1
|
Bowen TJ, Hall AR, Lloyd GR, Smith MJ, Weber RJM, Wilson A, Pointon A, Viant MR. Discovering a predictive metabolic signature of drug-induced structural cardiotoxicity in cardiac microtissues. Arch Toxicol 2025:10.1007/s00204-025-04074-4. [PMID: 40379885 DOI: 10.1007/s00204-025-04074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
Improved prediction of drug-induced structural cardiotoxicity is required to reduce attrition driven by cardiac safety concerns in drug discovery. Omics measurements are well suited to this need, offering the potential to discover molecular signatures associated with toxicological endpoints. In addition, untargeted metabolomics can simultaneously measure xenobiotic fate within the test system. We present an extensive metabolomics study to discover a predictive metabolic signature of drug-induced structural cardiotoxicity. A human-relevant in vitro cardiac model, cardiac microtissues, were exposed to twelve xenobiotics (eight clinically labelled structural cardiotoxins and four non-cardiotoxic pharmaceuticals), each at two concentrations, for 6, 24, and 48 h. The measurements were made by direct-infusion and liquid-chromatography mass spectrometry from intracellular polar and lipid extracts, and spent culture medium, respectively. Data were used to quantify levels, and reveal the metabolic fate of the xenobiotics, and to simultaneously explore their effects on the cardiac microtissues. Xenobiotic quantification revealed free concentrations to be typically lower than nominal values, whilst discovery of xenobiotic-related features evidenced the biotransformation capacity of the microtissues. Both common and condition-specific effects of the xenobiotics on the intracellular metabolome, lipidome, and metabolic footprint were discovered. Moreover, metabolic signatures with capacity to predict structural cardiotoxicity were revealed. These included features representing several ceramides, energy metabolism intermediates, e.g. creatine, purine-related metabolites, and markers of oxidative stress, e.g. glutathione.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK
- Medicines Discovery Catapult, Alderley Park, Cheshire, SK10 4 TG, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK
| | - Matthew J Smith
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2 TT, UK.
| |
Collapse
|
2
|
Sørhus E, Lie KK, Meier S, Furmanek T, Norberg B, Perrichon P. Transcriptomics uncover inhibition of repair and wound healing pathways in Atlantic halibut (Hippoglossus hippoglossus) after crude oil exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118151. [PMID: 40222109 DOI: 10.1016/j.ecoenv.2025.118151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/15/2025]
Abstract
Accidental oil spills significantly threaten marine ecosystems and fisheries, impacting biodiversity and ecological health. This study examines the downstream transcriptomic responses of Atlantic halibut larvae exposed to crude oil during organogenesis. Findings show concentration-dependent transcriptional abnormalities. Pathway analysis at 10 days post-hatch (dph), 11 days after cessation of oil exposure, indicates downregulation of inflammatory and reparative pathways. By 18 dph, tissue-specific analyses reveal activation of these pathways, especially in head tissues, alongside upregulation of neuronal signaling pathways. This highlights the complex relationship between oil exposure and transcriptional responses, emphasizing recovery mechanisms represented by regulation of inflammatory, repair and wound healing pathways following oil exposure. The activation of repair pathways in surviving larvae suggests compensatory processes to address oil-induced damage. These novel insights enhance understanding of the molecular mechanisms of oil toxicity and the lasting effects on marine organisms.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Nordnesgaten 50, Bergen, Norway.
| | - Kai K Lie
- Institute of Marine Research, Nordnesgaten 50, Bergen, Norway
| | - Sonnich Meier
- Institute of Marine Research, Nordnesgaten 50, Bergen, Norway
| | - Tomasz Furmanek
- Institute of Marine Research, Nordnesgaten 50, Bergen, Norway
| | - Birgitta Norberg
- Institute of Marine Research, Austevoll Research station, Sauganeset 16, Storebø, Norway
| | - Prescilla Perrichon
- Institute of Marine Research, Austevoll Research station, Sauganeset 16, Storebø, Norway
| |
Collapse
|
3
|
Mazidi Z, Wieser M, Spinu N, Weidinger A, Kozlov AV, Vukovic K, Wellens S, Murphy C, Singh P, Lagares LM, Bobbili MR, Liendl L, Schosserer M, Diendorfer A, Bettelheim B, Eilenberg W, Exner T, Culot M, Jennings P, Wilmes A, Novic M, Benfenati E, Grillari-Voglauer R, Grillari J. Cyclosporin A toxicity on endothelial cells differentiated from induced pluripotent stem cells: Assembling an adverse outcome pathway. Toxicol In Vitro 2025; 103:105954. [PMID: 39550010 DOI: 10.1016/j.tiv.2024.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 06/15/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
Cyclosporin A (CSA) is a potent immunosuppressive agent in pharmacologic studies. However, there is evidence for side effects, specifically regarding vascular dysfunction. Its mode of action inducing endothelial cell toxicity is partially unclear, and a connection with an adverse outcome pathway (AOP) is not established yet. Therefore, we designed this study to get deeper insights into the mechanistic toxicology of CSA on angiogenesis. Stem cells, especially induced pluripotent stem cells (iPSCs) with the ability of differentiation to all organs of the body, are considered a promising in vitro model to reduce animal experimentation. In this study, we differentiated iPSCs to endothelial cells (ECs) as one cell type that in other studies would allow to generate multi-cell type organoids from single donors. Flow cytometry and immunostaining confirmed our scalable differentiation protocol. Then dose and time course experiments assessing CSA cytotoxicity on iPS derived endothelial cells were performed. Transcriptomic data suggested CSA dependent induction of reactive oxygen species (ROS), mitochondrial dysfunction, and impaired angiogenesis via ROS induction which was confirmed by in vitro experiments. In order to put these data into a potential adverse outcome pathway (AOP) context, we performed a literature review for CSA-mediated endothelial cell toxicity and combined our experimental data with the publicly available knowledge. Such an AOP will help to design in vitro test batteries and to model events observed in human toxicity studies, as well in predictive toxicology.
Collapse
Affiliation(s)
- Zahra Mazidi
- Evercyte GmbH, Leberstrasse 20, 1110 Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Nicoleta Spinu
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Kristijan Vukovic
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"-IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Sara Wellens
- University of Artois, UR2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Liadys Mora Lagares
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Lisa Liendl
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Bruno Bettelheim
- Department of Obstetrics and Gynecology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Wolf Eilenberg
- Department of General Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Thomas Exner
- Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia
| | - Maxime Culot
- University of Artois, UR2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081HZ Amsterdam, the Netherlands
| | - Marjana Novic
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Emilio Benfenati
- Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche "Mario Negri"-IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Regina Grillari-Voglauer
- Evercyte GmbH, Leberstrasse 20, 1110 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU University, Muthgasse 18, 1190 Vienna, Austria; Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstrasse 13, 1200 Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
4
|
Langan LM, Baettig CG, Cole AR, Lovin L, Scarlett K, Wronski AR, O'Brien ME, Shmaitelly Y, Brooks BW. Experimental reporting of fish transcriptomic responses in environmental toxicology and ecotoxicology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025:vgae077. [PMID: 39965138 DOI: 10.1093/etojnl/vgae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 02/20/2025]
Abstract
Due to its increasing affordability and efforts to understand transcriptional responses of organisms to biotic and abiotic stimuli, transcriptomics has become an important tool with significant impact on toxicological investigations and hazard and risk assessments, especially during development and application of new approach methodologies (NAMs). Data generated using transcriptomic methodologies have directly informed adverse outcome pathway frameworks, chemical and biological read across, and aided in the identification of points of departure. Using data reporting frameworks for transcriptomics data offers improved transparency and reproducibility of research and an opportunity to identify barriers to adoption of these NAMs, especially in environmental toxicology and ecotoxicology with aquatic models. Improved reporting also allows for reexamination of existing data, limiting needs for experiment replication and further reducing animal experimentation. Here, we use a standardized form of data reporting for omics-based studies, the Organisation for Economic Co-operation and Development omics reporting framework, which specifically reports on a list of parameters that should be included in transcriptomics studies used in a regulatory context. We focused specifically on fish studies using RNA- Sequencing (Seq)/microarray technologies within a toxicology context. Inconsistencies in reporting and methodologies among the experimental designs (toxicology vs. molecular characterization) were observed in addition to foundational differences in reporting of sample concentration or preparation or quality assessments, which can affect reproducibility and read across, confidence in results, and contribute substantially to understanding molecular mechanisms of toxicants and toxins. Our findings present an opportunity for improved research reporting. We also provide several recommendations as logical steps to reduce barriers to adoption of transcriptomics within environmental toxicology and ecotoxicology.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Camille G Baettig
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Lea Lovin
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Kendall Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Adam R Wronski
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Megan E O'Brien
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, United States
| | - Yesmeena Shmaitelly
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Bryan W Brooks
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- Department of Environmental Science, Baylor University, Waco, TX, United States
- Department of Public Health, Baylor University, Waco, TX, United States
| |
Collapse
|
5
|
Lai W, Song Y, Tollefsen KE, Hvidsten TR. SOLA: dissecting dose-response patterns in multi-omics data using a semi-supervised workflow. Front Genet 2024; 15:1508521. [PMID: 39687738 PMCID: PMC11647027 DOI: 10.3389/fgene.2024.1508521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
An increasing number of ecotoxicological studies have used omics-data to understand the dose-response patterns of environmental stressors. However, very few have investigated complex non-monotonic dose-response patterns with multi-omics data. In the present study, we developed a novel semi-supervised network analysis workflow as an alternative to benchmark dose (BMD) modelling. We utilised a previously published multi-omics dataset generated from Daphnia magna after chronic gamma radiation exposure to obtain novel knowledge on the dose-dependent effects of radiation. Our approach combines 1) unsupervised co-expression network analysis to group genes with similar dose responses into modules; 2) supervised classification of these modules by relevant response patterns; 3) reconstruction of regulatory networks based on transcription factor binding motifs to reveal the mechanistic underpinning of the modules; 4) differential co-expression network analysis to compare the discovered modules across two datasets with different exposure periods; and 5) pathway enrichment analysis to integrate transcriptomics and metabolomics data. Our method unveiled both known and novel effects of gamma radiation, provide insight into shifts in responses from low to high dose rates, and can be used as an alternative approach for multi-omics dose-response analysis in future. The workflow SOLA (Semi-supervised Omics Landscape Analysis) is available at https://gitlab.com/wanxin.lai/SOLA.git.
Collapse
Affiliation(s)
- Wanxin Lai
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Norwegian University of Life Sciences (NMBU), Akershus, Norway
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Akershus, Norway
| | - Torgeir R. Hvidsten
- Bioinformatics and Applied Statistics (BIAS), Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Akershus, Norway
| |
Collapse
|
6
|
Ledwith R, Stobernack T, Bergert A, Bahl A, Pink M, Haase A, Dumit VI. Towards characterization of cell culture conditions for reliable proteomic analysis: in vitro studies on A549, differentiated THP-1, and NR8383 cell lines. Arch Toxicol 2024; 98:4021-4031. [PMID: 39264451 PMCID: PMC11496344 DOI: 10.1007/s00204-024-03858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Proteomic investigations result in high dimensional datasets, but integration or comparison of different studies is hampered by high variances due to different experimental setups. In addition, cell culture conditions can have a huge impact on the outcome. This study systematically investigates the impact of experimental parameters on the proteomic profiles of commonly used cell lines-A549, differentiated THP-1 macrophage-like cells, and NR8383-for toxicity studies. The work focuses on analyzing the influence at the proteome level of cell culture setup involving different vessels, cell passage numbers, and post-differentiation harvesting time, aiming to improve the reliability of proteomic analyses for hazard assessment. Mass-spectrometry-based proteomics was utilized for accurate protein quantification by means of a label-free approach. Our results showed that significant proteome variations occur when cells are cultivated under different setups. Further analysis of these variations revealed their association to specific cellular pathways related to protein misfolding, oxidative stress, and proteasome activity. Conversely, the influence of cell passage numbers on the proteome is minor, suggesting a reliable range for conducting reproducible biological replicates. Notable, substantial proteome alterations occur over-time post-differentiation of dTHP-1 cells, particularly impacting pathways crucial for macrophage function. This finding is key for the interpretation of experimental results. These results highlight the need for standardized culture conditions in proteomic-based evaluations of treatment effects to ensure reliable results, a prerequisite for achieving regulatory acceptance of proteomics data.
Collapse
Affiliation(s)
- Rico Ledwith
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Tobias Stobernack
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Antje Bergert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Aileen Bahl
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Mario Pink
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Verónica I Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
7
|
Gasque-Belz L, Carrière K, Humeniuk B, Park B, Colville C, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hecker M, Hanson M. Application of a new approach method to assess the hazard of complex legacy contaminated groundwater mixtures on fathead minnows in outdoor mesocosms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176081. [PMID: 39244049 DOI: 10.1016/j.scitotenv.2024.176081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Assessing the environmental risks of contaminated groundwater presents significant challenges due to its often-complex chemical composition and to dynamic processes affecting exposure of organisms in receiving surface waters. The objective of this study was to characterize the effects of groundwater collected from a legacy contaminated industrial site, in fish under environmentally relevant conditions. A 21-day fish short-term reproduction assay was conducted in outdoor wetland mesocosms by exposing adult fathead minnows (Pimephales promelas) to graded concentrations of groundwater (1 %, 3 %, and 6 %). Offspring were held in mesocosms up to four days post-hatch to apply a new approach method (NAM), the EcoToxChip™, to explore whether traditional apical endpoints could be predicted using an alternative mechanistic approach. None of the groundwater concentrations used in this study were lethal to fish. There was greater cumulative number of eggs produced at the highest concentration of exposure. However, no abnormal histological appearance was observed in the liver and gonads of fish and no significant effect was observed in the relative expression of genes, tubercle counts, and erythrocyte micronuclei counts compared to the negative control. Food availability in the mesocosms was also assessed and the abundance of zooplankton increased in all groundwater-treated mesocosms. Fathead minnow findings are in contrast to those obtained from previous controlled laboratory studies that revealed significant genotoxicity, hepatotoxicity, and reprotoxicity of the same mixtures. Several factors could explain these observations, including the aging of groundwater in mesocosms before fish addition resulting in photo- and biodegradation and binding to sediments of toxic components. Our static exposure scenario likely underestimated realistic exposure scenarios where groundwater inflow to surface water is generally semi-continuous. Nevertheless, focused transcriptome analysis using EcoToxChips also observed greater toxicity during previous laboratory tests compared to mesocosm scenarios, and thus, our results support the use of this NAM in the ecological risk assessment of contaminated groundwater.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Kailey Carrière
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Braedon Humeniuk
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Alvarez-Mora I, Bolliet V, Lopez-Herguedas N, Bouchard C, Monperrus M, Etxebarria N. Unravelling the metabolomic signatures of migrant and non-migrant glass eels (Anguilla anguilla) and their response to diazepam exposure. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106801. [PMID: 39426204 DOI: 10.1016/j.marenvres.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Understanding the migratory cycle of the European eel is crucial for implementing effective conservation measures. The reasons why some glass eels settle in lower estuaries rather than migrating upriver remain unclear. This study aims to identify metabolomic signatures that distinguish active (migrant) from inactive (non-migrant) glass eels. Using a combination of target and non-target screening (NTS) approaches, the metabolite profile of glass eels was studied, and a PLS-DA classification model was applied to find differences between behavioural phenotypes. This model highlighted methionine, glutaryl-L-carnitine, and palmitoylcarnitine as key metabolites, with methionine being significantly different between groups. Glutaryl-L-carnitine strongly correlated with activity, suggesting it might be a more sensitive indicator of glass eel activity than previously studied parameters such as weight loss and oxygen consumption. The findings suggest that differences between active and inactive eels result from both swimming activity and intrinsic metabolic differences, with methionine linked to both factors. We also explored potential differences in how diazepam affects active and inactive glass eels. However, our metabolomic approach lacked the sensitivity to detect significant variations. Overall, this study provides valuable insights into the metabolomic distinctions between active and inactive glass eels, establishing a foundation for future research in this field.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain.
| | - Valérie Bolliet
- Université de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Aquapôle INRAE, MIRA, F64310, Saint-Pée-sur-Nivelle, France
| | - Naroa Lopez-Herguedas
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| | - Colin Bouchard
- Université de Pau et des Pays de l'Adour, E2S UPPA, ECOBIOP, Aquapôle INRAE, MIRA, F64310, Saint-Pée-sur-Nivelle, France
| | - Mathilde Monperrus
- Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Université de Pau et des Pays de l'Adour, 64000 Anglet, Basque Country France
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, 48080 Leioa (Biscay), Basque Country, Spain; Plentzia Marine Station, University of the Basque Country, 48620 Plentzia (Biscay), Basque Country, Spain
| |
Collapse
|
9
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Drake C, Zobl W, Escher SE. Assessment of pulmonary fibrosis using weighted gene co-expression network analysis. FRONTIERS IN TOXICOLOGY 2024; 6:1465704. [PMID: 39512679 PMCID: PMC11540828 DOI: 10.3389/ftox.2024.1465704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
For many industrial chemicals toxicological data is sparse regarding several regulatory endpoints, so there is a high and often unmet demand for NAMs that allow for screening and prioritization of these chemicals. In this proof of concept case study we propose multi-gene biomarkers of compounds' ability to induce lung fibrosis and demonstrate their application in vitro. For deriving these biomarkers we used weighted gene co-expression network analysis to reanalyze a study where the time-dependent pulmonary gene-expression in mice treated with bleomycin had been documented. We identified eight modules of 58 to 273 genes each which were particularly activated during the different phases (inflammatory; acute and late fibrotic) of the developing fibrosis. The modules' relation to lung fibrosis was substantiated by comparison to known markers of lung fibrosis from DisGenet. Finally, we show the modules' application as biomarkers of chemical inducers of lung fibrosis based on an in vitro study of four diketones. Clear differences could be found between the lung fibrosis inducing diketones and other compounds with regard to their tendency to induce dose-dependent increases of module activation as determined using a previously proposed differential activation score and the fraction of differentially expressed genes in the modules. Accordingly, this study highlights the potential use of composite biomarkers mechanistic screening for compound-induced lung fibrosis.
Collapse
|
11
|
Ortega-Vallbona R, Palomino-Schätzlein M, Tolosa L, Benfenati E, Ecker GF, Gozalbes R, Serrano-Candelas E. Computational Strategies for Assessing Adverse Outcome Pathways: Hepatic Steatosis as a Case Study. Int J Mol Sci 2024; 25:11154. [PMID: 39456937 PMCID: PMC11508863 DOI: 10.3390/ijms252011154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The evolving landscape of chemical risk assessment is increasingly focused on developing tiered, mechanistically driven approaches that avoid the use of animal experiments. In this context, adverse outcome pathways have gained importance for evaluating various types of chemical-induced toxicity. Using hepatic steatosis as a case study, this review explores the use of diverse computational techniques, such as structure-activity relationship models, quantitative structure-activity relationship models, read-across methods, omics data analysis, and structure-based approaches to fill data gaps within adverse outcome pathway networks. Emphasizing the regulatory acceptance of each technique, we examine how these methodologies can be integrated to provide a comprehensive understanding of chemical toxicity. This review highlights the transformative impact of in silico techniques in toxicology, proposing guidelines for their application in evidence gathering for developing and filling data gaps in adverse outcome pathway networks. These guidelines can be applied to other cases, advancing the field of toxicological risk assessment.
Collapse
Affiliation(s)
- Rita Ortega-Vallbona
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Martina Palomino-Schätzlein
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, C/Monforte de Lemos, 28029 Madrid, Spain
| | - Emilio Benfenati
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | - Gerhard F. Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek Platz 2, 1090 Wien, Austria;
| | - Rafael Gozalbes
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
- MolDrug AI Systems S.L., Olimpia Arozena Torres 45, 46108 Valencia, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR S.L., Calle Nicolás Copérnico 6, Parque Tecnológico de Valencia, 46980 Paterna, Spain; (R.O.-V.); (M.P.-S.); (R.G.)
| |
Collapse
|
12
|
Shen Q, Liu Y, Li G, An T. A review of disrupted biological response associated with volatile organic compound exposure: Insight into identification of biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174924. [PMID: 39047835 DOI: 10.1016/j.scitotenv.2024.174924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Volatile organic compounds (VOCs) are widespread harmful atmospheric pollutants, which have long been concerned and elucidated to be one of the risks of acute and chronic diseases for human, such as leukemia and cancer. Although numerous scientific studies have documented the potential adverse outcomes caused by VOC exposure, the mechanisms which biological response pathways of these VOC disruption remain poorly understood. Therefore, the identification of biochemical markers associated with metabolism, health effects and diseases orientation can be an effective means of screening biological targets for VOC exposure, which provide evidences to the toxicity assessment of compounds. The current review aims to understand the mechanisms underlying VOCs-elicited adverse outcomes by charactering various types of biomarkers. VOCs-related biomarkers from three aspects were summarized through in vitro, animal and epidemiological studies. i) Unmetabolized and metabolized VOC biomarkers in human samples for assessing exposure characteristics in different communities; ii) Adverse endpoint effects related biomarkers, mainly including (anti)oxidative stress, inflammation response and DNA damage; iii) Omics-based molecular biomarkers alteration in gene, protein, lipid and metabolite aspects associated with biological signaling pathway disorders response to VOC exposure. Further research, advanced machine learning and bioinformation approaches combined with experimental results are urgently needed to ascertain the selection of biomarkers and further illuminate toxic mechanisms of VOC exposure. Finally, VOCs-induced disease causes can be predicted with proven results.
Collapse
Affiliation(s)
- Qianyong Shen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yalin Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Photocatalytic Technology Integration and Equipment, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Qin SJ, Zeng QG, Zeng HX, Li SP, Andersson J, Zhao B, Oudin A, Kanninen KM, Jalava P, Jin NX, Yang M, Lin LZ, Liu RQ, Dong GH, Zeng XW. Neurotoxicity of fine and ultrafine particulate matter: A comprehensive review using a toxicity pathway-oriented adverse outcome pathway framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174450. [PMID: 38969138 DOI: 10.1016/j.scitotenv.2024.174450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.
Collapse
Affiliation(s)
- Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Nan-Xiang Jin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
14
|
Gasque-Belz L, Park B, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Characterization of Adverse Outcomes from Legacy-Contaminated Groundwater Exposure to Early Life Stages of Fathead Minnow. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:34-47. [PMID: 38871949 DOI: 10.1007/s00244-024-01069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024]
Abstract
Complex mixtures of chemicals present in groundwater at legacy-contaminated industrial sites can pose significant risks to adjacent surface waters. The combination of short-term molecular and chronic apical effect assessments is a promising approach to characterize the potential hazard of such complex mixtures. The objectives of this study were to: (1) assess the apical effects (survival, growth, development, and liver histopathology) after chronic exposure of early life stages (ELSs) of fathead minnows (FHM; Pimephales promelas) to contaminated groundwater from a legacy-contaminated pesticide manufacturing and packaging plant, and (2) identify possible molecular mechanisms responsible for these effects by comparing results to mechanistic outcomes previously determined by a short-term reduced transcriptome assay (EcoToxChips). This study revealed a significant increase in mortality and prevalence of spinal curvatures, as well as a significant reduction in the length of FHMs exposed to the groundwater mixtures in a concentration-dependent manner. There was an increasing trend in the prevalence of edema in FHMs, though not significantly different from controls. Additionally, no histopathological effects were observed in the liver of FHMs exposed to the groundwater mixtures. Short-term molecular outcomes determined in a parallel study were found to be informative of chronic apical outcomes, including cardiotoxicity, spinal deformities, and liver toxicity. Overall, the results observed in this study demonstrated that short-term transcriptomics analyses could support the hazard assessment of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-Operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada.
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
15
|
Razak MR, Wee SY, Yusoff FM, Yusof ZNB, Aris AZ. Zooplankton-based adverse outcome pathways: A tool for assessing endocrine disrupting compounds in aquatic environments. ENVIRONMENTAL RESEARCH 2024; 252:119045. [PMID: 38704014 DOI: 10.1016/j.envres.2024.119045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.
Collapse
Affiliation(s)
- Muhammad Raznisyafiq Razak
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050, Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
16
|
Huang H, Lv Y, Chen Q, Huang X, Qin J, Liu Y, Liao Q, Xing X, Chen L, Liu Q, Li S, Long Z, Wang Q, Chen W, Wei Q, Hou M, Hu Q, Xiao Y. Empirical analysis of lead neurotoxicity mode of action and its application in health risk assessment. ENVIRONMENTAL RESEARCH 2024; 251:118708. [PMID: 38493858 DOI: 10.1016/j.envres.2024.118708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The mode of action (MOA) framework is proposed to inform a biological link between chemical exposures and adverse health effects. Despite a significant increase in knowledge and awareness, the application of MOA in human health risk assessment (RA) remains limited. This study aims to discuss the adoption of MOA for health RA within a regulatory context, taking our previously proposed but not yet validated MOA for lead neurotoxicity as an example. We first conducted a quantitative weight of evidence (qWOE) assessment, which revealed that the MOA has a moderate confidence. Then, targeted bioassays were performed within an in vitro blood-brain barrier (BBB) model to quantitatively validate the scientific validity of key events (KEs) in terms of essentiality and concordance of empirical support (dose/temporal concordance), which increases confidence in utilizing the MOA for RA. Building upon the quantitative validation data, we further conducted benchmark dose (BMD) analysis to map dose-response relationships for the critical toxicity pathways, and the lower limit of BMD at a 5% response (BMDL5) was identified as the point of departure (POD) value for adverse health effects. Notably, perturbation of the Aryl Hydrocarbon Receptor (AHR) signaling pathway exhibited the lowest POD value, measured at 0.0062 μM. Considering bioavailability, we further calculated a provisional health-based guidance value (HBGV) for children's lead intake, determining it to be 2.56 μg/day. Finally, the health risk associated with the HBGV was assessed using the hazard quotient (HQ) approach, which indicated that the HBGV established in this study is a relative safe reference value for lead intake. In summary, our study described the procedure for utilizing MOA in health RA and set an example for MOA-based human health risk regulation.
Collapse
Affiliation(s)
- Hehai Huang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Occupational Health, Public Health Service Center, Bao'an District, Shenzhen, 518126, China
| | - Yanrong Lv
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qingfei Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaowei Huang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Jingyao Qin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qilong Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiumei Xing
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Liu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuangqi Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zihao Long
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mengjun Hou
- Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiansheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
17
|
Rattner BA, Bean TG, Beasley VR, Berny P, Eisenreich KM, Elliott JE, Eng ML, Fuchsman PC, King MD, Mateo R, Meyer CB, O'Brien JM, Salice CJ. Wildlife ecological risk assessment in the 21st century: Promising technologies to assess toxicological effects. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:725-748. [PMID: 37417421 DOI: 10.1002/ieam.4806] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Despite advances in toxicity testing and the development of new approach methodologies (NAMs) for hazard assessment, the ecological risk assessment (ERA) framework for terrestrial wildlife (i.e., air-breathing amphibians, reptiles, birds, and mammals) has remained unchanged for decades. While survival, growth, and reproductive endpoints derived from whole-animal toxicity tests are central to hazard assessment, nonstandard measures of biological effects at multiple levels of biological organization (e.g., molecular, cellular, tissue, organ, organism, population, community, ecosystem) have the potential to enhance the relevance of prospective and retrospective wildlife ERAs. Other factors (e.g., indirect effects of contaminants on food supplies and infectious disease processes) are influenced by toxicants at individual, population, and community levels, and need to be factored into chemically based risk assessments to enhance the "eco" component of ERAs. Regulatory and logistical challenges often relegate such nonstandard endpoints and indirect effects to postregistration evaluations of pesticides and industrial chemicals and contaminated site evaluations. While NAMs are being developed, to date, their applications in ERAs focused on wildlife have been limited. No single magic tool or model will address all uncertainties in hazard assessment. Modernizing wildlife ERAs will likely entail combinations of laboratory- and field-derived data at multiple levels of biological organization, knowledge collection solutions (e.g., systematic review, adverse outcome pathway frameworks), and inferential methods that facilitate integrations and risk estimations focused on species, populations, interspecific extrapolations, and ecosystem services modeling, with less dependence on whole-animal data and simple hazard ratios. Integr Environ Assess Manag 2024;20:725-748. © 2023 His Majesty the King in Right of Canada and The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). Reproduced with the permission of the Minister of Environment and Climate Change Canada. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Barnett A Rattner
- US Geological Survey, Eastern Ecological Science Center, Laurel, Maryland, USA
| | | | - Val R Beasley
- College of Veterinary Medicine, University of Illinois at Urbana, Champaign, Illinois, USA
| | | | - Karen M Eisenreich
- US Environmental Protection Agency, Washington, District of Columbia, USA
| | - John E Elliott
- Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Margaret L Eng
- Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada
| | | | - Mason D King
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | - Jason M O'Brien
- Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | |
Collapse
|
18
|
Kouokam JC, Speer RM, Meaza I, Toyoda JH, Lu H, Wise JP. Transcriptomic analysis reveals particulate hexavalent chromium regulates key inflammatory pathways in human lung fibroblasts as a possible mechanism of carcinogenesis. Toxicol Appl Pharmacol 2024; 485:116889. [PMID: 38479592 PMCID: PMC11069317 DOI: 10.1016/j.taap.2024.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Hexavalent chromium [Cr(VI)] is considered a major environmental health concern and lung carcinogen. However, the exact mechanism by which Cr(VI) causes lung cancer in humans remains unclear. Since several reports have demonstrated a role for inflammation in Cr(VI) toxicity, the present study aimed to apply transcriptomics to examine the global mRNA expression in human lung fibroblasts after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 μg/cm2 zinc chromate, with a particular emphasis on inflammatory pathways. The results showed Cr(VI) affected the expression of multiple genes and these effects varied according to Cr(VI) concentration and exposure time. Bioinformatic analysis of RNA-Seq data based on the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCore databases revealed multiple inflammatory pathways were affected by Cr(VI) treatment. qRT-PCR data corroborated RNA-Seq findings. This study showed for the first time that Cr(VI) regulates key inflammatory pathways in human lung fibroblasts, providing novel insights into the mechanisms by which Cr(VI) causes lung cancer.
Collapse
Affiliation(s)
- J Calvin Kouokam
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm, 1422 Louisville, KY, USA.
| | - Rachel M Speer
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm, 1422 Louisville, KY, USA; Current address: Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Idoia Meaza
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm, 1422 Louisville, KY, USA
| | - Jennifer H Toyoda
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm, 1422 Louisville, KY, USA
| | - Haiyan Lu
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm, 1422 Louisville, KY, USA
| | - John Pierce Wise
- Wise Laboratory of Environmental and Genetic Toxicology, Department of Pharmacology and Toxicology, University of Louisville, 500 S Preston St, Rm, 1422 Louisville, KY, USA
| |
Collapse
|
19
|
Gasque-Belz L, Raes K, Park B, Colville C, Siciliano S, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Hazard assessment of complex legacy-contaminated groundwater mixtures using a novel approach method in adult fathead minnows. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133299. [PMID: 38141307 DOI: 10.1016/j.jhazmat.2023.133299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Traditional risk assessment methods face challenges in the determination of drivers of toxicity for complex mixtures such as those present at legacy-contaminated sites. Bioassay-driven analysis across several levels of biological organization represents an approach to address these obstacles. This study aimed to apply a novel transcriptomics tool, the EcoToxChip, to characterize the effects of complex mixtures of contaminants in adult fathead minnows (FHMs) and to compare molecular response patterns to higher-level biological responses. Adult FHMs were exposed for 4 and 21 days to groundwater mixtures collected from a legacy-contaminated site. Adult FHM showed significant induction of micronuclei in erythrocytes, decrease in reproductive capacities, and some abnormal appearance of liver histology. Parallel EcoToxChip analyses showed a high proportion of upregulated genes and a few downregulated genes characteristic of compensatory responses. The three most enriched pathways included thyroid endocrine processes, transcription and translation cellular processes, and xenobiotics and reactive oxygen species metabolism. Several of the most differentially regulated genes involved in these biological pathways could be linked to the apical outcomes observed in FHMs. We concluded that molecular responses as determined by EcoToxChip analysis show promise for informing of apical outcomes and could support risk assessments of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bradley Park
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Steven Siciliano
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Langan LM, Paparella M, Burden N, Constantine L, Margiotta-Casaluci L, Miller TH, Moe SJ, Owen SF, Schaffert A, Sikanen T. Big Question to Developing Solutions: A Decade of Progress in the Development of Aquatic New Approach Methodologies from 2012 to 2022. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:559-574. [PMID: 36722131 PMCID: PMC10390655 DOI: 10.1002/etc.5578] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In 2012, 20 key questions related to hazard and exposure assessment and environmental and health risks of pharmaceuticals and personal care products in the natural environment were identified. A decade later, this article examines the current level of knowledge around one of the lowest-ranking questions at that time, number 19: "Can nonanimal testing methods be developed that will provide equivalent or better hazard data compared with current in vivo methods?" The inclusion of alternative methods that replace, reduce, or refine animal testing within the regulatory context of risk and hazard assessment of chemicals generally faces many hurdles, although this varies both by organism (human-centric vs. other), sector, and geographical region or country. Focusing on the past 10 years, only works that might reasonably be considered to contribute to advancements in the field of aquatic environmental risk assessment are highlighted. Particular attention is paid to methods of contemporary interest and importance, representing progress in (1) the development of methods which provide equivalent or better data compared with current in vivo methods such as bioaccumulation, (2) weight of evidence, or (3) -omic-based applications. Evolution and convergence of these risk assessment areas offer the basis for fundamental frameshifts in how data are collated and used for the protection of taxa across the breadth of the aquatic environment. Looking to the future, we are at a tipping point, with a need for a global and inclusive approach to establish consensus. Bringing together these methods (both new and old) for regulatory assessment and decision-making will require a concerted effort and orchestration. Environ Toxicol Chem 2024;43:559-574. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Laura M Langan
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798, USA
| | - Martin Paparella
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Natalie Burden
- National Centre for the 3Rs (NC3Rs), Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | | | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental and Forensic Sciences, School of Cancer and Pharmaceutical Sciences, King’s College London, London SE1 9NQ, UK
| | - Thomas H. Miller
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, London, UK
| | - S. Jannicke Moe
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stewart F. Owen
- AstraZeneca, Global Sustainability, Macclesfield, Cheshire SK10 2NA, UK
| | - Alexandra Schaffert
- Department of Medical Biochemistry, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Tiina Sikanen
- Faculty of Pharmacy and Helsinki Institute of Sustainability Science, University of Helsinki, Yliopistonkatu 3, Helsinki, 00100, Finland
| |
Collapse
|
21
|
Brooks BW, van den Berg S, Dreier DA, LaLone CA, Owen SF, Raimondo S, Zhang X. Towards Precision Ecotoxicology: Leveraging Evolutionary Conservation of Pharmaceutical and Personal Care Product Targets to Understand Adverse Outcomes Across Species and Life Stages. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:526-536. [PMID: 37787405 PMCID: PMC11017229 DOI: 10.1002/etc.5754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Translation of environmental science to the practice aims to protect biodiversity and ecosystem services, and our future ability to do so relies on the development of a precision ecotoxicology approach wherein we leverage the genetics and informatics of species to better understand and manage the risks of global pollution. A little over a decade ago, a workshop focusing on the risks of pharmaceuticals and personal care products (PPCPs) in the environment identified a priority research question, "What can be learned about the evolutionary conservation of PPCP targets across species and life stages in the context of potential adverse outcomes and effects?" We review the activities in this area over the past decade, consider prospects of more recent developments, and identify future research needs to develop next-generation approaches for PPCPs and other global chemicals and waste challenges. Environ Toxicol Chem 2024;43:526-536. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | | | - David A Dreier
- Syngenta Crop Protection, Greensboro, North Carolina, USA
| | - Carlie A LaLone
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Duluth, Minnesota
| | - Stewart F Owen
- Global Sustainability, Astra Zeneca, Macclesfield, Cheshire, UK
| | - Sandy Raimondo
- Gulf Ecosystem Measurement and Modeling Division, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, Florida
| | - Xiaowei Zhang
- School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Kidd KA, Backhaus T, Brodin T, Inostroza PA, McCallum ES. Environmental Risks of Pharmaceutical Mixtures in Aquatic Ecosystems: Reflections on a Decade of Research. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:549-558. [PMID: 37530415 DOI: 10.1002/etc.5726] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) occur as variable mixtures in surface waters receiving discharges of human and animal wastes. A key question identified a decade ago is how to assess the effects of long-term exposures of these PPCP mixtures on nontarget organisms. We review the recent progress made on assessing the aquatic ecotoxicity of PPCP mixtures-with a focus on active pharmaceutical ingredients-and the challenges and research needs that remain. New knowledge has arisen from the use of whole-mixture testing combined with component-based approaches, and these studies show that mixtures often result in responses that meet the concentration addition model. However, such studies have mainly been done on individual species over shorter time periods, and longer-term, multispecies assessments remain limited. The recent use of targeted and nontargeted gene analyses has improved our understanding of the diverse pathways that are impacted, and there are promising new "read-across" methods that use mammalian data to predict toxicity in wildlife. Risk assessments remain challenging given the paucity of ecotoxicological and exposure data on PPCP mixtures. As such, the assessment of PPCP mixtures in aquatic environments should remain a priority given the potential for additive-as well as nontarget-effects in nontarget organisms. In addition, we need to improve our understanding of which species, life stages, and relevant endpoints are most sensitive to which types of PPCP mixtures and to expand our knowledge of environmental PPCP levels in regions of the globe that have been poorly studied to date. We recommend an increased use of new approach methodologies, in particular "omics," to advance our understanding of the molecular mechanics of mixture effects. Finally, we call for systematic research on the role of PPCP mixtures in the development of antimicrobial resistance. Environ Toxicol Chem 2024;43:549-558. © 2023 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Erin S McCallum
- Department of Wildlife, Fish & Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
23
|
Albers J, Mylroie J, Kimble A, Steward C, Chapman K, Wilbanks M, Perkins E, Garcia-Reyero N. Per- and Polyfluoroalkyl Substances: Impacts on Morphology, Behavior and Lipid Levels in Zebrafish Embryos. TOXICS 2024; 12:192. [PMID: 38535925 PMCID: PMC10975676 DOI: 10.3390/toxics12030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The presence of per- and polyfluoroalkyl substances (PFASs) in aquatic environments is often persistent and widespread. Understanding the potential adverse effects from this group of chemicals on aquatic communities allows for better hazard characterization. This study examines impacts on zebrafish (Danio rerio) embryo physiology, behavior, and lipid levels from exposure to perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and heptadecafluorooctanesulfonic acid (PFOS). Embryos were exposed to lethal and sublethal levels of each chemical and monitored for alterations in physiological malformations, mortality, lipid levels, and behavior (only PFOA and PFHxS). The predicted 50% lethal concentrations for 120 hpf embryos were 528.6 ppm PFOA, 14.28 ppm PFHxS, and 2.14 ppm PFOS. Spine curvature and the inability of the 120 hpf embryos to maintain a dorsal-up orientation was significantly increased at 10.2 ppm PFHxS and 1.9 ppm PFOS exposure. All measured 120 hpf embryo behaviors were significantly altered starting at the lowest levels tested, 188 ppm PFOA and 6.4 ppm PFHxS. Lipid levels decreased at the highest PFAS levels tested (375 PFOA ppm, 14.4 PFHxS ppm, 2.42 ppm PFOS). In general, the PFAS chemicals, at the levels examined in this study, increased morphological deformities, embryo activity, and startle response time, as well as decreased lipid levels in 120 hpf zebrafish embryos.
Collapse
Affiliation(s)
- Janice Albers
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - John Mylroie
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Ashley Kimble
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | | | - Kacy Chapman
- Oak Ridge Institute for Science and Education, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA
| | - Mitchell Wilbanks
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Edward Perkins
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| | - Natàlia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS 39180, USA (N.G.-R.)
| |
Collapse
|
24
|
Henke AN, Chilukuri S, Langan LM, Brooks BW. Reporting and reproducibility: Proteomics of fish models in environmental toxicology and ecotoxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168455. [PMID: 37979845 DOI: 10.1016/j.scitotenv.2023.168455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Environmental toxicology and ecotoxicology research efforts are employing proteomics with fish models as New Approach Methodologies, along with in silico, in vitro and other omics techniques to elucidate hazards of toxicants and toxins. We performed a critical review of toxicology studies with fish models using proteomics and reported fundamental parameters across experimental design, sample preparation, mass spectrometry, and bioinformatics of fish, which represent alternative vertebrate models in environmental toxicology, and routinely studied animals in ecotoxicology. We observed inconsistencies in reporting and methodologies among experimental designs, sample preparations, data acquisitions and bioinformatics, which can affect reproducibility of experimental results. We identified a distinct need to develop reporting guidelines for proteomics use in environmental toxicology and ecotoxicology, increased QA/QC throughout studies, and method optimization with an emphasis on reducing inconsistencies among studies. Several recommendations are offered as logical steps to advance development and application of this emerging research area to understand chemical hazards to public health and the environment.
Collapse
Affiliation(s)
- Abigail N Henke
- Department of Biology, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA
| | | | - Laura M Langan
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University Waco, TX, USA; Center for Reservoir and Aquatic Systems Research (CRASR), Baylor University Waco, TX, USA.
| |
Collapse
|
25
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
26
|
Sillé F, Hartung T. Metabolomics in Preclinical Drug Safety Assessment: Current Status and Future Trends. Metabolites 2024; 14:98. [PMID: 38392990 PMCID: PMC10890122 DOI: 10.3390/metabo14020098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolomics is emerging as a powerful systems biology approach for improving preclinical drug safety assessment. This review discusses current applications and future trends of metabolomics in toxicology and drug development. Metabolomics can elucidate adverse outcome pathways by detecting endogenous biochemical alterations underlying toxicity mechanisms. Furthermore, metabolomics enables better characterization of human environmental exposures and their influence on disease pathogenesis. Metabolomics approaches are being increasingly incorporated into toxicology studies and safety pharmacology evaluations to gain mechanistic insights and identify early biomarkers of toxicity. However, realizing the full potential of metabolomics in regulatory decision making requires a robust demonstration of reliability through quality assurance practices, reference materials, and interlaboratory studies. Overall, metabolomics shows great promise in strengthening the mechanistic understanding of toxicity, enhancing routine safety screening, and transforming exposure and risk assessment paradigms. Integration of metabolomics with computational, in vitro, and personalized medicine innovations will shape future applications in predictive toxicology.
Collapse
Affiliation(s)
- Fenna Sillé
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
27
|
Grison S, Braga-Tanaka II, Baatout S, Klokov D. In utero exposure to ionizing radiation and metabolic regulation: perspectives for future multi- and trans-generation effects studies. Int J Radiat Biol 2024; 100:1283-1296. [PMID: 38180060 DOI: 10.1080/09553002.2023.2295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.
Collapse
Affiliation(s)
- Stéphane Grison
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ignacia Iii Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), Rokkasho Kamikita, Aomori, Japan
| | - Sarah Baatout
- Belgian Nuclear Research Centre, SCK CEN, Institute of Nuclear Medical Applications, Mol, Belgium
- Department of Molecular Biotechnology (BW25) and Department of Human Structure and Repair (GE38), Ghent University, Ghent, Belgium
| | - Dmitry Klokov
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
- Department of Microbiology, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Baudiffier D, Audouze K, Armant O, Frelon S, Charles S, Beaudouin R, Cosio C, Payrastre L, Siaussat D, Burgeot T, Mauffret A, Degli Esposti D, Mougin C, Delaunay D, Coumoul X. Editorial trend: adverse outcome pathway (AOP) and computational strategy - towards new perspectives in ecotoxicology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6587-6596. [PMID: 37966636 DOI: 10.1007/s11356-023-30647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023]
Abstract
The adverse outcome pathway (AOP) has been conceptualized in 2010 as an analytical construct to describe a sequential chain of causal links between key events, from a molecular initiating event leading to an adverse outcome (AO), considering several levels of biological organization. An AOP aims to identify and organize available knowledge about toxic effects of chemicals and drugs, either in ecotoxicology or toxicology, and it can be helpful in both basic and applied research and serve as a decision-making tool in support of regulatory risk assessment. The AOP concept has evolved since its introduction, and recent research in toxicology, based on integrative systems biology and artificial intelligence, gave it a new dimension. This innovative in silico strategy can help to decipher mechanisms of action and AOP and offers new perspectives in AOP development. However, to date, this strategy has not yet been applied to ecotoxicology. In this context, the main objective of this short article is to discuss the relevance and feasibility of transferring this strategy to ecotoxicology. One of the challenges to be discussed is the level of organisation that is relevant to address for the AO (population/community). This strategy also offers many advantages that could be fruitful in ecotoxicology and overcome the lack of time, such as the rapid identification of data available at a time t, or the identification of "data gaps". Finally, this article proposes a step forward with suggested priority topics in ecotoxicology that could benefit from this strategy.
Collapse
Affiliation(s)
| | - Karine Audouze
- Université Paris Cité - INSERM T3S, 45 rue des Saints-Pères, 75006, Paris, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé-Environnement, Lez-Durance, F-13115, Saint-Paul, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Pôle Santé-Environnement, Lez-Durance, F-13115, Saint-Paul, France
| | - Sandrine Charles
- University of Lyon 1 - CNRS, UMR 5558, Laboratory of Biometry and Evolutionary Biology, F-69622, Villeurbanne, France
| | - Remy Beaudouin
- UMR-I 02 SEBIO - INERIS - Parc Technologique ALATA, 60550, Verneuil-en-Halatte, France
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne - UMR-I 02 INERIS-URCA-ULHN SEBIO, Campus Moulin de la Housse, 51687, Reims, France
| | - Laurence Payrastre
- UMR 1331 TOXALIM - INRAE, 180 chemin de Tournefeuille, F-31027, Toulouse, France
| | - David Siaussat
- Institut d'écologie et sciences environnementales de Paris - Sorbonne Université - CNRS - INRAE - IRD - UPEC - Université de Paris Cité, 4 Place Jussieu Sorbonne Université - Campus Pierre et Marie Curie Barre 44-45, 3e étage, bureau 310, 75005, Paris, France
| | - Thierry Burgeot
- IFREMER - Unit of Research CCEM Contamination Chimique des Ecosystèmes marins, F-44000, Nantes, France
| | - Aourell Mauffret
- IFREMER - Unit of Research CCEM Contamination Chimique des Ecosystèmes marins, F-44000, Nantes, France
| | | | - Christian Mougin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR EcoSys, 91120, Palaiseau, France
| | | | - Xavier Coumoul
- Université Paris Cité - INSERM T3S, 45 rue des Saints-Pères, 75006, Paris, France
| |
Collapse
|
29
|
Gasque-Belz L, Colville C, Kurukulasuriya S, Siciliano SD, Hogan N, Weber L, Campbell P, Peters R, Hanson M, Hecker M. Characterization of molecular and apical effects of legacy-contaminated groundwater on early life stages of fathead minnows. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106734. [PMID: 37913685 DOI: 10.1016/j.aquatox.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Mechanistic toxicology approaches represent a promising alternative to traditional live animal testing; however, the often-noted uncertainties concerning the linkages between effects observed at molecular and apical levels curtails the adoption of such approaches. The objective of this study was to apply a novel transcriptomics tool, EcoToxChips, to characterize the effects of complex mixtures of contaminants in fish and to compare molecular response patterns to higher-level biological responses including swimming behavior, deformities, and mortality. Fathead minnow (FHM) embryos were exposed for seven days to increasing concentrations of groundwater collected from moderate (MIAZ) and high (HIAZ) industrial activity zones of a legacy contaminated site. There was a concentration-dependent disruption of photo-dependent swimming responses associated with avoidance behavior patterns and spinal deformities (HIAZ and MIAZ), and an induction of pericardial edema and mortality (HIAZ-10%). Parallel EcoToxChip analyses showed a shift from a majority of upregulated genes at lower concentrations to a majority of downregulated genes at higher concentrations for both treatment conditions. Many of the significantly differentially regulated genes were involved in biological pathways including induction of oxidative stress, activating of several metabolic processes and growth, cell death, and inhibition of signal transduction signaling processes. Several contaminants present in the groundwater mixtures could have contributed to an exceedance of antioxidant system capacities that possibly led to the deformities, altered swimming behaviours, and mortality observed in FHMs. Therefore, molecular response patterns could be linked to apical outcomes observed in this study. Overall, the results observed in this study demonstrate that transcriptomics approaches such as the EcoToxChip system could be supportive of risk assessment of complex contaminated sites.
Collapse
Affiliation(s)
- Laura Gasque-Belz
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Carly Colville
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lynn Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Rachel Peters
- Federated Co-operatives Limited, Saskatoon, SK, Canada
| | - Mark Hanson
- Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
30
|
Bernhard A, Poulsen R, Brun Hansen AM, Hansen M. Toxicometabolomics as a tool for next generation environmental risk assessment. EFSA J 2023; 21:e211005. [PMID: 38047121 PMCID: PMC10687767 DOI: 10.2903/j.efsa.2023.e211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
Traditionally applied methodology in environmental risk assessment (ERA) has fallen out of step with technological advancements and regulatory requirements, challenging effectiveness and accuracy of the assessments. Extensive efforts have been focused towards a transition to a more data-driven and mechanistically-based next generation risk assessment. Metabolomics can produce detailed and comprehensive molecular insight into affected biochemical processes. Combining metabolomics with environmental toxicology can help to understand the mechanisms and/or modes of action underlying toxicity of environmental pollutants and inform adverse outcome pathways, as well as facilitate identification of biomarkers to quantify effects and/or exposure. This Technical Report describes the activities and work performed within the frame of the European Food Risk Assessment Fellowship Programme (EU-FORA), implemented at the section 'Environmental Chemistry and Toxicology' at the Department of Environmental Science at Aarhus University in Denmark with synergies to an ongoing H2020 RIA project 'EndocRine Guideline Optimisation' (ERGO). In accordance with the 'training by doing' principles of the EU-FORA, the fellowship project combined the exploration of the status of scientific discussion on methodology in ERA through literature study with hands-on training, using the metabolomics analysis pipeline established at Aarhus University. For the hands-on training, an amphibian metamorphosis assay (OECD test no.231) was used as a proof-of-concept toxicometabolomics study case. Both a targeted biomarker - and an untargeted metabolomics approach was applied.
Collapse
Affiliation(s)
| | - Rikke Poulsen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| | - Anna M Brun Hansen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| | - Martin Hansen
- Section of Environmental Chemistry and Toxicology, Department of Environmental ScienceAarhus UniversityDenmark
| |
Collapse
|
31
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
32
|
Reddy N, Lynch B, Gujral J, Karnik K. Alternatives to animal testing in toxicity testing: Current status and future perspectives in food safety assessments. Food Chem Toxicol 2023; 179:113944. [PMID: 37453475 DOI: 10.1016/j.fct.2023.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The development of alternative methods to animal testing has gained great momentum since Russel and Burch introduced the "3Rs" concept of Reduction, Refinement, and Replacement of animals in safety testing in 1959. Several alternatives to animal testing have since been introduced, including but not limited to in vitro and in chemico test systems, in silico models, and computational models (e.g., [quantitative] structural activity relationship models, high-throughput screens, organ-on-chip models, and genomics or bioinformatics) to predict chemical toxicity. Furthermore, several agencies have developed robust integrated testing strategies to determine chemical toxicity. The cosmetics sector is pioneering the adoption of alternative methodologies for safety evaluations, and other sectors are aiming to completely abandon animal testing by 2035. However, beyond the use of in vitro genetic testing, agencies regulating the food industry have been slow to implement alternative methodologies into safety evaluations compared with other sectors; setting health-based guidance values for food ingredients requires data from systemic toxicity, and to date, no standalone validated alternative models to assess systemic toxicity exist. The abovementioned models show promise for assessing systemic toxicity with further research. In this paper, we review the current alternatives and their applicability and limitations in food safety evaluations.
Collapse
Affiliation(s)
- Navya Reddy
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada
| | - Barry Lynch
- Intertek Health Sciences Inc., 2233 Argentia Rd, Suite 201, Mississauga, ON, L5N 2X7, Canada.
| | - Jaspreet Gujral
- Tate & Lyle, 5450 Prairie Stone Pkwy, Hoffman Estates, IL, 60192, USA
| | - Kavita Karnik
- Tate & Lyle PLC, 5 Marble Arch, London, W1H 7EJ, United Kingdom
| |
Collapse
|
33
|
Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, Wilson A, Pointon A, Viant MR. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun 2023; 14:4653. [PMID: 37537184 PMCID: PMC10400635 DOI: 10.1038/s41467-023-40333-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Untargeted metabolomics is an established approach in toxicology for characterising endogenous metabolic responses to xenobiotic exposure. Detecting the xenobiotic and its biotransformation products as part of the metabolomics analysis provides an opportunity to simultaneously gain deep insights into its fate and metabolism, and to associate the internal relative dose directly with endogenous metabolic responses. This integration of untargeted exposure and response measurements into a single assay has yet to be fully demonstrated. Here we assemble a workflow to discover and analyse pharmaceutical-related measurements from routine untargeted UHPLC-MS metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue, and human plasma) and in vitro (human cardiomyocytes) studies that were principally designed to investigate endogenous metabolic responses to drug exposure. Our findings clearly demonstrate how untargeted metabolomics can discover extensive biotransformation maps, temporally-changing relative systemic exposure, and direct associations of endogenous biochemical responses to the internal dose.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth Macdonald
- Animal Sciences and Technology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
34
|
Schmeisser S, Miccoli A, von Bergen M, Berggren E, Braeuning A, Busch W, Desaintes C, Gourmelon A, Grafström R, Harrill J, Hartung T, Herzler M, Kass GEN, Kleinstreuer N, Leist M, Luijten M, Marx-Stoelting P, Poetz O, van Ravenzwaay B, Roggeband R, Rogiers V, Roth A, Sanders P, Thomas RS, Marie Vinggaard A, Vinken M, van de Water B, Luch A, Tralau T. New approach methodologies in human regulatory toxicology - Not if, but how and when! ENVIRONMENT INTERNATIONAL 2023; 178:108082. [PMID: 37422975 PMCID: PMC10858683 DOI: 10.1016/j.envint.2023.108082] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The predominantly animal-centric approach of chemical safety assessment has increasingly come under pressure. Society is questioning overall performance, sustainability, continued relevance for human health risk assessment and ethics of this system, demanding a change of paradigm. At the same time, the scientific toolbox used for risk assessment is continuously enriched by the development of "New Approach Methodologies" (NAMs). While this term does not define the age or the state of readiness of the innovation, it covers a wide range of methods, including quantitative structure-activity relationship (QSAR) predictions, high-throughput screening (HTS) bioassays, omics applications, cell cultures, organoids, microphysiological systems (MPS), machine learning models and artificial intelligence (AI). In addition to promising faster and more efficient toxicity testing, NAMs have the potential to fundamentally transform today's regulatory work by allowing more human-relevant decision-making in terms of both hazard and exposure assessment. Yet, several obstacles hamper a broader application of NAMs in current regulatory risk assessment. Constraints in addressing repeated-dose toxicity, with particular reference to the chronic toxicity, and hesitance from relevant stakeholders, are major challenges for the implementation of NAMs in a broader context. Moreover, issues regarding predictivity, reproducibility and quantification need to be addressed and regulatory and legislative frameworks need to be adapted to NAMs. The conceptual perspective presented here has its focus on hazard assessment and is grounded on the main findings and conclusions from a symposium and workshop held in Berlin in November 2021. It intends to provide further insights into how NAMs can be gradually integrated into chemical risk assessment aimed at protection of human health, until eventually the current paradigm is replaced by an animal-free "Next Generation Risk Assessment" (NGRA).
Collapse
Affiliation(s)
| | - Andrea Miccoli
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany; National Research Council, Ancona, Italy
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | | | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Wibke Busch
- Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian Desaintes
- European Commission (EC), Directorate General for Research and Innovation (RTD), Brussels, Belgium
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development (OECD), Environment Directorate, Paris, France
| | | | - Joshua Harrill
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health Baltimore MD USA, CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Matthias Herzler
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Nicole Kleinstreuer
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences (NIEHS), Durham, USA
| | - Marcel Leist
- CAAT‑Europe and Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | | | - Oliver Poetz
- NMI Natural and Medical Science Institute at the University of Tuebingen, Reutlingen, Germany; SIGNATOPE GmbH, Reutlingen, Germany
| | | | - Rob Roggeband
- European Partnership for Alternative Approaches to Animal Testing (EPAA), Procter and Gamble Services Company NV/SA, Strombeek-Bever, Belgium
| | - Vera Rogiers
- Scientific Committee on Consumer Safety (SCCS), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Adrian Roth
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pascal Sanders
- Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Fougères, France France
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure (CCTE), United States Environmental Protection Agency (US EPA), Durham, USA
| | | | | | | | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
35
|
Machuca-Sepúlveda J, Miranda J, Lefin N, Pedroso A, Beltrán JF, Farias JG. Current Status of Omics in Biological Quality Elements for Freshwater Biomonitoring. BIOLOGY 2023; 12:923. [PMID: 37508354 PMCID: PMC10376755 DOI: 10.3390/biology12070923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023]
Abstract
Freshwater ecosystems have been experiencing various forms of threats, mainly since the last century. The severity of this adverse scenario presents unprecedented challenges to human health, water supply, agriculture, forestry, ecological systems, and biodiversity, among other areas. Despite the progress made in various biomonitoring techniques tailored to specific countries and biotic communities, significant constraints exist, particularly in assessing and quantifying biodiversity and its interplay with detrimental factors. Incorporating modern techniques into biomonitoring methodologies presents a challenging topic with multiple perspectives and assertions. This review aims to present a comprehensive overview of the contemporary advancements in freshwater biomonitoring, specifically by utilizing omics methodologies such as genomics, metagenomics, transcriptomics, proteomics, metabolomics, and multi-omics. The present study aims to elucidate the rationale behind the imperative need for modernization in this field. This will be achieved by presenting case studies, examining the diverse range of organisms that have been studied, and evaluating the potential benefits and drawbacks associated with the utilization of these methodologies. The utilization of advanced high-throughput bioinformatics techniques represents a sophisticated approach that necessitates a significant departure from the conventional practices of contemporary freshwater biomonitoring. The significant contributions of omics techniques in the context of biological quality elements (BQEs) and their interpretations in ecological problems are crucial for biomonitoring programs. Such contributions are primarily attributed to the previously overlooked identification of interactions between different levels of biological organization and their responses, isolated and combined, to specific critical conditions.
Collapse
Affiliation(s)
- Jorge Machuca-Sepúlveda
- Doctoral Program on Natural Resources Sciences, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4780000, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Nicolás Lefin
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro Pedroso
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge F Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Jorge G Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
36
|
Saarimäki LA, Fratello M, Pavel A, Korpilähde S, Leppänen J, Serra A, Greco D. A curated gene and biological system annotation of adverse outcome pathways related to human health. Sci Data 2023; 10:409. [PMID: 37355733 PMCID: PMC10290716 DOI: 10.1038/s41597-023-02321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Adverse outcome pathways (AOPs) are emerging as a central framework in modern toxicology and other fields in biomedicine. They serve as an extension of pathway-based concepts by depicting biological mechanisms as causally linked sequences of key events (KEs) from a molecular initiating event (MIE) to an adverse outcome. AOPs guide the use and development of new approach methodologies (NAMs) aimed at reducing animal experimentation. While AOPs model the systemic mechanisms at various levels of biological organisation, toxicogenomics provides the means to study the molecular mechanisms of chemical exposures. Systematic integration of these two concepts would improve the application of AOP-based knowledge while also supporting the interpretation of complex omics data. Hence, we established this link through rigorous curation of molecular annotations for the KEs of human relevant AOPs. We further expanded and consolidated the annotations of the biological context of KEs. These curated annotations pave the way to embed AOPs in molecular data interpretation, facilitating the emergence of new knowledge in biomedicine.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Michele Fratello
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Seela Korpilähde
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jenni Leppänen
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Institute for Advanced Study, Tampere University, Tampere, Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
37
|
Alvarez-Mora I, Bolliet V, Lopez-Herguedas N, Olivares M, Monperrus M, Etxebarria N. Metabolomics to study the sublethal effects of diazepam and irbesartan on glass eels (Anguilla anguilla). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106547. [PMID: 37120958 DOI: 10.1016/j.aquatox.2023.106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Since glass eels are continuously exposed to contamination throughout their migratory journey in estuaries, to a certain extent the fall in the population of this endangered species might be attributed to this exposure, which is especially acute in estuaries under high urban pressure. In this work, metabolomics was used to address the main objective of this study, to evaluate the effects of two pharmaceuticals previously identified as potential concerning chemicals for fish (diazepam and irbesartan) on glass eels. An exposure experiment to diazepam, irbesartan and their mixture was carried out over 7 days followed by 7 days of depuration phase. After exposure, glass eels were individually sacrificed using a lethal bath of anesthesia, and then an unbiased sample extraction method was used to extract separately the polar metabolome and the lipidome. The polar metabolome was submitted to targeted and non-targeted analysis, whereas for the lipidome only the non-targeted analysis was carried out. A combined strategy using partial least squares discriminant analysis and univariate and multivariate statistical analysis (ANOVA, ASCA, t-test, and fold-change analysis) was used to identify the metabolites altered in the exposed groups with respect to the control group. The results of the polar metabolome analysis revealed that glass eels exposed to the diazepam-irbesartan mixture were the most impacted ones, with altered levels for 11 metabolites, some of them belonging to the energetic metabolism, which was confirmed to be sensitive to these contaminants. Additionally, the dysregulation of the levels of twelve lipids, most of them with energetic and structural functions, was also found after exposure to the mixture, which might be related to oxidative stress, inflammation, or alteration of the energetic metabolism.
Collapse
Affiliation(s)
- Iker Alvarez-Mora
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain.
| | - Valérie Bolliet
- E2S UPPA, ECOBIOP, Aquapôle INRAE, MIRA, Université de Pau et des Pays de l'Adour, Saint-Pée-sur-Nivelle F64310, France
| | - Naroa Lopez-Herguedas
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain
| | - Maitane Olivares
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain
| | - Mathilde Monperrus
- Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Université de Pau et des Pays de l'Adour, Basque Country, Anglet 64000, France
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country, Basque Country, Leioa Biscay 48080, Spain; Plentzia Marine Station, University of the Basque Country, Basque Country, Plentzia Biscay 48620, Spain
| |
Collapse
|
38
|
Potter TD, Haywood N, Teixeira A, Hodges G, Barrett EL, Miller MA. Partitioning into phosphatidylcholine-cholesterol membranes: liposome measurements, coarse-grained simulations, and implications for bioaccumulation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37158124 DOI: 10.1039/d3em00081h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.
Collapse
Affiliation(s)
- Thomas D Potter
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| | - Nicola Haywood
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Alexandre Teixeira
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Elin L Barrett
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.
| |
Collapse
|
39
|
Gou X, Ma C, Ji H, Yan L, Wang P, Wang Z, Lin Y, Chatterjee N, Yu H, Zhang X. Prediction of zebrafish embryonic developmental toxicity by integrating omics with adverse outcome pathway. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130958. [PMID: 36860045 DOI: 10.1016/j.jhazmat.2023.130958] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/09/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
New approach methodologies (NAMs), especially omics-based high-throughput bioassays have been developed rapidly, providing rich mechanistic information such as molecular initiation events (MIEs) and (sub)cellular key events (KEs) in adverse outcome pathways (AOPs). However, how to apply the knowledge of MIEs/KEs to predict adverse outcomes (AOs) induced by chemicals represents a new challenge for computational toxicology. Here, an integrated method named ScoreAOP was developed and evaluated to predict chemicals' developmental toxicity for zebrafish embryos by integrating four related AOPs and dose-dependent reduced zebrafish transcriptome (RZT). The rules of ScoreAOP included 1) sensitivity of responsive KEs demonstrated by point of departure of KEs (PODKE), 2) evidence reliability and 3) distance between KEs and AOs. Moreover, eleven chemicals with different modes of action (MoAs) were tested to evaluate ScoreAOP. Results showed that eight of the eleven chemicals caused developmental toxicity at tested concentration in apical tests. All the tested chemicals' developmental defects were predicted using ScoreAOP, whereas eight out of the eleven chemicals predicted by ScoreMIE which was developed to score MIEs disturbed by chemicals based on in vitro bioassays data. Finally, in terms of mechanism explanation, ScoreAOP clustered chemicals with different MoAs while ScoreMIE failed, and ScoreAOP revealed the activation of aryl hydrocarbon receptor (AhR) plays a significant role in dysfunction of cardiovascular system, resulting in zebrafish developmental defects and mortality. In conclusion, ScoreAOP represents a promising approach to apply mechanism information obtained from omics to predict AOs induced by chemicals.
Collapse
Affiliation(s)
- Xiao Gou
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Cong Ma
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Huimin Ji
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Pingping Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zhihao Wang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Nivedita Chatterjee
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China.
| |
Collapse
|
40
|
Li Q, Zhao Q, Guo J, Li X, Song J. Transcriptomic Analysis of Diethylstilbestrol in Daphnia Magna: Energy Metabolism and Growth Inhibition. TOXICS 2023; 11:197. [PMID: 36851071 PMCID: PMC9962875 DOI: 10.3390/toxics11020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
With the widespread use of diethylstilbestrol (DES), it has become a common contaminant in the aquatic environment. It is toxic to a wide range of aquatic organisms, disrupting the water flea growth and further interfering with several ecosystem services. Nevertheless, the molecular mechanism of DES in water fleas is still unexplicit. In this study, the 21-day chronic test showed that a negative effect of growth and reproduction can be observed with DES exposure. Subsequently applied transcriptomic analysis illustrated the molecular mechanism in mode freshwater invertebrate Daphnia magna (D. magna) exposed to 2, 200, and 1000 μg·L-1 of DES for 9 days. Meanwhile, exposure to DES at 200 and 1000 μg·L-1 significantly restrains the growth (body length) and reproduction (first spawning time) of D. magna. Identified differentially expressed genes (DEGs) are majorly enriched relative to energy metabolism, lipid metabolism, the digestive system, transport and catabolism pathways which were remarkably changed. These repressed and up-regulated pathways, in relation to energy synthesis and metabolism, may be the reasons for the reduced body length and delayed first spawning time. Taken together, this study revealed that DES is a threat to D. magna in the aquatic environment and clarifies the molecular mechanism of the toxicity.
Collapse
Affiliation(s)
- Qi Li
- Correspondence: ; Tel.: +86-135-7200-0931
| | | | | | | | | |
Collapse
|
41
|
Saarimäki LA, Morikka J, Pavel A, Korpilähde S, del Giudice G, Federico A, Fratello M, Serra A, Greco D. Toxicogenomics Data for Chemical Safety Assessment and Development of New Approach Methodologies: An Adverse Outcome Pathway-Based Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203984. [PMID: 36479815 PMCID: PMC9839874 DOI: 10.1002/advs.202203984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Indexed: 05/25/2023]
Abstract
Mechanistic toxicology provides a powerful approach to inform on the safety of chemicals and the development of safe-by-design compounds. Although toxicogenomics supports mechanistic evaluation of chemical exposures, its implementation into the regulatory framework is hindered by uncertainties in the analysis and interpretation of such data. The use of mechanistic evidence through the adverse outcome pathway (AOP) concept is promoted for the development of new approach methodologies (NAMs) that can reduce animal experimentation. However, to unleash the full potential of AOPs and build confidence into toxicogenomics, robust associations between AOPs and patterns of molecular alteration need to be established. Systematic curation of molecular events to AOPs will create the much-needed link between toxicogenomics and systemic mechanisms depicted by the AOPs. This, in turn, will introduce novel ways of benefitting from the AOPs, including predictive models and targeted assays, while also reducing the need for multiple testing strategies. Hence, a multi-step strategy to annotate AOPs is developed, and the resulting associations are applied to successfully highlight relevant adverse outcomes for chemical exposures with strong in vitro and in vivo convergence, supporting chemical grouping and other data-driven approaches. Finally, a panel of AOP-derived in vitro biomarkers for pulmonary fibrosis (PF) is identified and experimentally validated.
Collapse
Affiliation(s)
- Laura Aliisa Saarimäki
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Jack Morikka
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Alisa Pavel
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Seela Korpilähde
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Giusy del Giudice
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Antonio Federico
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Michele Fratello
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Angela Serra
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
- Tampere Institute for Advanced StudyTampere UniversityKalevantie 4Tampere33100Finland
| | - Dario Greco
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE)Faculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
- Institute of BiotechnologyUniversity of HelsinkiP.O.Box 56HelsinkiUusimaa00014Finland
| |
Collapse
|
42
|
Firman JW, Ebbrell DJ, Bauer FJ, Sapounidou M, Hodges G, Campos B, Roberts J, Gutsell S, Thomas PC, Bonnell M, Cronin MTD. Construction of an In Silico Structural Profiling Tool Facilitating Mechanistically Grounded Classification of Aquatic Toxicants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17805-17814. [PMID: 36445296 PMCID: PMC9775196 DOI: 10.1021/acs.est.2c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
The performance of chemical safety assessment within the domain of environmental toxicology is often impeded by a shortfall of appropriate experimental data describing potential hazards across the many compounds in regular industrial use. In silico schemes for assigning aquatic-relevant modes or mechanisms of toxic action to substances, based solely on consideration of chemical structure, have seen widespread employment─including those of Verhaar, Russom, and later Bauer (MechoA). Recently, development of a further system was reported by Sapounidou, which, in common with MechoA, seeks to ground its classifications in understanding and appreciation of molecular initiating events. Until now, this Sapounidou scheme has not seen implementation as a tool for practical screening use. Accordingly, the primary purpose of this study was to create such a resource─in the form of a computational workflow. This exercise was facilitated through the formulation of 183 structural alerts/rules describing molecular features associated with narcosis, chemical reactivity, and specific mechanisms of action. Output was subsequently compared relative to that of the three aforementioned alternative systems to identify strengths and shortcomings as regards coverage of chemical space.
Collapse
Affiliation(s)
- James W. Firman
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - David J. Ebbrell
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Franklin J. Bauer
- KREATiS
SAS, 23 rue du Creuzat, ZAC de St-Hubert 38080, L′Isle d′Abeau, France
| | - Maria Sapounidou
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| | - Geoff Hodges
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Bruno Campos
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Jayne Roberts
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Steve Gutsell
- Safety
and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedford MK44 1LQ, Bedfordshire, U.K.
| | - Paul C. Thomas
- KREATiS
SAS, 23 rue du Creuzat, ZAC de St-Hubert 38080, L′Isle d′Abeau, France
| | - Mark Bonnell
- Science
and Risk Assessment Directorate, Environment
& Climate Change Canada, 351 St. Joseph Blvd, Gatineau, Quebec K1A 0H3, Canada
| | - Mark T. D. Cronin
- School
of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Byrom Street, Liverpool L3 3AF, U.K.
| |
Collapse
|
43
|
Becker D, Beckerman AP. Copper mediates life history responses of Daphnia pulex to predation threat. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.983923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key challenge for ecological and ecotoxicological risk assessment is to predict the risk of organisms when exposed simultaneously to multiple stressors in sub-lethal concentrations. Here, we assessed whether sub-lethal concentrations of an anthropogenic stressors, the heavy metal copper (Cu), mediates the impacts of a natural ecological threat to species, predation risk, among six distinct Daphnia pulex clones. We investigated the interaction between the two stressors on morphological defenses and on several life-history traits including maturation time, size at maturity, somatic growth rate and survival rates. Combining a life table experiment on a response surface design, we found no evidence that the heavy metal copper mediates the effects of predator cue induced morphological responses in the tested D. pulex clones. However, our data indicate that copper can mediate several key life-history responses to predation risk. For age at maturity, we found also clear evidence that the observed interaction between predation risk and copper varied by whether clones were strong or weak morphological responders. Specific exploration of the relationship between morphological responses and life history traits under predation risk and copper suggest a strong hypothesis for multiple strategies to deal with multiple stressors. While interactions between different stressors make it harder to predict their outcomes, and ultimately assess water quality regulations about the effects of such stressors, our study provides evidence that life history theory can aid in understanding and predicting their impacts.
Collapse
|
44
|
Brockmeier EK, Basili D, Herbert J, Rendal C, Boakes L, Grauslys A, Taylor NS, Danby EB, Gutsell S, Kanda R, Cronin M, Barclay J, Antczak P, Viant MR, Hodges G, Falciani F. Data-driven learning of narcosis mode of action identifies a CNS transcriptional signature shared between whole organism Caenorhabditis elegans and a fish gill cell line. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157666. [PMID: 35908689 DOI: 10.1016/j.scitotenv.2022.157666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
With the large numbers of man-made chemicals produced and released in the environment, there is a need to provide assessments on their potential effects on environmental safety and human health. Current regulatory frameworks rely on a mix of both hazard and risk-based approaches to make safety decisions, but the large number of chemicals in commerce combined with an increased need to conduct assessments in the absence of animal testing makes this increasingly challenging. This challenge is catalysing the use of more mechanistic knowledge in safety assessment from both in silico and in vitro approaches in the hope that this will increase confidence in being able to identify modes of action (MoA) for the chemicals in question. Here we approach this challenge by testing whether a functional genomics approach in C. elegans and in a fish cell line can identify molecular mechanisms underlying the effects of narcotics, and the effects of more specific acting toxicants. We show that narcosis affects the expression of neuronal genes associated with CNS function in C. elegans and in a fish cell line. Overall, we believe that our study provides an important step in developing mechanistically relevant biomarkers which can be used to screen for hazards, and which prevent the need for repeated animal or cross-species comparisons for each new chemical.
Collapse
Affiliation(s)
- Erica K Brockmeier
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Danilo Basili
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - John Herbert
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Cecilie Rendal
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Leigh Boakes
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Christeyns Food Hygiene, Warrington, UK
| | - Arturas Grauslys
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK
| | - Nadine S Taylor
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Emma Butler Danby
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Steve Gutsell
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Rakesh Kanda
- Institute of Environment, Health and Societies, Brunel University, London, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, UK
| | - Jeff Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Philipp Antczak
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre (SEAC), Unilever, Colworth Park, Sharnbrook, UK
| | - Francesco Falciani
- Department of Biochemistry & System Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK; Computational Biology Facility (CBF), University of Liverpool, Liverpool, UK.
| |
Collapse
|
45
|
Villasclaras P, Jaén C, van Drooge BL, Grimalt JO, Tauler R, Bedia C. Phenotypic and Metabolomic Characterization of 3D Lung Cell Cultures Exposed to Airborne Particulate Matter from Three Air Quality Network Stations in Catalonia. TOXICS 2022; 10:632. [PMID: 36355924 PMCID: PMC9695742 DOI: 10.3390/toxics10110632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Air pollution constitutes an environmental problem that it is known to cause many serious adverse effects on the cardiovascular and respiratory systems. The chemical characterization of particulate matter (PM) is key for a better understanding of the associations between chemistry and toxicological effects. In this work, the chemical composition and biological effects of fifteen PM10 air filter samples from three air quality stations in Catalonia with contrasting air quality backgrounds were investigated. Three-dimensional (3D) lung cancer cell cultures were exposed to these sample extracts, and cytotoxicity, reactive oxygen species (ROS) induction, metabolomics, and lipidomics were explored. The factor analysis method Multivariate Curve Resolution-Alternating Least-Squares (MCR-ALS) was employed for an integrated interpretation of the associations between chemical composition and biological effects, which could be related to urban traffic emission, biomass burning smoke, and secondary aerosols. In this pilot study, a novel strategy combining new approach methodologies and chemometrics provided new insights into the biomolecular changes in lung cells associated with different sources of air pollution. This approach can be applied in further research on air pollution toxicity to improve our understanding of the causality between chemistry and its effects.
Collapse
|
46
|
Colbourne JK, Shaw JR, Sostare E, Rivetti C, Derelle R, Barnett R, Campos B, LaLone C, Viant MR, Hodges G. Toxicity by descent: A comparative approach for chemical hazard assessment. ENVIRONMENTAL ADVANCES 2022; 9:100287. [PMID: 39228468 PMCID: PMC11370884 DOI: 10.1016/j.envadv.2022.100287] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Toxicology is traditionally divided between human and eco-toxicology. In the shared pursuit of environmental health, this separation does not account for discoveries made in the comparative studies of animal genomes. Here, we provide evidence on the feasibility of understanding the health impact of chemicals on all animals, including ecological keystone species and humans, based on a significant number of conserved genes and their functional associations to health-related outcomes across much of animal diversity. We test four conditions to understand the value of comparative genomics data to inform mechanism-based human and environmental hazard assessment: (1) genes that are most fundamental for health evolved early during animal evolution; (2) the molecular functions of pathways are better conserved among distantly related species than the individual genes that are members of these pathways; (3) the most conserved pathways among animals are those that cause adverse health outcomes when disrupted; (4) gene sets that serve as molecular signatures of biological processes or disease-states are largely enriched by evolutionarily conserved genes across the animal phylogeny. The concept of homology is applied in a comparative analysis of gene families and pathways among invertebrate and vertebrate species compared with humans. Results show that over 70% of gene families associated with disease are shared among the greatest variety of animal species through evolution. Pathway conservation between invertebrates and humans is based on the degree of conservation within vertebrates and the number of interacting genes within the human network. Human gene sets that already serve as biomarkers are enriched by evolutionarily conserved genes across the animal phylogeny. By implementing a comparative method for chemical hazard assessment, human and eco-toxicology converge towards a more holistic and mechanistic understanding of toxicity disrupting biological processes that are important for health and shared among animals (including humans).
Collapse
Affiliation(s)
- John K. Colbourne
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Joseph R. Shaw
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington 47405, USA
| | | | - Claudia Rivetti
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Romain Derelle
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | | | - Bruno Campos
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Carlie LaLone
- US Environmental Protection Agency, Duluth 55804, USA
| | - Mark R. Viant
- Michabo Health Science Ltd, Coventry CV1 2NT, UK
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Geoff Hodges
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| |
Collapse
|
47
|
Nam SE, Bae DY, Ki JS, Ahn CY, Rhee JS. The importance of multi-omics approaches for the health assessment of freshwater ecosystems. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Labine LM, Oliveira Pereira EA, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Comparison of sub-lethal metabolic perturbations of select legacy and novel perfluorinated alkyl substances (PFAS) in Daphnia magna. ENVIRONMENTAL RESEARCH 2022; 212:113582. [PMID: 35661729 DOI: 10.1016/j.envres.2022.113582] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of pollutants of concern due to their ubiquitous presence, persistence, and toxicity in aquatic environments. Legacy PFAS pollutants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been more widely studied in aquatic environments. However, replacement PFAS, such as ammonium perfluoro (2-methyl-3-oxahexanoate; GenX) are increasingly being detected with little known information surrounding their toxicity. Here, Daphnia magna, a model organism for freshwater ecotoxicology was used to compare the acute sub-lethal toxicity of PFOS, PFOA, GenX, and PFAS mixtures. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the targeted polar metabolic profile extracted from single Daphnia was quantified to investigate perturbations in the exposure groups versus the unexposed organisms. Multivariate statistical analyses demonstrated significant non-monotonic separation in PFOA, GenX, and PFAS mixture exposures. Sub-lethal exposure to concentrations of PFOS did not lead to significant separation in multivariate analyses. Univariate statistics and pathway analyses were used to elucidate the mode of action of PFAS exposure. Exposure to all individual PFAS led to significant perturbations in many amino acids including cysteine, histidine, tryptophan, glycine, and serine. These perturbations are consistent with biochemical pathway disruptions in the pantothenate and Coenzyme A (CoA) biosynthesis, thiamine metabolism, histidine metabolism, and aminoacyl-tRNA biosynthesis pathways. Overall, the collected metabolomic data is consistent with disruptions in energy metabolism and protein synthesis as the primary mode of action of sub-lethal PFAS exposure. Secondary modes of action among individual pollutant exposures demonstrated that the structural properties (carboxylic acid vs. sulfonic acid group) may play a role in the metabolic perturbations observed. Sub-lethal exposure to PFAS mixtures highlighted a mixed response when compared to the individual pollutants (PFOS, PFOA, and GenX). Overall, this study emphasizes the niche capability of environmental metabolomics to differentiate secondary modes of action from metabolic perturbations in both single pollutant and pollutant mixtures within the same chemical class.
Collapse
Affiliation(s)
- Lisa M Labine
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada, M4V 1M2
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada, A1B 3X7
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
49
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
50
|
Stainforth R, Vuong N, Adam N, Kuo B, Wilkins RC, Yauk C, Beheshti A, Chauhan V. Benchmark dose modeling of transcriptional data: a systematic approach to identify best practices for study designs used in radiation research. Int J Radiat Biol 2022; 98:1832-1844. [PMID: 35939275 DOI: 10.1080/09553002.2022.2110300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Benchmark dose (BMD) modeling is a method commonly used in chemical toxicology to identify the point of departure (POD) from a dose-response curve linked to a health-related outcome. Recently, it is being explored on transcriptional data and in adverse outcome pathways (AOPs). As AOPs are informed by diverse data types, it is important to understand the impact of study parameters such as dose selection, number of replicates and dose range on BMD outputs for radiation induced genes and pathways. MATERIALS AND METHODS Data were selected from the Gene Expression Omnibus (GSE52403) that featured gene expression profiles of peripheral blood samples from C57BL/6 mice 6 hours post-exposure to 137Cs gamma-radiation at 0, 1, 2, 3, 4.5, 6, 8 and 10.5 Gy. The dataset comprised a broad dose-range over multiple dose-points with consistent dose spacing and multiple biological replicates. This dataset was ideal for systematically transforming across three categories: (1) dose-range, (2) dose-spacing and (3) number of controls/replicates. Across these categories, 29 transformed datasets were compared to the original dataset to determine the impact of each transformation on the BMD outputs. RESULTS Most of the experimental changes did not impact the BMD outputs. The transformed datasets were largely consistent with the original dataset in terms of number of reproduced genes modeled and absolute BMD values for genes and pathways. Variations in dose selection identified the importance of the absolute value of the lowest and second dose. It was determined that dose selection should include at least two doses <1 Gy and two >5 Gy to achieve meaningful BMD outputs. Changes to the number of biological replicates in the control and non-zero dose groups impacted the overall accuracy and precision of the BMD outputs as well as the ability to fit dose-response models consistent with the original dataset. CONCLUSION Successful application of transcriptomic BMD modeling for radiation datasets requires considerations of the exposure dose and the number of biological replicates. Most important is the selection of the lowest doses and dose spacing. Reflections on these parameters in experimental design will provide meaningful BMD outputs that could correlate well to apical endpoints of relevance to radiation exposure assessment.
Collapse
Affiliation(s)
| | - Ngoc Vuong
- Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Nadine Adam
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Byron Kuo
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|