1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025; 25:841-866. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Grego A, Fernandes C, Fonseca I, Dias-Neto M, Costa R, Leite-Moreira A, Oliveira SM, Trindade F, Nogueira-Ferreira R. Endothelial dysfunction in cardiovascular diseases: mechanisms and in vitro models. Mol Cell Biochem 2025:10.1007/s11010-025-05289-w. [PMID: 40259179 DOI: 10.1007/s11010-025-05289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 04/08/2025] [Indexed: 04/23/2025]
Abstract
Endothelial cells (ECs) are arranged side-by-side to create a semi-permeable monolayer, forming the inner lining of every blood vessel (micro and macrocirculation). Serving as the first barrier for circulating molecules and cells, ECs represent the main regulators of vascular homeostasis being able to respond to environmental changes, either physical or chemical signals, by producing several factors that regulate vascular tone and cellular adhesion. Healthy endothelium has anticoagulant properties that prevent the adhesion of leukocytes and platelets to the vessel walls, contributing to resistance to thrombus formation, and regulating inflammation, and vascular smooth muscle cell proliferation. Many risk factors of cardiovascular diseases (CVDs) promote the endothelial expression of chemokines, cytokines, and adhesion molecules. The resultant endothelial activation can lead to endothelial cell dysfunction (ECD). In vitro models of ECD allow the study of cellular and molecular mechanisms of disease and provide a research platform for screening potential therapeutic agents. Even though alternative models are available, such as animal models or ex vivo models, in vitro models offer higher experimental flexibility and reproducibility, making them a valuable tool for the understanding of pathophysiological mechanisms of several diseases, such as CVDs. Therefore, this review aims to synthesize the currently available in vitro models regarding ECD, emphasizing CVDs. This work will focus on 2D cell culture models (endothelial cell lines and primary ECs), 3D cell culture systems (scaffold-free and scaffold-based), and 3D cell culture models (such as organ-on-a-chip). We will dissect the role of external stimuli-chemical and mechanical-in triggering ECD.
Collapse
Affiliation(s)
- Ana Grego
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cristiana Fernandes
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ivo Fonseca
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marina Dias-Neto
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Angiology and Vascular Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Raquel Costa
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Adelino Leite-Moreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- Department of Cardiothoracic Surgery, Unidade Local de Saúde de São João, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sandra Marisa Oliveira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Fábio Trindade
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Rita Nogueira-Ferreira
- RISE-Health, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
3
|
Shi J, He F, Du X. Emerging role of IRE1α in vascular diseases. J Cell Commun Signal 2024; 18:e12056. [PMID: 39691875 PMCID: PMC11647051 DOI: 10.1002/ccs3.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/29/2024] [Accepted: 10/21/2024] [Indexed: 12/19/2024] Open
Abstract
A mounting body of evidence suggests that the endoplasmic reticulum stress and the unfolded protein response are involved in the underlying mechanisms responsible for vascular diseases. Inositol-requiring protein 1α (IRE1α), the most ancient branch among the UPR-related signaling pathways, can possess both serine/threonine kinase and endoribonuclease (RNase) activity and can perform physiological and pathological functions. The IRE1α-signaling pathway plays a critical role in the pathology of various vascular diseases. In this review, we provide a general overview of the physiological function of IRE1α and its pathophysiological role in vascular diseases.
Collapse
Affiliation(s)
- Jia Shi
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Fan He
- Department of NephrologyTongji Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei ProvinceChina
| | - Xiaogang Du
- Department of NephrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Wadgaonkar P, Wang Z, Chen F. Endoplasmic reticulum stress responses and epigenetic alterations in arsenic carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123565. [PMID: 38373625 DOI: 10.1016/j.envpol.2024.123565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/21/2023] [Accepted: 02/11/2024] [Indexed: 02/21/2024]
Abstract
Arsenic is a well-known human carcinogen whose environmental exposure via drinking water, food, and air impacts millions of people across the globe. Various mechanisms of arsenic carcinogenesis have been identified, ranging from damage caused by excessive production of free radicals and epigenetic alterations to the generation of cancer stem cells. A growing body of evidence supports the critical involvement of the endoplasmic stress-activated unfolded protein response (UPR) in promoting as well as suppressing cancer development/progression. Various in vitro and in vivo models have also demonstrated that arsenic induces the UPR via activation of the PERK, IRE1α, and ATF6 proteins. In this review, we discuss the mechanisms of arsenic-induced endoplasmic reticulum stress and the role of each UPR pathway in the various cancer types with a focus on the epigenetic regulation and function of the ATF6 protein. The importance of UPR in arsenic carcinogenesis and cancer stem cells is a relatively new area of research that requires additional investigations via various omics-based and computational tools. These approaches will provide interesting insights into the mechanisms of arsenic-induced cancers for prospective target identification and development of novel anti-cancer therapies.
Collapse
Affiliation(s)
- Priya Wadgaonkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| | - Ziwei Wang
- Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA; Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
6
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
7
|
Rahaman MS, Mise N, Ikegami A, Zong C, Ichihara G, Ichihara S. The mechanism of low-level arsenic exposure-induced hypertension: Inhibition of the activity of the angiotensin-converting enzyme 2. CHEMOSPHERE 2023; 318:137911. [PMID: 36669534 DOI: 10.1016/j.chemosphere.2023.137911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
It is now well-established that arsenic exposure induces hypertension in humans. Although arsenic-induced hypertension is reported in many epidemiological studies, the underlying molecular mechanism of arsenic-induced hypertension is not fully characterized. In the human body, blood pressure is primarily regulated by a well-known physiological system known as the renin-angiotensin system (RAS). Hence, we explored the potential molecular mechanisms of arsenic-induced hypertension by investigating the regulatory roles of the RAS. Adult C57BL/6JJcl male mice were divided into four groups according to the concentration of arsenic in drinking water (0, 8, 80, and 800 ppb) provided for 8 weeks. Arsenic significantly raised blood pressure in arsenic-exposed mice compared to the control group, and significantly raised plasma MDA and Ang II and reduced Ang (1-7) levels. RT-PCR results showed that arsenic significantly downregulated ACE2 and MasR in mice aortas. In vitro studies of endothelial HUVEC cells treated with arsenic showed increased level of MDA and Ang II and lower levels of Ang (1-7), compared with the control. Arsenic significantly downregulated ACE2 and MasR expression, as well as those of Sp1 and SIRT1; transcriptional activators of ACE2, in HUVECs. Arsenic also upregulated markers of endothelial dysfunction (MCP-1, ICAM-1) and inflammatory cytokines (IL-6, TNF-α) in HUVECs. Our findings suggest that arsenic-induced hypertension is mediated, at least in part, by oxidative stress-mediated inhibition of ACE2 as well as by suppressing the vasoprotective axes of RAS, in addition to the activation of the classical axis.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
8
|
Sankrityayan H, Rao PD, Shelke V, Kulkarni YA, Mulay SR, Gaikwad AB. Endoplasmic Reticulum Stress and Renin-Angiotensin System Crosstalk in Endothelial Dysfunction. Curr Mol Pharmacol 2023; 16:139-146. [PMID: 35232343 DOI: 10.2174/1874467215666220301113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular endothelial dysfunction (VED) significantly results in catastrophic cardiovascular diseases with multiple aetiologies. Variations in vasoactive peptides, including angiotensin II and endothelin 1, and metabolic perturbations like hyperglycaemia, altered insulin signalling, and homocysteine levels result in pathogenic signalling cascades, which ultimately lead to VED. Endoplasmic reticulum (ER) stress reduces nitric oxide availability, causes aberrant angiogenesis, and enhances oxidative stress pathways, consequently promoting endothelial dysfunction. Moreover, the renin-angiotensin system (RAS) has widely been acknowledged to impact angiogenesis, endothelial repair and inflammation. Interestingly, experimental studies at the preclinical level indicate a possible pathological link between the two pathways in the development of VED. Furthermore, pharmacological modulation of ER stress ameliorates angiotensin-II mediated VED as well as RAS intervention either through inhibition of the pressor arm or enhancement of the depressor arm of RAS, mitigating ER stress-induced endothelial dysfunction and thus emphasizing a vital crosstalk. CONCLUSION Deciphering the pathway overlap between RAS and ER stress may open potential therapeutic avenues to combat endothelial dysfunction and associated diseases. Several studies suggest that alteration in a component of RAS may induce ER stress or induction of ER stress may modulate the RAS components. In this review, we intend to elaborate on the crosstalk of ER stress and RAS in the pathophysiology of VED.
Collapse
Affiliation(s)
- Himanshu Sankrityayan
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Pooja Dhileepkumar Rao
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Vishwadeep Shelke
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Laboratory of Molecular Pharmacology, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan-333031, India
| |
Collapse
|
9
|
Karachaliou C, Sgourou A, Kakkos S, Kalavrouziotis I. Arsenic exposure promotes the emergence of cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:467-486. [PMID: 34253004 DOI: 10.1515/reveh-2021-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies conducted in the past decade 2010-2020 refer to the impact of arsenic (As) exposure on cardiovascular risk factors. The arsenic effect on humans is complex and mainly depends on the varying individual susceptibilities, its numerous toxic expressions and the variation in arsenic metabolism between individuals. In this review we present relevant data from studies which document the association of arsenic exposure with various biomarkers, the effect of several genome polymorphisms on arsenic methylation and the underling molecular mechanisms influencing the cardiovascular pathology. The corresponding results provide strong evidence that high and moderate-high As intake induce oxidative stress, inflammation and vessel endothelial dysfunction that are associated with increased risk for cardiovascular diseases (CVDs) and in particular hypertension, myocardial infarction, carotid intima-media thickness and stroke, ventricular arrhythmias and peripheral arterial disease. In addition, As exposure during pregnancy implies risks for blood pressure abnormalities among infants and increased mortality rates from acute myocardial infarction during early adulthood. Low water As concentrations are associated with increased systolic, diastolic and pulse pressure, coronary heart disease and incident stroke. For very low As concentrations the relevant studies are few. They predict a risk for myocardial infarction, stroke and ischemic stroke and incident CVD, but they are not in agreement regarding the risk magnitude.
Collapse
Affiliation(s)
- Christiana Karachaliou
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- School of Science and Technology, Biology Lab, Hellenic Open University, Patras, Greece
| | - Stavros Kakkos
- Department of Vascular Surgery, Medical School of Patras, University of Patras, Patras, Greece
| | - Ioannis Kalavrouziotis
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| |
Collapse
|
10
|
Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:jcdd9120459. [PMID: 36547457 PMCID: PMC9782920 DOI: 10.3390/jcdd9120459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress in research and clinical therapy. In this research, we provide a summary of the functions that XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs.
Collapse
|
11
|
Huang J, El-Kersh K, Mann KK, James KA, Cai L. Overview of the cardiovascular effects of environmental metals: New preclinical and clinical insights. Toxicol Appl Pharmacol 2022; 454:116247. [PMID: 36122736 PMCID: PMC9941893 DOI: 10.1016/j.taap.2022.116247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 02/06/2023]
Abstract
Environmental causes of cardiovascular diseases (CVDs) are global health issues. In particular, an association between metal exposure and CVDs has become evident but causal evidence still lacks. Therefore, this symposium at the Society of Toxicology 2022 annual meeting addressed epidemiological, clinical, pre-clinical animal model-derived and mechanism-based evidence by five presentations: 1) An epidemiologic study on potential CVD risks of individuals exposed occupationally and environmentally to heavy metals; 2) Both presentations of the second and third were clinical studies focusing on the potential link between heavy metals and pulmonary arterial hypertension (PAH), by presenting altered blood metal concentrations of both non-essential and essential metals in the patients with PAH and potential therapeutic approaches; 3) Arsenic-induced atherosclerosis via inflammatory cells in mouse model; 4) Pathogenic effects on the heart by adult chronic exposure to very low-dose cadmium via epigenetic mechanisms and whole life exposure to low dose cadmium via exacerbating high-fat-diet-lipotoxicity. This symposium has brought epidemiologists, therapeutic industry, physicians, and translational scientists together to discuss the health risks of occupational and environmental exposure to heavy metals through direct cardiotoxicity and indirect disruption of homeostatic mechanisms regulating essential metals, as well as lipid levels. The data summarized by the presenters infers a potential causal link between multiple metals and CVDs and defines differences and commonalities. Therefore, summary of these presentations may accelerate the development of efficient preventive and therapeutic strategies by facilitating collaborations among multidisciplinary investigators.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Cardiovascular Innovation Institute, Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, USA
| | - Karim El-Kersh
- Department of Internal Medicine, Division of Pulmonary Critical Care and Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Koren K Mann
- Departments of Pharmacology & Therapeutics and Oncology and Medicine, McGill University, Canada; Segal Cancer Center, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO, USA,.
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Pediatric Research Institute, Departments of Pediatrics and Radiation Oncology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
12
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
13
|
Zhang H, Zhang R, Lu T, Qi W, Zhu Y, Lu M, Qi Z, Chen W. Enhanced transport of heavy metal ions by low-molecular-weight organic acids in saturated porous media: Link complex stability constants to heavy metal mobility. CHEMOSPHERE 2022; 290:133339. [PMID: 34929284 DOI: 10.1016/j.chemosphere.2021.133339] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Environment-ubiquitous low-molecular-weight organic acids (LMWOAs) can interact with heavy metal ions and thus affect their mobility in subsurface aquifers. Herein, the effects of LMWOAs (including acetic acid, tartaric acid, malonic acid, oxalic acid, and citric acid) on the mobility of heavy metal ions (including Cd2+, Zn2+, Ni2+, Mn2+, and Co2+) in porous media were investigated to reveal the role of the stability constants of metal-LMWOA complexes in the mobility of heavy metal ions in porous media. The results showed that the mobility of different metal ions followed the order of Cd2+ < Zn2+ < Ni2+ < Mn2+ < Co2+ despite of LMWOAs-free or LMWOAs-addition. For each heavy metal, all the organic acids enhanced its transport by forming stable non-adsorbing metal-LMWOA complexes and the enhanced ability followed the order of citric acid > oxalic acid > malonic acid > tartaric acid > acetic acid. An interesting finding was that there was a significantly positive correlation between the enhanced abilities of LMWOAs to metal mobility and the complex stability constants (log K) (R2 = 0.801-0.961, p < 0.05), indicating that the complex stability of metal-LMWOA was the dominant factor responsible for the enhanced transport of heavy metal ions. Meanwhile, the linear slope indicated the intensity of enhancement of LMWOAs on heavy metal mobility was heavy metal type-dependent. This study proposed that the complex stability of metal-LMWOA could be an indicator to quantify and predict the impact of LMWOAs on the mobility of heavy metals.
Collapse
Affiliation(s)
- Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ruoyu Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth D, 95440, Germany
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Minghua Lu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China.
| |
Collapse
|
14
|
Yang Q, Wu L, Zheng Z, Chen J, Lu T, Lu M, Chen W, Qi Z. Sorption of Cd(II) and Ni(II) on biochars produced in nitrogen and air-limitation environments with various pyrolysis temperatures: Comparison in mechanism and performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Virk D, Kumar A, Jaggi AS, Singh N. Ameliorative role of rolipram, PDE-4 inhibitor, against sodium arsenite-induced vascular dementia in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63250-63262. [PMID: 34226994 DOI: 10.1007/s11356-021-15189-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Arsenic exposure to the population leads to serious health problems like neurotoxicity, nephrotoxicity, and cardiovascular abnormality. In the present study, the work has been commenced to discover the prospect of rolipram a phosphodiestrase-4 (PDE-4) inhibitor against sodium arsenite (SA)-induced vascular endothelial dysfunction (EnDF) leading to dementia in rats. Wistar rats were treated with SA (5 mg/kg body weight/day orally) for 44 days for induction of vascular EnDF and dementia. Learning and memory were evaluated using Morris water maze (MWM) test. Vascular EnDF was evaluated using aortic ring preparation. Various biochemical parameters were also evaluated like brain oxidative stress (viz. reduced glutathione and thiobarbituric acid reactive substances level), serum nitrite/nitrate activity, acetylcholinesterase activity, and inflammatory markers (viz. neutrophil infiltration in brain and myeloperoxidase). SA-treated rats showed poor performance in water maze trials indicating attenuated memory and ability to learn with significant rise (p < 0.05) in brain acetylcholinesterase activity, brain oxidative stress, neutrophil count, and significant decrease (p < 0.05) in serum nitrite/nitrate levels and vascular endothelial functions. Rolipram (PDE-4 inhibitor) treatment (0.03 mg/kg and 0.06 mg/kg body weight, intraperitoneally daily for 14 days) significantly improved memory and learning abilities, and restored various biochemical parameters and EnDF. It is concluded that PDE-4 modulator may be considered the prospective target for the treatment of SA-induced vascular EnDF and related dementia.
Collapse
Affiliation(s)
- Divjot Virk
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Amit Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, CNS Research Lab., Pharmacology Division, Faculty of Medicine, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
16
|
Sepúlveda-Fragoso V, Alexandre-Santos B, Salles ACP, Proença AB, de Paula Alves AP, Vázquez-Carrera M, Nóbrega ACL, Frantz EDC, Magliano DC. Crosstalk between the renin-angiotensin system and the endoplasmic reticulum stress in the cardiovascular system: Lessons learned so far. Life Sci 2021; 284:119919. [PMID: 34480931 DOI: 10.1016/j.lfs.2021.119919] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
The renin-angiotensin (Ang) system (RAS) is a complex hormonal system present locally in several tissues such as cardiovascular organs. RAS deregulation through overactivation of the classical arm [Ang-converting enzyme (ACE)/Ang-II/Ang type 1 receptor (AT1R)] has been linked to the development of cardiovascular diseases and activation of endoplasmic reticulum (ER) stress pathways. The ER stress is a condition that, if unresolved, might lead to heart failure, atherosclerosis, hypertension, and endothelial dysfunction. Accumulated evidence has shown that the RAS modulates the UPR activation. Several studies reported increased ER stress markers in response to Ang-II treatment, in both in vivo and in vitro models. Evidence has also pointed that targeting the RAS classical arm through RAS blockers, gene silencing or genetic models leads to lower levels of ER stress markers. Few studies demonstrated protective effects of the counter-regulatory arm (ACE-2/Ang-(1-7)/Mas receptor) over ER stress. However, the crosstalk mechanisms between the arms of the RAS and ER stress remain unclear. In this review, we sought to explore the classical arm of the RAS as a key mechanism in UPR activation and to suggest a possible protective role of the counter-regulatory arm in mitigating ER stress.
Collapse
Affiliation(s)
- Vinicius Sepúlveda-Fragoso
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Beatriz Alexandre-Santos
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Amanda Conceição Pimenta Salles
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Beatriz Proença
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Ana Paula de Paula Alves
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain; Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Instituto de Salud Carlos III, Madrid, Spain; Pediatric Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Antonio Claudio Lucas Nóbrega
- Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - Eliete Dalla Corte Frantz
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; Laboratory of Exercise Sciences, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil; National Institute for Science & Technology - INCT (In)activity & Exercise, CNPq, Niteroi, RJ, Brazil
| | - D'Angelo Carlo Magliano
- Research Center on Morphology and Metabolism, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
| |
Collapse
|
17
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
18
|
Wang X, Wu Y, Sun X, Guo Q, Xia W, Wu Y, Li J, Xu S, Li Y. Arsenic exposure and metabolism in relation to blood pressure changes in pregnant women. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112527. [PMID: 34311426 DOI: 10.1016/j.ecoenv.2021.112527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is concerned with cardiovascular diseases including hypertension, atherosclerosis, and endothelial dysfunction. However, what effects the arsenic exposure and the arsenic metabolism have on hypertensive disorders of pregnancy (HDP) and blood pressure changes during pregnancy remain largely unknown. Our goal was to assess the associations of arsenic exposure and arsenic metabolism with HDP and blood pressure changes in pregnant women through a prospective birth cohort study. A total of 1038 women who were pregnant (52 HDP, 986 non-HDP participants) were included. Arsenic species of spot urine samples collected at three trimesters were measured, which included inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA). Arsenic metabolism was evaluated as the percentages of iAs, MMA, and DMA respectively (i.e., iAs%, MMA%, and DMA%). Outcomes were HDP and systolic, diastolic, and mean arterial pressure changes during pregnancy. We employed mixed linear models to investigate the relationships between arsenic exposure and arsenic metabolism with changes in blood pressure during pregnancy. Poisson regression with a robust error variance with generalized estimating equations (GEE) estimation was used so that the associations of arsenic exposure and arsenic metabolism with HDP could be estimated. In this study, there was a significant relationship between the concentrations of urinary DMA and the weekly change in systolic blood pressure (SBP) (β = -0.10; 95% CI: -0.15, -0.05), diastolic blood pressure (DBP) (β = -0.07; 95% CI: -0.11, -0.02) and mean arterial pressure (MAP) (β = -0.08; 95% CI: -0.12, -0.04). Higher DMA% was accompanied with lesser weekly increase in SBP (β = -0.05; 95% CI: -0.10, 0.00), DBP (β = -0.06; 95% CI: -0.10, -0.01) and MAP (β = -0.06; 95% CI: -0.09, -0.01) during pregnancy. There was a positive association with the highest tertile of iAs% and weekly change of SBP (β = 0.08; 95% CI: 0.03, 0.13), DBP (β = 0.07; 95% CI: 0.03, 0.11) and MAP (β = 0.07; 95% CI: 0.03, 0.11). No association was found between each arsenic specie and arsenic metabolism marker in the first trimester and risk of HDP. Arsenic exposure and arsenic metabolism during pregnancy potentially change blood pressure of pregnant women. These findings may be significance as even modest elevation of blood pressure can increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi Wu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Guo
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
19
|
Gao M, Ma Y, Luo J, Li D, Jiang M, Jiang Q, Pi J, Chen R, Chen W, Zhang R, Zheng Y, Cui L. The Role of Nrf2 in the PM-Induced Vascular Injury Under Real Ambient Particulate Matter Exposure in C57/B6 Mice. Front Pharmacol 2021; 12:618023. [PMID: 33716746 PMCID: PMC7952307 DOI: 10.3389/fphar.2021.618023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Short-and long-term exposure to particulate matter (PM) has been associated with cardiovascular disease (CVD). It is well recognized that oxidative stress is a potential major mechanism in PM-induced vascular injuries, in which the nuclear factor E2-related factor 2 (Nrf2) signaling pathway plays a critical role. In the current study, a Nrf2 knockout mouse model was used in combination with an individual ventilated cage (IVC)-based real-ambient PM exposure system to assess the potential vascular injury and the potential role of Nrf2 in the angiotensin II (Ang II)-associated vascular injury. After 6-or 11-week exposure to PM, the histopathology assay revealed that PM exposure resulted in the thickening of the walls of vascular. After 6 weeks exposure to PM, the ELISA assay revealed that PM exposure resulted in the elevated plasma concentration of Ang II. The expression levels of genes of interest were then further investigated with quantitative real-time PCR. Notably, the results showed that Angiotensinogen (AGT), Angiotensin converting enzyme (ACE) and Angiotensin type I receptor (AT1R) were involved in PM-induced pathological changes. Western blotting for ACE showed similar results. Moreover, the extent of vascular thickening and the Ang II elevation was most prominent in the Nrf2 gene knockout PM exposure group (KOE). Furthermore, the expression of Nrf2 downstream relevant genes (HO1, Nqo1, Gclc, Gsta4) were significantly enhanced in the wildtype PM exposure group (WTE), while those were remarkably suppressed in the Nrf2 gene knockout groups. The ELISA result of monocyte chemoattractant protein-1 (MCP-1) serum levels in the KOE group was significantly higher in relation to that in the Nrf2 knockout control group (KOC). In summary, PM exposure is associated with thickening of vascular wall, while Nrf2 knockout may further enhance this effect. A potential mechanistic contributor of such effects is the activation of ACE/ANGII/AT1R axis, in which Nrf2 played a regulatory role.
Collapse
Affiliation(s)
- Mengyu Gao
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuanyuan Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Menghui Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rui Chen
- Department of Toxicology, School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lianhua Cui
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
20
|
Gong G, Kam H, Tse YC, Giesy JP, Seto SW, Lee SMY. Forchlorfenuron (CPPU) causes disorganization of the cytoskeleton and dysfunction of human umbilical vein endothelial cells, and abnormal vascular development in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:115791. [PMID: 33401215 DOI: 10.1016/j.envpol.2020.115791] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Forchlorfenuron (CPPU) has been used worldwide, to boost size and improve quality of various agricultural products. CPPU and its metabolites are persistent and have been detected frequently in fruits, water, sediments, and organisms in aquatic systems. Although the public became aware of CPPU through the exploding watermelon scandal of 2011 in Zhenjiang, China, little was known of its potential effects on the environment and wildlife. In this study, adverse effects of CPPU on developmental angiogenesis and vasculature, which is vulnerable to insults of persistent toxicants, were studied in vivo in zebrafish embryos (Danio rerio). Exposure to 10 mg CPPU/L impaired survival and hatching, while development was hindered by exposure to 2.5 mg CPPU/L. Developing vascular structure, including common cardinal veins (CCVs), intersegmental vessels (ISVs) and sub-intestinal vessels (SIVs), were significantly restrained by exposure to CPPU, in a dose-dependent manner. Also, CPPU caused disorganization of the cytoskeleton. In human umbilical vein endothelial cells (HUVECs), CPPU inhibited proliferation, migration and formation of tubular-like structures in vitro. Results of Western blot analyses revealed that exposure to CPPU increased phosphorylation of FLT-1, but inhibited phosphorylation of FAK and its downstream MAPK pathway in HUVECs. In summary, CPPU elicited developmental toxicity to the developing endothelial system of zebrafish and HUVECs. This was do, at least in part due to inhibition of the FAK/MAPK signaling pathway rather than direct interaction with the VEGF receptor (VEGFR).
Collapse
Affiliation(s)
- Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yu-Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada; Department of Environmental Sciences, Baylor University, Waco, TX, 76706, United States
| | - Sai-Wang Seto
- Department of Applied Biology and Chemistry Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau.
| |
Collapse
|
21
|
Delaney P, Ramdas Nair A, Palmer C, Khan N, Sadler KC. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish. Toxicol Appl Pharmacol 2020; 409:115307. [PMID: 33147493 DOI: 10.1016/j.taap.2020.115307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Inorganic arsenic (iAs) is one of the most endemic toxicants worldwide and oxidative stress is a key cellular pathway underlying iAs toxicity. Other cellular stress response pathways, such as the unfolded protein response (UPR), are also impacted by iAs exposure, however it is not known how these pathways intersect to cause disease. We optimized the use of zebrafish larvae to identify the relationship between these cellular stress response pathways and arsenic toxicity. We found that the window of iAs susceptibility during zebrafish development corresponds with the development of the liver, and that even a 24-h exposure can cause lethality if administered to mature larvae, but not to early embryos. Acute exposure of larvae to iAs generates reactive oxygen species (ROS), an antioxidant response, endoplasmic reticulum (ER) stress and UPR activation in the liver. An in vivo assay using transgenic larvae expressing a GFP-tagged secreted glycoprotein in hepatocytes (Tg(fabp10a:Gc-EGFP)) revealed acute iAs exposure selectively decreased expression of Gc-EGFP, indicating that iAs impairs secretory protein folding in the liver. The transcriptional output of UPR activation is preceded by ROS production and activation of genes involved in the oxidative stress response. These studies implicate redox imbalance as the mechanism of iAs-induced ER stress and suggest that crosstalk between these pathways underlie iAs-induced hepatic toxicity.
Collapse
Affiliation(s)
- Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Anjana Ramdas Nair
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Catherine Palmer
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates.
| |
Collapse
|
22
|
Haybar H, Shahrabi S, Rezaeeyan H, Shirzad R, Saki N. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc Toxicol 2019; 19:13-22. [PMID: 30506414 DOI: 10.1007/s12012-018-9493-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were "Cardiovascular Disease," "Endothelial Cell Dysfunction," "Inflammation," "Treatment," and "Oxidative Stress." The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rezaeeyan
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Shirzad
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|