced toxicity and GSTP1 is able to conjugate its quinoneimine metabolites AQ-QI and DEA-QI with glutathione. In this study, HepG2 cells transiently transfected with the human GSTP1 construct were utilized to investigate the protective effect of GSTP1 in a cellular context. HepG2 cells were exposed to synthesized QIs, which bypasses the need for intracellular bioactivation of AQ or DEAQ. Exposure was accompanied by decreased cell viability, increased caspase 3 activity, and decreased intracellular GSH levels. Using high-content imaging-based BAC-GFP reporters, it was shown that AQ-QI and DEAQ-QI specifically activated the endoplasmic reticulum (ER) stress response. In contrast, oxidative stress, DNA damage, or inflammatory stress responses were not activated. Overexpression of GSTP1 resulted in a two-fold increase in GSH-conjugation of the QIs, attenuated QI-induced cytotoxicity especially under GSH-depletion condition, abolished QIs-induced apoptosis but did not significantly inhibit the activation of the ER stress response. In conclusion, these results indicate a protective role of GSTP1 by increasing enzymatic detoxification of AQ-QI and DEAQ-QI and suggest a second protective mechanism by interfering with ER stress induced apoptosis.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Clinical Pharmacokinetics Research Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shalenie P den Braver-Sewradj
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Michiel W den Braver
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Steven Hiemstra
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J C Vos
- Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
The role of hepatic cytochrome P450s in the cytotoxicity of dronedarone. Arch Toxicol 2018; 92:1969-1981. [PMID: 29616291 DOI: 10.1007/s00204-018-2196-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
Abstract
Dronedarone is used to treat patients with cardiac arrhythmias and has been reported to be associated with liver injury. Our previous mechanistic work demonstrated that DNA damage-induced apoptosis contributes to the cytotoxicity of dronedarone. In this study, we examined further the underlying mechanisms and found that after a 24-h treatment of HepG2 cells, dronedarone caused cytotoxicity, G1-phase cell cycle arrest, suppression of topoisomerase II, and DNA damage in a concentration-dependent manner. We also investigated the role of cytochrome P450s (CYPs)-mediated metabolism in the dronedarone-induced toxicity using our previously established HepG2 cell lines expressing individually 14 human CYPs (1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7). We demonstrated that CYP3A4, 3A5, and 2D6 were the major enzymes that metabolize dronedarone, and that CYP3A7, 2E1, 2C19, 2C18, 1A1, and 2B6 also metabolize dronedarone, but to a lesser extent. Our data showed that the cytotoxicity of dronedarone was decreased in CYP3A4-, 3A5-, or 2D6-overexpressing cells compared to the control HepG2 cells, indicating that the parent dronedarone has higher potency than the metabolites to induce cytotoxicity in these cells. In contrast, cytotoxicity was increased in CYP1A1-overexpressing cells, demonstrating that CYP1A1 exerts an opposite effect in dronedarone's toxicity, comparing to CYP3A4, 3A5, or 2D6. We also studied the involvement of topoisomerase II in dronedarone-induced toxicity, and demonstrated that the overexpression of topoisomerase II caused an increase in cell viability and a decrease in γ-H2A.X induction, suggesting that suppression of topoisomerase II may be one of the mechanisms involved in dronedarone-induced liver toxicity.
Collapse
|
20
|
Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol 2018; 92:1797-1814. [PMID: 29502165 PMCID: PMC5962642 DOI: 10.1007/s00204-018-2178-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.
Collapse
|
21
|
Mitochondrial dysfunction induced by leflunomide and its active metabolite. Toxicology 2018; 396-397:33-45. [PMID: 29427785 DOI: 10.1016/j.tox.2018.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/15/2022]
Abstract
Leflunomide, an anti-inflammatory drug used for the treatment of rheumatoid arthritis, has been marked with a black box warning regarding an increased risk of liver injury. The active metabolite of leflunomide, A771726, which also carries a boxed warning about potential hepatotoxicity, has been marketed as teriflunomide for the treatment of relapsing multiple sclerosis. Thus far, however, the mechanism of liver injury associated with the two drugs has remained elusive. In this study, cytotoxicity assays showed that ATP depletion and subsequent LDH release were induced in a time- and concentration-dependent manner by leflunomide in HepG2 cells, and to a lesser extent, by A77 1726. The decline of cellular ATP levels caused by leflunomide was dramatically exacerbated when galactose was substituted for glucose as the sugar source, indicating a potential mitochondrial liability of leflunomide. By measuring the activities of immuno-captured mitochondrial oxidative phosphorylation (OXPHOS) complexes, we found that leflunomide and A77 1726 preferentially targeted complex V (F1FO ATP synthase), with IC50 values of 35.0 and 63.7 μM, respectively. Bongkrekic acid, a mitochondrial permeability transition pore blocker that targets adenine nucleotide translocase, profoundly attenuated mitochondrial membrane depolarization, ATP depletion, and LDH leakage induced by leflunomide and A77 1726. Substantial alterations of mitochondrial function at the transcript level were observed in leflunomide-treated HepG2 cells, whereas the effects of A77 1726 on the cellular transcriptome were much less profound. Our results suggest that mitochondrial dysfunction may be implicated in the hepatotoxicity associated with leflunomide and A77 1726, with the former exhibiting higher toxicity potency.
Collapse
|
22
|
Drugs which influence serotonin transporter and serotonergic receptors: Pharmacological and clinical properties in the treatment of depression. Pharmacol Rep 2018; 70:37-46. [DOI: 10.1016/j.pharep.2017.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
|
23
|
Ren Z, Chen S, Ning B, Guo L. Use of Liver-Derived Cell Lines for the Study of Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Ren Z, Chen S, Qing T, Xuan J, Couch L, Yu D, Ning B, Shi L, Guo L. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology 2017; 392:11-21. [PMID: 28988120 DOI: 10.1016/j.tox.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Leflunomide, used for the treatment of rheumatoid arthritis, has been reported to cause severe liver problems and liver failure; however, the underlying mechanisms are not clear. In this study, we used multiple approaches including genomic analysis to investigate and characterize the possible molecular mechanisms of the cytotoxicity of leflunomide in hepatic cells. We found that leflunomide caused endoplasmic reticulum (ER) stress and activated an unfolded protein response, as evidenced by increased expression of related genes including CHOP and GADD34; and elevated protein levels of typical ER stress markers including CHOP, ATF-4, p-eIF2α, and spliced XBP1. The secretion of Gaussia luciferase was suppressed in cells treated with leflunomide in an ER stress reporter assay. Inhibition of ER stress with an ER stress inhibitor 4-phenylbutyrate, and knockdown of ATF-4 and CHOP genes partially protected cells upon leflunomide exposure. In addition, both genomic and biochemical analyses revealed that JNK and ERK1/2 of MAPK signaling pathways were activated, and both contributed to the leflunomide-induced cytotoxicity. Inhibiting JNK activation using a JNK inhibitor attenuated the ER stress and cytotoxicity of leflunomide, whereas inhibiting ERK1/2 using an ERK1/2 inhibitor or ERK1/2 siRNA increased the adverse effect caused by leflunomide, suggesting opposite roles for the two pathways. In summary, our data indicate that both ER stress and the activation of JNK and ERK1/2 contribute to leflunomide-induced cytotoxicity.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Tao Qing
- School of Pharmacy and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Letha Couch
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Dianke Yu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Leming Shi
- School of Pharmacy and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
25
|
Insights into the Roles of Midazolam in Cancer Therapy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3826506. [PMID: 28706559 PMCID: PMC5494572 DOI: 10.1155/2017/3826506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/15/2017] [Accepted: 05/28/2017] [Indexed: 12/24/2022]
Abstract
With its high worldwide mortality and morbidity, cancer has gained increasing attention and novel anticancer drugs have become the focus for cancer research. Recently, studies have shown that most anesthetic agents can influence the activity of tumor cells. Midazolam is a γ-aminobutyric acid A (GABAA) receptor agonist, used widely for preoperative sedation and as an adjuvant during neuraxial blockade. Some studies have indicated the potential for midazolam as a novel therapeutic cancer drug; however, the mechanism by which midazolam affects cancer cells needs to be clarified. This systematic review aims to summarize the progress in assessing the molecular mechanism of midazolam as an anticancer agent.
Collapse
|