1
|
Xu S, Yuan X, Wang Y, Fu Z, Chen K, Cui Z, Xu L, Zhang H, Xia D, Wu Y. Bisphenols exposure at environmentally relevant dose promoted ovarian cancer progression and modulated tumor microenvironment through β-catenin/SPP1 axis. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137824. [PMID: 40054195 DOI: 10.1016/j.jhazmat.2025.137824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Bisphenol A (BPA) and its substitute, Bisphenol S (BPS) are typical endocrine-disrupting chemicals used in plastics, but their cancer-promoting effect has remained controversial. Here, we investigated the effects of environmentally relevant doses of BPA/BPS exposure on the tumor microenvironment (TME) in ovarian cancer. BPA exposure levels was exhibiting a declining trend and BPS showing an ascending trend in the female population by analyzing the NHANES data (2013-2016). Low doses of BPA/BPS both significantly promoted the migration and invasion of ovarian cancer cells in a dose-dependent manner by activating the Wnt/β-catenin signaling pathway, thereby facilitating the SPP1 gene transcription. Notably, low-dose BPA/BPS exposure stimulated ovarian cancer cells to secrete OPN protein (coded by the SPP1 gene), subsequently inducing the transformation of fibroblasts into cancer-associated fibroblasts (CAFs), which could reshape the TME of ovarian cancer. Two in-vivo experiments established with nude mice and SPP1-/- mice respectively, both confirmed that low-dose BPA/BPS exposure increased the incidence of tumor metastasis accompanied by CAF infiltration, while administration of OPN-neutralizing antibodies effectively blocked these effects. Our results indicated that exposure to either BPA or its substitute BPS could promote the release of secreted protein OPN via the β-catenin/SPP1 axis, ultimately modulating the TME and enhancing the progression of ovarian cancer, providing new evidence and potential intervention strategies for the toxicological assessment and management of bisphenols.
Collapse
Affiliation(s)
- Sinan Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Leting Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Wang Y, Su X, Wang Q, Zhang L, Yu Y, Zhao Y, Liu Z. Bisphenol A exposure enhances proliferation and tumorigenesis of papillary thyroid carcinoma through ROS generation and activation of NOX4 signaling pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117946. [PMID: 40014988 DOI: 10.1016/j.ecoenv.2025.117946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
As a prevalent industrial material and component of consumer products, bisphenol A (BPA) is linked to hormone homeostasis disruption and potential carcinogenicity. However, the precise mechanisms through which BPA contributes to thyroid carcinogenesis, especially in papillary thyroid carcinoma (PTC), are not fully understood. This study investigates how BPA boosts the proliferation and tumorigenic characteristics of thyroid cells. BPA exposure significantly increased cell proliferation in a duration-dependent manner at a concentration of 0.5 μM, which is slightly higher than human exposure levels. Therefore, this study utilized BPA treatment concentrations of 0.1 µM and 0.5 µM. BPA augmented the invasiveness of PTC cells with a dependency on both dosage and temporal factors. RNA-seq and gene expression analysis from normal human thyroid follicular epithelial cells suggested that BPA upregulated genes related to oxidative stress and thyroid cancer. Concurrently, our study revealed significant upregulation of NOX4 in thyroid tumors compared to normal thyroid tissues, with higher expression levels observed in advanced carcinomas by analyses of the TCGA database. BPA induces the upregulation of NOX4 in human thyroid cells, thereby triggering the activation of MAPK and PI3K/AKT pathways. In xenograft models, BPA treatment resulted in increased tumor size and Ki-67 proliferation index, accompanied by upregulated NOX4 expression. Additionally, BPA exposure led to higher levels of free triiodothyronine (FT3), indicating thyroid hormone disruption. Mechanistically, BPA activates the MAPK and PI3K/AKT pathways via NOX4, leading to increased ROS production and cell proliferation. This was further demonstrated through the use of ROS scavenger treatment and si-NOX4, which showed that BPA stimulates ROS generation by activating NOX4/MAPK and NOX4/PI3K/AKT pathways in thyroid cells. This finding enhances our understanding of the pathogenesis of PTC related to BPA exposure and highlights the necessity for rigorous health risk assessments regarding BPA exposure.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuling Su
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qianqian Wang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Likun Zhang
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yaling Yu
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yiwei Zhao
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhiyan Liu
- Department of Pathology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
3
|
Yu Z, Yang W, Zhang Q, Zheng M. Unveiling the impact of estrogen exposure on ovarian cancer: a comprehensive risk model and immune landscape analysis. Toxicol Mech Methods 2025; 35:279-291. [PMID: 39252197 DOI: 10.1080/15376516.2024.2402865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
This study examines the impact of estrogenic compounds like bisphenol A (BPA), estradiol (E2), and zearalenone (ZEA) on human ovarian cancer, focusing on constructing a risk model, conducting gene set variation analysis (GSVA), and evaluating immune infiltration. Differential gene expression analysis identified 980 shared differentially expressed genes (DEGs) in human ovarian cells exposed to BPA, E2, and ZEA, indicating disruptions in ribosome biogenesis and RNA processing. Using the cancer genome atlas ovarian cancer (TCGA-OV) dataset, a least absolute shrinkage and selection operator (LASSO)-based risk model was developed incorporating prognostic genes 4-hydroxyphenylpyruvate dioxygenase like (HPDL), Thy-1 cell surface antigen (THY1), and peptidase inhibitor 3 (PI3). This model effectively stratified ovarian cancer patients into high-risk and low-risk categories, showing significant differences in overall survival, disease-specific survival, and progression-free survival. GSVA analysis linked HPDL expression to pathways related to the cell cycle, DNA damage, and repair, while THY1 and PI3 were associated with apoptosis, hypoxia, and proliferation pathways. Immune infiltration analysis revealed distinct immune cell profiles for high and low-expression groups of HPDL, THY1, and PI3, indicating their influence on the tumor microenvironment. The findings demonstrate that estrogenic compounds significantly alter gene expression and oncogenic pathways in ovarian cancer. The risk model integrating HPDL, THY1, and PI3 offers a strong prognostic tool, with GSVA and immune infiltration analyses providing insights into the interplay between these genes and the tumor microenvironment, suggesting potential targets for personalized therapies.
Collapse
Affiliation(s)
- Zhongna Yu
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Weili Yang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qinwei Zhang
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Mengyu Zheng
- Department of Obstetrics and Gynaecology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Chuang YT, Yen CY, Liu W, Chien TM, Chang FR, Tsai YH, Tang JY, Chang HW. The protection of bisphenol A-modulated miRNAs and targets by natural products. ENVIRONMENT INTERNATIONAL 2025; 196:109299. [PMID: 39884249 DOI: 10.1016/j.envint.2025.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant with endocrine-disrupting functions. Identifying protective drugs and exploring the mechanisms against BPA are crucial in healthcare. Natural products exhibiting antioxidant properties are considered to be able to protect against BPA toxicity. Although BPA-modulated targets and miRNAs have been individually reported, their connections to natural products were rarely organized. With the help of a protein-protein interaction database (STRING), the relationship between individual BPA-modulated targets was interconnected to provide a systemic view. In this review, BPA-downregulated and -upregulated targets are classified, and their interactive network was innovatively analyzed using the bioinformatic database (STRING). BPA-modulated miRNAs were also retrieved and ingeniously connected to BPA-modulated targets. Moreover, a novel connection between BPA-countering natural products was integrated into BPA-modulated miRNAs and targets. All these targets-associated natural products and/or miRNAs were incorporated into the STRING network, providing systemic relationships. Overall, the BPA-modulated target-miRNA-protecting natural product axis was innovatively constructed, providing a straightforward direction for exploring the integrated BPA-countering effects and mechanisms of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Huang CY, Xie RH, Li PH, Chen CY, You BH, Sun YC, Chou CK, Chang YH, Lin WC, Chen GY. Environmental Exposure to Bisphenol A Enhances Invasiveness in Papillary Thyroid Cancer. Int J Mol Sci 2025; 26:814. [PMID: 39859529 PMCID: PMC11766120 DOI: 10.3390/ijms26020814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Bisphenol A (BPA) is a prevalent environmental contaminant found in plastics and known for its endocrine-disrupting properties, posing risks to both human health and the environment. Despite its widespread presence, the impact of BPA on papillary thyroid cancer (PTC) progression, especially under realistic environmental conditions, is not well understood. This study examined the effects of BPA on PTC using a 3D thyroid papillary tumor spheroid model, which better mimicked the complex interactions within human tissues compared to traditional 2D models. Our findings demonstrated that BPA, at environmentally relevant concentrations, could induce significant changes in PTC cells, including a decrease in E-cadherin expression, an increase in vimentin expression, and reduced thyroglobulin (TG) secretion. These changes suggest that BPA exposure may promote epithelial-mesenchymal transition (EMT), enhance invasiveness, and reduce cell differentiation, potentially complicating treatment, including by increasing resistance to radioiodine therapy. This research highlights BPA's hazardous nature as an environmental contaminant and emphasizes the need for advanced in vitro models, like 3D tumor spheroids, to better assess the risks posed by such chemicals. It provides valuable insights into the environmental implications of BPA and its role in thyroid cancer progression, enhancing our understanding of endocrine-disrupting chemicals.
Collapse
Affiliation(s)
- Chien-Yu Huang
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (C.-Y.H.); (R.-H.X.); (C.-Y.C.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (C.-Y.H.); (R.-H.X.); (C.-Y.C.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
| | - Pin-Hsuan Li
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
| | - Chong-You Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (C.-Y.H.); (R.-H.X.); (C.-Y.C.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
| | - Bo-Hong You
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
| | - Yuan-Chin Sun
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
| | - Chen-Kai Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (C.-K.C.); (Y.-H.C.)
| | - Yen-Hsiang Chang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (C.-K.C.); (Y.-H.C.)
- Department of Nuclear Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Che Lin
- Division of Neuroradiology, Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (C.-Y.H.); (R.-H.X.); (C.-Y.C.)
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-H.L.); (B.-H.Y.); (Y.-C.S.)
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDSB), National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Zhao W, Zheng X, Jiang F, Liu J, Wang S, Ou J. Safe concentration, unsafe effects: Impact of BPA on antioxidant function in the hepatopancreas and ovarian gene expression in oriental river prawns (Macrobrachium nipponense). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107103. [PMID: 39305710 DOI: 10.1016/j.aquatox.2024.107103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 11/12/2024]
Abstract
This study investigated the effects of Bisphenol A (BPA), a common endocrine-disrupting chemical, on the antioxidant enzyme activities in the hepatopancreas and the expression of genes related to ovarian development in oriental river prawns (Macrobrachium nipponense). The 24hLC50 and 48hLC50 values for BPA were 80.59 mg/L and 63.90 mg/L, respectively, with a safe concentration of 12.06 mg/L. Prawns were exposed to low (4.85 mg/L), safe (12.06 mg/L), and high (30.00 mg/L) concentrations of BPA for 10 days to measure enzyme activities, and for 20 days followed by 7 days in BPA-free water to measure gene expression. Short-term exposure (12 h, 1d, 3d) to low concentration BPA did not significantly affect superoxide dismutase (SOD) activity in the hepatopancreas (P > 0.05), but long-term exposure (6d, 10d) significantly reduced SOD activity (P < 0.05). Catalase (CAT) activity showed no significant changes throughout the low concentration exposure period (P > 0.05). At safe and high concentrations, SOD and CAT activities significantly decreased after 12 h of exposure (P < 0.05). BPA affected heat shock protein 90 (HSP90) expression in the ovary, with low concentration BPA significantly upregulating HSP90 after 1 day (P < 0.05), but returning to normal levels after 10 and 20 days. At the safe concentration, HSP90 was significantly upregulated at all three sampling points (1d, 10d, 20d) (P < 0.05), while high concentration exposure led to significant upregulation only on day 10 (P < 0.05). Low concentration BPA had no significant effect on Cathepsin B (CB) and Cathepsin L (CL) gene expression in the ovaries (P > 0.05). However, safe concentration exposure promoted CB expression on days 1, 10, and 20 (P < 0.05), while high concentration exposure significantly increased CB expression on day 1 (P < 0.05), with levels returning to normal on days 10 and 20. CL expression significantly increased after 20 days of exposure to both safe and high concentrations (P < 0.05). Gene expression levels in the ovaries returned to normal after transfer to BPA-free water, with HSP90 and CB normalizing by day 1, and CL by day 7. These results indicate that even safe concentrations of BPA impose stress on the hepatopancreas and increase the expression of HSP90, CB, and CL genes in the ovaries, affecting ovarian development. And, these effects are reversible within a certain period after the removal of BPA.
Collapse
Affiliation(s)
- Weihong Zhao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xirui Zheng
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Fengjuan Jiang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jintao Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Shuhao Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Jiangtao Ou
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
7
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
8
|
Bujnakova Mlynarcikova A, Scsukova S. Evaluation of effects of bisphenol analogs AF, S, and F on viability, proliferation, production of selected cancer-related factors, and expression of selected transcripts in Caov-3 human ovarian epithelial cell line. Food Chem Toxicol 2024; 191:114889. [PMID: 39059691 DOI: 10.1016/j.fct.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bisphenol A (BPA) has been a substantial additive in plastics until the reports on its adverse effects have led to its restrictions and replacement. Monitoring studies document the increasing occurrence of bisphenol analogs, however, data on their effects and risks is still insufficient. Based on the indications that BPA might contribute to ovarian cancer pathogenesis, we examined effects of the analogs AF (BPAF), S (BPS) and F (BPF) (10-9-10-4 M) on the Caov-3 epithelial cancer cells, including the impact on cell viability, proliferation, oxidative stress, and production and expression of several factors and genes related to ovarian cancer. At environmentally relevant doses, bisphenols did not exert significant effects. At the highest concentration, BPAF caused varied alterations, including decreased cell viability and proliferation, caspase activation, down-regulation of PCNA and BIRC5, elevation of IL8, VEGFA, MYC, PTGS2 and ABCB1 expressions. Only BPA (10-4 M) increased IL-6, IL-8 and VEGFA output by the Caov-3 cells. Each bisphenol induced generation of reactive oxygen species and decreased superoxide dismutase activity at the highest concentration. Although the effects were observed only in the supraphysiological doses, the results indicate that certain bisphenol analogs might affect several ovarian cancer cell characteristics and merit further investigation.
Collapse
Affiliation(s)
- Alzbeta Bujnakova Mlynarcikova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505, Slovakia.
| | - Sona Scsukova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska Cesta 9, Bratislava, 84505, Slovakia
| |
Collapse
|
9
|
Suresh S, Vellapandian C. Cyanidin improves spatial memory and cognition in bisphenol A-induced rat model of Alzheimer's-like neuropathology by restoring canonical Wnt signaling. Toxicol Appl Pharmacol 2024; 487:116953. [PMID: 38705400 DOI: 10.1016/j.taap.2024.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Research has unveiled the neurotoxicity of Bisphenol A (BPA) linked to neuropathological traits of Alzheimer's disease (AD) through varied mechanisms. This study aims to investigate the neuroprotective properties of cyanidin, an anthocyanin, in an in vivo model of BPA-induced Alzheimer's-like neuropathology. METHODS Three-week-old Sprague-Dawley rats were randomly assigned to four groups: vehicle control, negative control (BPA exposure), low-dose cyanidin treatment (BPA + cyanidin 5 mg/kg), and high-dose cyanidin treatment (BPA + cyanidin 10 mg/kg). Spatial memory was assessed through behavioral tests, including the Y-maze, novel object recognition, and Morris water maze. After behavioral tests, animals were euthanized, and brain regions were examined for acetylcholinesterase inhibition, p-tau, Wnt3, GSK3β, and β-catenin levels, antioxidant activities, and histopathological changes. RESULTS BPA-exposed groups displayed memory impairments, while cyanidin-treated groups showed significant memory improvement (p < 0.0001). Cyanidin down regulated p-tau and glycogen synthase kinase-3β (GSK3β) and restored Wnt3 and β-catenin levels (p < 0.0001). Moreover, cyanidin exhibited antioxidant properties, elevating catalase and superoxide dismutase levels. The intervention significantly reduced the concentrations of acetylcholinesterase in the cortex and hippocampus in comparison to the groups treated with BPA (p < 0.0001). Significant gender-based disparities were not observed. CONCLUSION Cyanidin demonstrated potent neuroprotection against BPA-induced Alzheimer's-like neuropathology by enhancing antioxidant defenses, modulating tau phosphorylation by restoring the Wnt/β-catenin pathway, and ameliorating spatial memory deficits. This study highlights the therapeutic potential of cyanidin in countering neurotoxicity linked to BPA exposure.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
10
|
Qin Y, Yuan X, Cui Z, Chen W, Xu S, Chen K, Wang F, Zheng F, Ni H, Shen HM, Wu Y, Xia D. Low dose PFDA induces DNA damage and DNA repair inhibition by promoting nuclear cGAS accumulation in ovarian epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115503. [PMID: 37742570 DOI: 10.1016/j.ecoenv.2023.115503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), the versatile anthropogenic chemicals, are popular with the markets and manufactured in large quantities yearly. Accumulation of PFAS has various adverse health effects on human. Albeit certain members of PFAS were found to have genotoxicity in previous studies, the mechanisms underlying their effects on DNA damage repair remain unclear. Here, we investigated the effects of Perfluorodecanoic acid (PFDA) on DNA damage and DNA damage repair in ovarian epithelial cells through a series of in vivo and in vitro experiments. At environmentally relevant concentration, we firstly found that PFDA can cause DNA damage in primary mouse ovarian epithelial cells and IOSE-80 cells. Moreover, nuclear cGAS increased in PFDA-treated cells, which leaded to the efficiency of DNA homologous recombination (HR) decreased and DNA double-strand breaks perpetuated. In vivo experiments also verified that PFDA can induce more DNA double-strand breaks lesions and nuclear cGAS in ovarian tissue. Taken together, our results unveiled that low dose PFDA can cause deleterious effects on DNA and DNA damage repair (DDR) in ovarian epithelial cells and induce genomic instability.
Collapse
Affiliation(s)
- Yuheng Qin
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenhan Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sinan Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
12
|
Yuan X, Chen K, Zheng F, Xu S, Li Y, Wang Y, Ni H, Wang F, Cui Z, Qin Y, Xia D, Wu Y. Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131288. [PMID: 36989771 DOI: 10.1016/j.jhazmat.2023.131288] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/23/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
The environmental toxicity of bisphenol A (BPA) and its analog like bisphenol S (BPS) have drawn wide attention, but their roles in cancer progression remain controversial. Here, we investigated the effect of BPA/BPS on the development of ovarian cancer. Human internal BPA/BPS exposure levels were analyzed from NHANES 2013-2016 data. We treated human ovarian cancer cells with 0-1000 nM BPA/BPS and found that 100 nM BPA/BPS treatment significantly increased Cancer Stem Cell (CSC) markers expression including OCT4, NANOG and SOX2. Cancer cell stemness evaluation induced by BPA/BPS was notably attenuated by the knockdown of PINK1 or Mdivi-1 treatment. The activation of PINK1 initiated mitophagy by inhibiting p-p53 nuclear translocation in a non-canonical manner. In vivo studies validated that BPA/BPS-exposed mice have higher tumor metastasis incidence compared with the control group, while mitophagy inhibition blocked such a promotion effect. In addition, CSC markers such as SOX2 had been found to be overexpressed in the tumor tissues of BPA/BPS exposure group. Taken together, the findings herein first provide the evidence that environmentally relevant BPA/BPS exposure could enhance ovarian cancer cell stemness through a non-canonical PINK1/p53 mitophagic pathway, raising concerns about the potential population hazards of BPA and other bisphenol analogs.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sinan Xu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yating Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuwei Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Qin
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Hangzhou, China.
| |
Collapse
|
13
|
Zhang Y, Xie X, Cheng H, Zhang Y, Li H, Zhu Y, Wang R, Li W, Wang R, Wu F. Bisphenol A interferes with lncRNA Fhadlos2 and RUNX3 association in adolescent mouse ovary. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115060. [PMID: 37229876 DOI: 10.1016/j.ecoenv.2023.115060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) has a number of adverse effects on the reproductive development of females. In particular, the mechanism of disruption of ovarian development in adolescent mice is still unclear. Based on transcriptome sequencing results, a differentially expressed lncRNA, Fhad1os2, was detected in the ovaries of BPA-exposed pubertal mice. In our study, the lncRNA Fhad1os2, localized in the ovarian granulosa cell cytoplasm, could regulate the proliferation of mouse ovarian granulosa cells. Mechanistically, the results of RNA pull-down experiments as well as mass spectrometry analysis showed that ERα, an interfering signaling molecule of BPA, could directly bind lncRNA Fhad1os2 and decrease the transcription of lncRNA Fhad1os2 in response to the estrogen-like effect of BPA. BPA exposure also caused abnormal lncRNA Fhad1os2 pulldown protein-related signaling pathways in the ovaries of adolescent mice. Furthermore, lncRNA Fhad1os2 interacted with RUNX3, a transcription factor related to follicle development and hormone synthesis. As a negative regulator, lncRNA Fhad1os2 transactivated the expression of Runx3, which in turn induced RUNX3 to positively regulate aromatase (Cyp19a1) expression in mouse ovarian granulosa cells and promote estrogen synthesis. In conclusion, our study indicates that BPA exposure interferes with ERα-regulated lncRNA Fhad1os2 interactions with RUNX3 in pubertal mice, affecting estrogen synthesis in mouse granulosa cells and contributing to premature ovarian maturation in pubertal mice.
Collapse
Affiliation(s)
- Yilei Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Xin Xie
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Huimin Cheng
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yadi Zhang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Haili Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yan Zhu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Rong Wang
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Wenyong Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Ruitao Wang
- The Second People's Hospital of Fuyang, Fuyang, China.
| | - Fengrui Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China; Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China.
| |
Collapse
|
14
|
Xie X, Zhu Y, Cheng H, Li H, Zhang Y, Wang R, Li W, Wu F. BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis. Food Chem Toxicol 2023; 176:113792. [PMID: 37080528 DOI: 10.1016/j.fct.2023.113792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Long-term exposure to bisphenol A (BPA) in humans may promote ovarian cancer development. In present study, the mechanisms by which BPA mediates the aggression metastatic behavior of ovarian cancer were investigated in vitro/in vivo. The results showed that BPA (10 μM) significantly promoted the proliferation, migration and invasion of human ovarian cancer cells (ES-2 and OVCAR-3 cells); moreover, it promoted ES-2 and OVCAR-3 cell glucose uptake, lactic acid release and intracellular ATP synthesis. After administration of 5 μg/kg/day BPA, tumor volume was increased compared with that in control group. KEGG and GO enrichment analyses showed that the genes from ES-2 cell in 10 μM BPA-treated group were enriched mainly in central carbon metabolism and PI3K-AKT signaling pathway. Then, qRT‒PCR and western blotting results showed that BPA (10 μM) increased the mRNA and protein expression levels of glycolysis-related genes and mTOR, p-AKT HIF-1α and ERα in vitro/vivo; whereas this effect was reduced after treatment with the ERα inhibitor methyl-piperidino-pyrazole. Furthermore, coimmunoprecipitation and mass spectrometry showed that BPA promoted the direct interaction of ERα with lactate dehydrogenase A. These results show that BPA directly promoted the proliferation, migration and invasion of ovarian cancer cells through the ERα/AKT/mTOR/HIF-1α signaling axis to enhance glycolysis.
Collapse
Affiliation(s)
- Xin Xie
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Yan Zhu
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Huimin Cheng
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Haili Li
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Yadi Zhang
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Rong Wang
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Wenyong Li
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China.
| | - Fengrui Wu
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China.
| |
Collapse
|
15
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
16
|
Mlynarcikova AB, Macejova D, Scsukova S. Expression of selected nuclear receptors in human epithelial ovarian cell line Caov3 exposed to bisphenol derivatives. Endocr Regul 2023; 57:191-199. [PMID: 37715983 DOI: 10.2478/enr-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/18/2023] Open
Abstract
Objectives. Bisphenol A (BPA) is an indispensable industrial chemical. However, as a proven endocrine disruptor, it may be associated with several health disturbances, including the reproductive functions impairment and cancer. Due to the restriction of BPA usage, many bisphenol derivatives gradually substitute BPA. However, studies have reported adverse biological effects of BPA analogs, but the specific sites of their action remain largely unknown. Nuclear receptors (NRs) appear to play significant roles in various types of cancer. In addition, they are considered relevant targets of bisphenols. In the present study, we investigated the effects of BPA and its analogs bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) on mRNA expression of selected NRs in the human ovarian epithelial cell line Caov3. The NRs examined included retinoic acid receptor α (RARA), retinoid X receptor α (RXRA), peroxisome proliferator activating receptor β/δ (PPARD), chicken ovalbumin upstream promoter-transcription factor 2 (COUPTFII), and nuclear receptor-related protein 1 (NURR1). Methods. Caov3 cells were treated with the bisphenols at the concentrations of 1 nM, 100 nM, 10 µM and 100 µM. After 24 h and 72 h of incubation, cell viability was determined by the MTS assay, and the selected genes expression was analyzed using RT-qPCR. Results. Bisphenol treatment did not affect Caov3 cell viability, except the significant impairment after exposure to the highest BPAF dose (100 µM). At lower doses, neither bisphenol analog altered the expression of the NRs. However, at the highest concentration (100 µM), BPAF and BPA altered the mRNA levels of PPARD, COUPTFII, and NURR1 in a time- and receptor-specific manner. Conclusions. The effects of bisphenols on the specific NRs in the epithelial ovarian cancer cells were addressed for the first time by the present study. Although generally we did not find that bisphenols may provoke significant alterations in the expression of the selected NRs in Caov3 cells, they may alter mRNA expression of certain NRs at high concentrations.
Collapse
Affiliation(s)
| | - Dana Macejova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Sona Scsukova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
17
|
Qu J, Mao W, Liao K, Zhang Y, Jin H. Association between urinary bisphenol analogue concentrations and lung cancer in adults: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120323. [PMID: 36191799 DOI: 10.1016/j.envpol.2022.120323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Elevated urinary bisphenol A (BPA) concentrations have been associated with lung cancer in humans. However, toxicological studies demonstrated that the proliferation of lung cancer cells was inhibited by BPA exposure. Therefore, it is still necessary to determine whether exposure to BPA and other bisphenol analogues (BPs) is associated with lung cancer in humans. In this study, 226 lung cancer patients and 243 controls were randomly recruited. Concentrations of three BPs in human urine were quantified and their relationships with the risk of human lung cancer were evaluated. BPA (mean 1.03 ng/mL, 0.87 μg/g Cre) was the predominant BP in human urine, followed by bisphenol S (BPS) (0.72 ng/mL, 0.53 μg/g Cre) and bisphenol F (0.32 ng/mL, 0.37 μg/g Cre). Significant correlations between creatinine-corrected urinary BPA concentrations and the lung cancer risk (odds ratio (OR) adjusted = 1.28, 95% confidence interval (CI): 1.17, 1.40; Ptrend = 0.04) were found using logistical regression analysis. Creatinine-corrected urinary concentrations of BPS in participants showed significant correlations with lung cancer (ORadjusted = 1.23, 95% CI: 1.04, 1.59; Ptrend = 0.01) in the adjusted model. In the stratification analysis, the significant correlation between urinary creatinine-corrected concentrations of BPA and the risk of lung cancer still observed in male participants (OR = 1.36, 95% CI: 1.09, 1.62, p = 0.040). This study demonstrates that elevated human exposure to BPA and BPS may be associated with the increased lung cancer risk.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yingying Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China; Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
18
|
Lycopene protects against Bisphenol A induced toxicity on the submandibular salivary glands via the upregulation of PPAR-γ and modulation of Wnt/β-catenin signaling. Int Immunopharmacol 2022; 112:109293. [DOI: 10.1016/j.intimp.2022.109293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
|
19
|
Ansari MI, Bano N, Kainat KM, Singh VK, Sharma PK. Bisphenol A exposure induces metastatic aggression in low metastatic MCF-7 cells via PGC-1α mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity. Life Sci 2022; 302:120649. [PMID: 35597549 DOI: 10.1016/j.lfs.2022.120649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 11/26/2022]
Abstract
AIMS The frequency of estrogen receptor alpha (ERα)-positive breast cancers and their metastatic progression is prevalent in females globally. Aberrant interaction of estrogen-like endocrine-disrupting chemicals (EDCs) is highly implicated in breast carcinogenesis. Studies have shown that single or acute exposures of weak EDCs such as bisphenol A (BPA) may not have a substantial pro-carcinogenic/metastatic effect. However, repeated exposure to EDCs is expected to strongly induce carcinogenic/metastatic progression, which remains to be studied. MAIN METHODS Low metastatic ERα-positive human breast cancer cells (MCF-7) were exposed to nanomolar doses of BPA every 24 h (up to 200 days) to study the effect of repeated exposure on metastatic potential. Following the designated treatment of BPA, markers of epithelial-mesenchymal transition (EMT), migration and invasion, mitochondrial biogenesis, ATP levels, and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) knockdown assays were performed. KEY FINDINGS A repeated exposure of low dose BPA induced stable epithelial-mesenchymal plasticity in MCF-7 cells to augment migration and invasion in the ERα-dependent pathway. Repeated exposures of BPA increased the levels of several mesenchymal markers such as N-cadherin, vimentin, cluster of differentiation 44 (CD44), slug, and alpha-smooth muscle actin (α-SMA), whereas reduced the level of E-cadherin drastically. BPA-induced mitochondrial biogenesis favored metastatic aggression by fulfilling bioenergetics demand via PGC-1α/NRF1/ERRα signaling. Knockdown of PGC-1α resulted in suppressing both mitochondrial biogenesis and EMT in BPA exposed MCF-7 cells. SIGNIFICANCE Repeated exposures of low dose BPA may induce metastatic aggression in ERα-positive breast cancer cells via PGC-1α-mediated mitochondrial biogenesis and epithelial-mesenchymal plasticity.
Collapse
Affiliation(s)
- Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nuzhat Bano
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K M Kainat
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vipendra Kumar Singh
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradeep Kumar Sharma
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Sabry R, Williams M, Werry N, LaMarre J, Favetta LA. BPA Decreases PDCD4 in Bovine Granulosa Cells Independently of miR-21 Inhibition. Int J Mol Sci 2022; 23:ijms23158276. [PMID: 35955412 PMCID: PMC9368835 DOI: 10.3390/ijms23158276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
microRNAs (miRNAs) are susceptible to environmental factors that might affect cellular function and impose negative effects on female reproduction. miR-21 is the most abundant miRNA in bovine granulosa cells and is widely reported as affected by Bisphenol A (BPA) exposure, yet the cause and consequences are not entirely elucidated. BPA is a synthetic endocrine disruptor associated with poor fertility. miR-21 function in bovine granulosa cells is investigated utilizing locked nucleic acid (LNA) oligonucleotides to suppress miR-21. Before measuring apoptosis and quantifying miR-21 apoptotic targets PDCD4 and PTEN, transfection was optimized and validated. BPA was introduced to see how it affects miR-21 regulation and which BPA-mediated effects are influenced by miR-21. miR-21 knockdown and specificity against additional miRNAs were confirmed. miR-21 was found to have antiapoptotic effects, which could be explained by its effect on the proapoptotic target PDCD4, but not PTEN. Previous findings of miR-21 overexpression were validated using BPA treatments, and the temporal influence of BPA on miR-21 levels was addressed. Finally, BPA effects on upstream regulators, such as VMP1 and STAT3, explain the BPA-dependent upregulation of miR-21 expression. Overall, this research enhances our understanding of miR-21 function in granulosa cells and the mechanisms of BPA-induced reproductive impairment.
Collapse
|
21
|
Giuli MV, Mancusi A, Giuliani E, Screpanti I, Checquolo S. Notch signaling in female cancers: a multifaceted node to overcome drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:805-836. [PMID: 35582386 PMCID: PMC8992449 DOI: 10.20517/cdr.2021.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Drug resistance is one of the main challenges in cancer therapy, including in the treatment of female-specific malignancies, which account for more than 60% of cancer cases among women. Therefore, elucidating the underlying molecular mechanisms is an urgent need in gynecological cancers to foster novel therapeutic approaches. Notably, Notch signaling, including either receptors or ligands, has emerged as a promising candidate given its multifaceted role in almost all of the hallmarks of cancer. Concerning the connection between Notch pathway and drug resistance in the afore-mentioned tumor contexts, several studies focused on the Notch-dependent regulation of the cancer stem cell (CSC) subpopulation or the induction of the epithelial-to-mesenchymal transition (EMT), both features implicated in either intrinsic or acquired resistance. Indeed, the present review provides an up-to-date overview of the published results on Notch signaling and EMT- or CSC-driven drug resistance. Moreover, other drug resistance-related mechanisms are examined such as the involvement of the Notch pathway in drug efflux and tumor microenvironment. Collectively, there is a long way to go before every facet will be fully understood; nevertheless, some small pieces are falling neatly into place. Overall, the main aim of this review is to provide strong evidence in support of Notch signaling inhibition as an effective strategy to evade or reverse resistance in female-specific cancers.
Collapse
Affiliation(s)
- Maria V Giuli
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Angelica Mancusi
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Eugenia Giuliani
- Scientific Direction, San Gallicano Dermatological Institute IRCCS, Rome 00144, Italy
| | - Isabella Screpanti
- Laboratory of Molecular Pathology, Department of Molecular Medicine, Sapienza University, Rome 00161, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnology, Sapienza University, Latina 04100, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome 00161, Italy
| |
Collapse
|
22
|
Zahra A, Hall M, Chatterjee J, Sisu C, Karteris E. In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. Int J Mol Sci 2022; 23:ijms23031725. [PMID: 35163645 PMCID: PMC8835975 DOI: 10.3390/ijms23031725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Recently, we have shown that seven genes, namely GBP5, IRS2, KRT4, LINCOO707, MRPL55, RRS1 and SLC4A11, have prognostic power for the overall survival in ovarian cancer (OC). Methods: We present an analysis on the association of these genes with any phenotypes and mutations indicative of involvement in female cancers and predict the structural and functional consequences of those SNPS using in silico tools. Results: These seven genes present with 976 SNPs/mutations that are associated with human cancers, out of which 284 related to female cancers. We have then analysed the mutation impact on amino acid polarity, charge and water affinity, leading to the identification of 30 mutations in gynaecological cancers where amino acid (aa) changes lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified, only a missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC) was suggestive of structural damage on the SLC4A11 protein. Conclusions: We demonstrate that the R831C/R804C mutation is deleterious and the predicted ΔΔG values suggest that the mutation reduces the stability of the protein. Future in vitro studies should provide further insight into the role of this transporter protein in UCEC.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jayanta Chatterjee
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Correspondence: (C.S.); (E.K.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Correspondence: (C.S.); (E.K.)
| |
Collapse
|
23
|
Dong P, Ye G, Tu X, Luo Y, Cui W, Ma Y, Wei L, Tian X, Wang Q. Roles of ERRα and TGF-β signaling in stemness enhancement induced by 1 µM bisphenol A exposure via human neural stem cells. Exp Ther Med 2022; 23:164. [PMID: 35069845 PMCID: PMC8753968 DOI: 10.3892/etm.2021.11087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2021] [Indexed: 11/06/2022] Open
Abstract
Bisphenol A (BPA) is a common industrial chemical widely used to produce various plastics and is known to impair neural stem cells (NSCs). However, the effects of low-dose BPA exposure on the stemness maintenance and differentiation fate of NSCs remain unclear in the infant brain. The present study demonstrated that 1 µM BPA promoted human NSC proliferation and stemness, without significantly increasing apoptosis. The Chip-seq experiments demonstrated that both the cell cycle and the TGF-β signaling pathway were accelerated after treatment with 1 µM BPA. Subsequently, estrogen-related receptor α (ERRα) gene knockout cell lines were constructed using CRISPR/Cas9. Further western blotting and chromatin immunoprecipitation-PCR experiments demonstrated that BPA maintained cell stemness by binding to an EERα receptor and activating the TGF-β1 signaling pathway, including the downstream factors Aurora kinases B and Id2. In conclusion, the stemness of NSCs could be maintained by BPA at 1 µM through the activation of the ERRα and TGF-β1 signaling pathways and could restrain the differentiation of NSCs into neurons. The present research further clarified the mechanism of BPA toxicity on NSCs from the novel perspective of ERRα and TGF-β1 signaling pathways regulated by BPA and provided insights into potential novel methods of prevention and therapy for neurogenic diseases.
Collapse
Affiliation(s)
- Panpan Dong
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Ganghui Ye
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Xinzhuo Tu
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Ying Luo
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, Shandong 255300, P.R. China
| | - Weitong Cui
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Yuxin Ma
- College of Sports and Health, Shandong Sport University, Jinan, Shandong 330013, P.R. China
| | - Lei Wei
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
| | - Xuewen Tian
- College of Sports and Health, Shandong Sport University, Jinan, Shandong 330013, P.R. China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Qilu Medical University, Zibo, Shandong 255213, P.R. China
- College of Sports and Health, Shandong Sport University, Jinan, Shandong 330013, P.R. China
| |
Collapse
|
24
|
Leng J, Li H, Niu Y, Chen K, Yuan X, Chen H, Fu Z, Zhang L, Wang F, Chen C, Héroux P, Yang J, Zhu X, Lu W, Xia D, Wu Y. Low-dose mono(2-ethylhexyl) phthalate promotes ovarian cancer development through PPARα-dependent PI3K/Akt/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147990. [PMID: 34380243 DOI: 10.1016/j.scitotenv.2021.147990] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
The plasticizer di(2-ethylhexyl) phthalate (DEHP) and its hydrolysate mono(2-ethylhexyl) phthalate (MEHP) are major toxicants from plastics, but their association with hormone-dependent cancers has been controversial. We treated the human ovarian cancer cell lines SKOV3 and A2780 with low concentrations of DEHP/MEHP, and found that although no significant effect on cell proliferation was observed, ovarian cancer cell migration, invasion, and epithelial-mesenchymal transition (EMT) were promoted by submicromolar MEHP but not DEHP. Next, ovarian cancer patient data from The Cancer Genome Atlas (TCGA) were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) supported enrichment and Kaplan-Meier survival analyses, which identified PI3K/Akt pathway as a pivotal signaling pathway in ovarian cancer. We found that 500 nM MEHP treatment significantly increased PIK3CA expression, which could be reversed by the knockdown of peroxisome proliferator-activated receptor alpha (PPARα). Silencing PIK3CA significantly suppressed the MEHP-induced migration, invasion and EMT. In addition, we validated that MEHP treatment promoted phosphorylation of Akt and degradation of IκB-α, thereby activating NF-κB and enhancing NF-κB nuclear translocation. In nude mice, MEHP exposure significantly promoted the metastasis of ovarian cancer xenografts, which could be suppressed by the treatment of PPARα inhibitor GW6471. Our findings showed that low-dose MEHP promoted ovarian cancer progression through activating PI3K/Akt/NF-κB pathway, in a PPARα-dependent manner.
Collapse
Affiliation(s)
- Jing Leng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyi Li
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Scientific Research Department, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuequn Niu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanwen Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiqin Fu
- Department of Gynecological Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaoyi Chen
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Jun Yang
- Department of Public Health, Hangzhou Normal University School of Medicine, Hangzhou, China; Zhejiang Provincial Center for Uterine Cancer Diagnosis and Therapy Research of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinqiang Zhu
- Central Laboratory of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiguo Lu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
25
|
Zhou L, Xiang J, He Y. Research progress on the association between environmental pollutants and the resistance mechanism of PARP inhibitors in ovarian cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49491-49506. [PMID: 34370190 DOI: 10.1007/s11356-021-15852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP) inhibitors have been a major breakthrough in the history of ovarian cancer treatment. PARP is an enzyme responsible for post-translational modification of proteins and repair of single-stranded DNA damage. PARP inhibitors can selectively inhibit PARP function, resulting in a synthetic lethal effect on tumor cells defective in homologous recombination repair. However, with large-scale application, drug resistance also inevitably appears. For PARP inhibitors, the diversity and complexity of drug resistance mechanisms have always been difficult problems in clinical treatment. Herein, we mainly summarized the research progress of DNA damage repair and drug resistance mechanisms related to PARP inhibitors and the impact of environmental pollutants on DNA damage repair to aid the development prospects and highlight urgent problems to be solved.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yinyan He
- Department of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
26
|
Chen YK, Tan YY, Yao M, Lin HC, Tsai MH, Li YY, Hsu YJ, Huang TT, Chang CW, Cheng CM, Chuang CY. Bisphenol A-induced DNA damages promote to lymphoma progression in human lymphoblastoid cells through aberrant CTNNB1 signaling pathway. iScience 2021; 24:102888. [PMID: 34401669 PMCID: PMC8350018 DOI: 10.1016/j.isci.2021.102888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Lymphoma is a group of blood cancers that develop from the immune system, and one of the main risk factors is associated with exposure to environmental chemicals. Bisphenol A (BPA) is a common chemical used in the manufacture of materials in polycarbonate and epoxy plastic products and can interfere with the immune system. BPA is considered to possibly induce lymphoma development by affecting the immune system, but its potential mechanisms have not been well established. This study performed a gene-network analysis of microarray data sets in human lymphoma tissues as well as in human cells with BPA exposure to explore module genes and construct the potential pathway for lymphomagenesis in response to BPA. This study provided evidence that BPA exposure resulted in disrupted cell cycle and DNA damage by activating CTNNB1, the initiator of the aberrant constructed CTNNB1-NFKB1-AR-IGF1-TWIST1 pathway, which may potentially lead to lymphomagenesis.
Collapse
Affiliation(s)
- Yin-Kai Chen
- Department of Hematology, National Taiwan University Cancer Center, Taipei, 106, Taiwan
| | - Yan-Yan Tan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Min Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Ho-Chen Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Mon-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Yun Li
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yih-Jen Hsu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Tsung-Tao Huang
- Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan
| | - Chia-Wei Chang
- Biomedical Platform and Incubation Service Division, Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, 302, Taiwan
| | - Chih-Ming Cheng
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
- Mike & Clement TECH Co., Ltd., Changhua Country, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
27
|
Wang X, Ha D, Yoshitake R, Chan YS, Sadava D, Chen S. Exploring the Biological Activity and Mechanism of Xenoestrogens and Phytoestrogens in Cancers: Emerging Methods and Concepts. Int J Mol Sci 2021; 22:8798. [PMID: 34445499 PMCID: PMC8395949 DOI: 10.3390/ijms22168798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/08/2021] [Indexed: 12/11/2022] Open
Abstract
Xenoestrogens and phytoestrogens are referred to as "foreign estrogens" that are produced outside of the human body and have been shown to exert estrogen-like activity. Xenoestrogens are synthetic industrial chemicals, whereas phytoestrogens are chemicals present in the plant. Considering that these environmental estrogen mimics potentially promote hormone-related cancers, an understanding of how they interact with estrogenic pathways in human cells is crucial to resolve their possible impacts in cancer. Here, we conducted an extensive literature evaluation on the origins of these chemicals, emerging research techniques, updated molecular mechanisms, and ongoing clinical studies of estrogen mimics in human cancers. In this review, we describe new applications of patient-derived xenograft (PDX) models and single-cell RNA sequencing (scRNA-seq) techniques in shaping the current knowledge. At the molecular and cellular levels, we provide comprehensive and up-to-date insights into the mechanism of xenoestrogens and phytoestrogens in modulating the hallmarks of cancer. At the systemic level, we bring the emerging concept of window of susceptibility (WOS) into focus. WOS is the critical timing during the female lifespan that includes the prenatal, pubertal, pregnancy, and menopausal transition periods, during which the mammary glands are more sensitive to environmental exposures. Lastly, we reviewed 18 clinical trials on the application of phytoestrogens in the prevention or treatment of different cancers, conducted from 2002 to the present, and provide evidence-based perspectives on the clinical applications of phytoestrogens in cancers. Further research with carefully thought-through concepts and advanced methods on environmental estrogens will help to improve understanding for the identification of environmental influences, as well as provide novel mechanisms to guide the development of prevention and therapeutic approaches for human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA; (X.W.); (D.H.); (R.Y.); (Y.S.C.); (D.S.)
| |
Collapse
|
28
|
Molina AM, Abril N, Lora AJ, Huertas-Abril PV, Ayala N, Blanco C, Moyano MR. Proteomic profile of the effects of low-dose bisphenol A on zebrafish ovaries. Food Chem Toxicol 2021; 156:112435. [PMID: 34302887 DOI: 10.1016/j.fct.2021.112435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/27/2022]
Abstract
Human exposure to bisphenol-A (BPA) is largely unavoidable because BPA is an environmental contaminant found in soil, water, food and indoor dust. The safety of authorized BPA amounts in consumer products is under question because new studies have reported adverse effects of BPA at doses far below that previously established by the NOAEL (50 μg/kg per day). To protect public health, the consequences of low-dose BPA exposure in different organs and organismal functions must be further studied to generate relevant data. This study attempted to investigate the effects and potential molecular mechanisms of short-term exposure to 1 μg/L BPA on zebrafish ovarian follicular development. We observed only minor changes at the histopathological level with a small (3 %) increase in follicular atresia. However, a shotgun proteomics approach indicated deep alterations in BPA-exposed ovarian cells, including induction of the oxidative stress response, metabolic shifts and degradome perturbations, which could drive oocytes towards premature maturation. Based on these results, it could be suggested that inadvertent exposure to small concentrations of BPA on a continuous basis causes alteration in biological processes that are essential for healthy reproduction.
Collapse
Affiliation(s)
- Ana M Molina
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain.
| | - Antonio J Lora
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain.
| | - Paula V Huertas-Abril
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 14071, Córdoba, Spain
| | - Nahum Ayala
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - Carmen Blanco
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| | - M Rosario Moyano
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología. Facultad de Veterinaria. Universidad de Córdoba, Campus de Rabanales, 14014, Córdoba, Spain
| |
Collapse
|
29
|
Bujnakova Mlynarcikova A, Scsukova S. Bisphenol analogs AF and S: Effects on cell status and production of angiogenesis-related factors by COV434 human granulosa cell line. Toxicol Appl Pharmacol 2021; 426:115634. [PMID: 34174261 DOI: 10.1016/j.taap.2021.115634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022]
Abstract
While Bisphenol A (BPA) has been a requisite plastic additive, as an endocrine disruptor it has been associated with adverse health effects including ovarian disorders. Following implemented restrictions on BPA usage, it is replaced by alternative bisphenols, biological effects of which have not been adequately investigated. Our study examined effects of bisphenols AF (BPAF) and S (BPS), on the human ovarian granulosa cell line COV434, and compared them with BPA, with the focus on cell viability (10-9-10-4 M) and angiogenesis-related factors (10-9-10-5 M), relevant for both the follicle development and ovarian pathologies: vascular endothelial growth factor A (VEGF-A), platelet-derived growth factor AA (PDGF-AA), and matrix metalloproteinase 9 (MMP-9). Each bisphenol impaired cell viability and increased generation of intracellular reactive oxygen species at the highest concentration (10-4 M). While VEGF-A production in BPAF-treated groups did not differ from the control, all doses of BPS and BPA caused a marked reduction in VEGF-A output. Nevertheless, the alterations in VEGF-A production were not caused by the impact on VEGFA gene expression since there were no indications of VEGFA downregulation in the presence of either BPS or BPA. Interestingly, we observed a similar pattern of PDGF-AA output reduction in BPS- and BPA-treated groups to that of VEGF-A production. BPAF and BPS (10-5 M) increased MMP9 expression, however, this effect was not reflected by the increase in MMP-9 production. The results obtained demonstrate that the novel bisphenol analogs are not inert with respect to the ovarian cells, and their effects might contribute to dysregulation of granulosa cells functions.
Collapse
Affiliation(s)
| | - Sona Scsukova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
30
|
Eldefrawy F, Xu HS, Pusch E, Karkoura A, Alsafy M, Elgendy S, Williams SM, Navara K, Guo TL. Modulation of folliculogenesis in adult laying chickens by bisphenol A and bisphenol S: Perspectives on ovarian morphology and gene expression. Reprod Toxicol 2021; 103:181-190. [PMID: 34147626 DOI: 10.1016/j.reprotox.2021.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/15/2021] [Indexed: 10/21/2022]
Abstract
Both bisphenol A (BPA) and its analog bisphenol S (BPS) are industrial chemicals that have been used to make certain plastic products applied in chicken farms, including food and water containers. They are endocrine disrupting chemicals (EDCs) with xenoestrogenic activities and affect reproductive success in many ways. It was hypothesized that BPA and BPS could adversely affect the folliculogenesis in chickens due to their disruption of the estrogen responses, using either genomic or non-genomic mechanisms. This study investigated the deleterious effects of BPA and BPS on the ovaries when adult layer chickens were orally treated with these EDCs at 50 μg/kg body weight, the reference dose for chronic oral exposure of BPA established by the U.S. EPA. The chickens in both BPA and BPS-treated groups showed a decreased number of the preovulatory follicles. BPA-treated chickens showed a significant decrease in the diameter of F1. Additionally, both BPA and BPS treatments increased the infiltrations of lymphocytes and plasma cells in ovaries. Moreover, it was found that the ovaries of BPS-treated chickens weighed the most among the groups. RNA sequencing and subsequent pathway enrichment analysis of differentially expressed genes revealed that both BPA- and BPS-treatment groups showed significant changes in gene expression and pathways related to reproduction, immune function and carcinogenesis. Taken together, both BPA and BPS are potentially carcinogenic and have deleterious effects on the fertility of laying chickens by inducing inflammation, suggesting that BPS may not be a safe replacement for BPA.
Collapse
Affiliation(s)
- Fatma Eldefrawy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt; Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Hannah Shibo Xu
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth Pusch
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Ashraf Karkoura
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Mohamed Alsafy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Samir Elgendy
- Department of Anatomy and Embryology, College of Veterinary Medicine, Alexandria University, Egypt
| | - Susan M Williams
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, GA, United States
| | - Kristen Navara
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Tai L Guo
- Department of Veterinary Biomedical Sciences, University of Georgia, Athens, GA, United States.
| |
Collapse
|
31
|
Ferrante M, Cristaldi A, Oliveri Conti G. Oncogenic Role of miRNA in Environmental Exposure to Plasticizers: A Systematic Review. J Pers Med 2021; 11:jpm11060500. [PMID: 34199666 PMCID: PMC8229109 DOI: 10.3390/jpm11060500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The daily environmental exposure of humans to plasticizers may adversely affect human health, representing a global issue. The altered expression of microRNAs (miRNAs) plays an important pathogenic role in exposure to plasticizers. This systematic review summarizes recent findings showing the modified expression of miRNAs in cancer due to exposure to plasticizers. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology, we performed a systematic review of the literature published in the past 10 years, focusing on the relationship between plasticizer exposure and the expression of miRNAs related to cancer. Starting with 535 records, 17 articles were included. The results support the hypothesis that exposure to plasticizers causes changes in or the deregulation of a number of oncogenic miRNAs and show that the interaction of plasticizers with several redundant miRNAs, such as let-7f, let-7g, miR-125b, miR-134, miR-146a, miR-22, miR-192, miR-222, miR-26a, miR-26b, miR-27b, miR-296, miR-324, miR-335, miR-122, miR-23b, miR-200, miR-29a, and miR-21, might induce deep alterations. These genotoxic and oncogenic responses can eventually lead to abnormal cell signaling pathways and metabolic changes that participate in many overlapping cellular processes, and the evaluation of miRNA-level changes can be a useful target for the toxicological assessment of environmental pollutants, including plastic additives and plasticizers.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
- Catania, Messina, Enna Cancer Registry, Via S. Sofia 87, 95123 Catania, Italy
- Correspondence: ; Tel.: +39-095-378-2181; Fax: +39-095-378-2177
| | - Antonio Cristaldi
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| | - Gea Oliveri Conti
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy; (A.C.); (G.O.C.)
| |
Collapse
|
32
|
Bioremediation of phenolic pollutant bisphenol A using optimized reverse micelles system of Trametes versicolor laccase in non-aqueous environment. 3 Biotech 2021; 11:297. [PMID: 34136334 DOI: 10.1007/s13205-021-02842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022] Open
Abstract
In recent times, there is increased public interest and indeed strong movement against the use of Bisphenol A (4,4'-(propane-2,2,-diphenol)) due to its endocrine disrupting properties. In the present study, biotransformation of Bisphenol A (BPA) was accomplished using Trametes versicolor laccase (E.C. 1.10.3.2) enzyme. The enzyme was entrapped in reverse micelles comprising of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) and 2,2,4-trimethylpentane (isooctane) for non-aqueous catalysis considering hydrophobicity of BPA. Screening of various parameters that may affect micellar system was carried out using Plackett-Burman experimental design and central composite design (Design Expert 11). According to Design Expert actual concentration of different variables was 0.55, 150 (Wo 30), 0.0035 mM and 175 µg/ml for Mg+2ions, Hydration ratio (Wo), 2,6-dimethoxyphenol (2,6 DMP, substrate) and laccase, respectively, at 40 °C and pH 4.5. Under these conditions laccase activity in reverse micelles was increased two folds as compared to unoptimized micellar system. It was evident that the reverse micelles diameter was linearly proportionated to the amount of laccase enzyme incorporated. BPA bioremediation mediated by laccase in non-aqueous environment was found to be 84% in 8 h of treatment. Biotransformation of BPA was monitored using GC-MS. BPA degraded products, such as BPA-O-catechol and 4,4 (Ethane 2-oxy 2-ol) diphenol were identified indicating transformation by oxidation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02842-4.
Collapse
|
33
|
Zahra A, Dong Q, Hall M, Jeyaneethi J, Silva E, Karteris E, Sisu C. Identification of Potential Bisphenol A (BPA) Exposure Biomarkers in Ovarian Cancer. J Clin Med 2021; 10:jcm10091979. [PMID: 34062972 PMCID: PMC8125610 DOI: 10.3390/jcm10091979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) can exert multiple deleterious effects and have been implicated in carcinogenesis. The xenoestrogen Bisphenol A (BPA) that is found in various consumer products has been involved in the dysregulation of numerous signalling pathways. In this paper, we present the analysis of a set of 94 genes that have been shown to be dysregulated in presence of BPA in ovarian cancer cell lines since we hypothesised that these genes might be of biomarker potential. This study sought to identify biomarkers of disease and biomarkers of disease-associated exposure. In silico analyses took place using gene expression data extracted from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. Differential expression was further validated at protein level using immunohistochemistry on an ovarian cancer tissue microarray. We found that 14 out of 94 genes are solely dysregulated in the presence of BPA, while the remaining 80 genes are already dysregulated (p-value < 0.05) in their expression pattern as a consequence of the disease. We also found that seven genes have prognostic power for the overall survival in OC in relation to their expression levels. Out of these seven genes, Keratin 4 (KRT4) appears to be a biomarker of exposure-associated ovarian cancer, whereas Guanylate Binding Protein 5 (GBP5), long intergenic non-protein coding RNA 707 (LINC00707) and Solute Carrier Family 4 Member 11 (SLC4A11) are biomarkers of disease. BPA can exert a plethora of effects that can be tissue- or cancer-specific. Our in silico findings generate a hypothesis around biomarkers of disease and exposure that could potentially inform regulation and policy making.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Qiduo Dong
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jeyarooban Jeyaneethi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Elisabete Silva
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (Q.D.); (M.H.); (J.J.); (E.S.)
- Correspondence: (E.K.); (C.S.)
| |
Collapse
|
34
|
Khan NG, Correia J, Adiga D, Rai PS, Dsouza HS, Chakrabarty S, Kabekkodu SP. A comprehensive review on the carcinogenic potential of bisphenol A: clues and evidence. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19643-19663. [PMID: 33666848 PMCID: PMC8099816 DOI: 10.1007/s11356-021-13071-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/17/2021] [Indexed: 04/12/2023]
Abstract
Bisphenol A [BPA; (CH3)2C(C6H4OH)2] is a synthetic chemical used as a precursor material for the manufacturing of plastics and resins. It gained attention due to its high chances of human exposure and predisposing individuals at extremely low doses to diseases, including cancer. It enters the human body via oral, inhaled, and dermal routes as leach-out products. BPA may be anticipated as a probable human carcinogen. Studies using in vitro cell lines, rodent models, and epidemiological analysis have convincingly shown the increasing susceptibility to cancer at doses below the oral reference dose set by the Environmental Protection Agency for BPA. Furthermore, BPA exerts its toxicological effects at the genetic and epigenetic levels, influencing various cell signaling pathways. The present review summarizes the available data on BPA and its potential impact on cancer and its clinical outcome.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jacinta Correia
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Center for DNA repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
35
|
Catenza CJ, Farooq A, Shubear NS, Donkor KK. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues. CHEMOSPHERE 2021; 268:129273. [PMID: 33352513 DOI: 10.1016/j.chemosphere.2020.129273] [Citation(s) in RCA: 164] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 12/08/2020] [Indexed: 05/26/2023]
Abstract
Due to its widespread applications and its ubiquitous occurrence in the environment, bisphenol A (BPA) and its alternatives have gained increasing attention, especially in terms of human safety. Like BPA, alternatives such as bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF) have also been identified to be endocrine-disrupting chemicals (EDCs). Hence, in this study, we reviewed the literature of BPA and its alternatives mainly published between the period 2018-2020, including their occurrences in the environment, human exposure, and adverse health effects. The review shows that bisphenols are prevalent in the environment with BPA, BPS, and BPF being the most ubiquitous in the environment worldwide, though BPA remains the most abundant bisphenol. However, the levels of BPS and BPF in different environmental media have been constantly increasing and their fates and health risks are being evaluated. The studies show that humans and animals are exposed to bisphenols in many different ways through inhalation and ingestion and the exposure can have serious health effects. Urinary bisphenols (BPs) levels were frequently reported to be positively associated with different health problems such as cancer, infertility, cardiovascular diseases, diabetes and neurodegenerative diseases. Our literature study also shows that BPs generate reactive oxygen species and disrupt various signalling pathways, which could lead to the development of chronic diseases. Activated carbon-based and chitosan-based sorbents have been widely utilized in the removal of BPA in aqueous solutions. In addition, enzymes and microorganisms have also been getting much attention due to their high removal efficiencies.
Collapse
Affiliation(s)
- Cyrene J Catenza
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Amna Farooq
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Noor S Shubear
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Kingsley K Donkor
- Department of Physical Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada.
| |
Collapse
|
36
|
Hao W, Zhao H, Li Z, Li J, Guo J, Chen Q, Gao Y, Ren M, Zhao X, Yue W. Identification of potential markers for differentiating epithelial ovarian cancer from ovarian low malignant potential tumors through integrated bioinformatics analysis. J Ovarian Res 2021; 14:46. [PMID: 33726773 PMCID: PMC7968266 DOI: 10.1186/s13048-021-00794-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Epithelial ovarian cancer (EOC), as a lethal malignancy in women, is often diagnosed as advanced stages. In contrast, intermediating between benign and malignant tumors, ovarian low malignant potential (LMP) tumors show a good prognosis. However, the differential diagnosis of the two diseases is not ideal, resulting in delays or unnecessary therapies. Therefore, unveiling the molecular differences between LMP and EOC may contribute to differential diagnosis and novel therapeutic and preventive policies development for EOC. Methods In this study, three microarray data (GSE9899, GSE57477 and GSE27651) were used to explore the differentially expressed genes (DEGs) between LMP and EOC samples. Then, 5 genes were screened by protein–protein interaction (PPI) network, receiver operating characteristic (ROC), survival and Pearson correlation analysis. Meanwhile, chemical-core gene network construction was performed to identify the potential drugs or risk factors for EOC based on 5 core genes. Finally, we also identified the potential function of the 5 genes for EOC through pathway analysis. Results Two hundred thirty-four DEGs were successfully screened, including 81 up-regulated genes and 153 down-regulated genes. Then, 5 core genes (CCNB1, KIF20A, ASPM, AURKA, and KIF23) were identified through PPI network analysis, ROC analysis, survival and Pearson correlation analysis, which show better diagnostic efficiency and higher prognostic value for EOC. Furthermore, NetworkAnalyst was used to identify top 15 chemicals that link with the 5 core genes. Among them, 11 chemicals were potential drugs and 4 chemicals were risk factors for EOC. Finally, we found that all 5 core genes mainly regulate EOC development via the cell cycle pathway by the bioinformatic analysis. Conclusion Based on an integrated bioinformatic analysis, we identified potential biomarkers, risk factors and drugs for EOC, which may help to provide new ideas for EOC diagnosis, condition appraisal, prevention and treatment in future. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00794-0.
Collapse
Affiliation(s)
- Wende Hao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Zhefeng Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Jiahao Guo
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Qi Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Meng Ren
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
37
|
Qin Q, Yang B, Liu Z, Xu L, Song E, Song Y. Polychlorinated biphenyl quinone induced the acquisition of cancer stem cells properties and epithelial-mesenchymal transition through Wnt/β-catenin. CHEMOSPHERE 2021; 263:128125. [PMID: 33297114 DOI: 10.1016/j.chemosphere.2020.128125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent industrial pollutants that have been linked to breast cancer progression. However, their molecular mechanism(s) are currently unclear. Our previous assessment suggested that the highly reactive PCB metabolite 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ) induces the metastasis of breast cancer. Here, our data illustrate that PCB29-pQ increases cancer stem cell (CSC) marker expression, resulting in an increase in the epithelial-mesenchymal transition (EMT) in MDA-MB-231 breast cancer cells; further, the Wnt/β-catenin pathway also becomes activated by PCB29-pQ. When the Wnt/β-catenin pathway is inhibited, the promotion of CSC properties and EMT by PCB29-pQ were accordingly reversed. In addition, the overproduction of reactive oxygen species (ROS) mediated by PCB29-pQ plays a key role in Wnt/β-catenin activation. Collectively, our current data designated the regulatory role of Wnt/β-catenin in PCB29-pQ-triggered acquisition of CSC properties and EMT.
Collapse
Affiliation(s)
- Qi Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zixuan Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
38
|
Oldenburg J, Fürhacker M, Hartmann C, Steinbichl P, Banaderakhshan R, Haslberger A. Different bisphenols induce non-monotonous changes in miRNA expression and LINE-1 methylation in two cell lines. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab011. [PMID: 34858639 PMCID: PMC8633614 DOI: 10.1093/eep/dvab011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/17/2021] [Accepted: 10/20/2021] [Indexed: 05/12/2023]
Abstract
4,4'-Isopropylidenediphenol (bisphenol A, BPA), a chemical substance that is widely used mainly as a monomer in the production of polycarbonates, in epoxy resins, and in thermal papers, is suspected to cause epigenetic modifications with potentially toxic consequences. Due to its negative health effects, BPA is banned in several products and is replaced by other bisphenols such as bisphenol S and bisphenol F. The present study examined the effects of BPA, bisphenol S, bisphenol F, p,p'-oxybisphenol, and the BPA metabolite BPA β-d-glucuronide on the expression of a set of microRNAs (miRNAs) as well as long interspersed nuclear element-1 methylation in human lung fibroblast and Caco-2 cells. The results demonstrated a significant modulation of the expression of different miRNAs in both cell lines including miR-24, miR-155, miR-21, and miR-146a, known for their regulatory functions of cell cycle, metabolism, and inflammation. At concentrations between 0.001 and 10 µg/ml, especially the data of miR-155 and miR-24 displayed non-monotonous and often significant dose-response curves that were U- or bell-shaped for different substances. Additionally, BPA β-d-glucuronide also exerted significant changes in the miRNA expression. miRNA prediction analysis indicated effects on multiple molecular pathways with relevance for toxicity. Besides, long interspersed nuclear element-1 methylation, a marker for the global DNA methylation status, was significantly modulated by two concentrations of BPA and p,p'-oxybisphenol. This pilot study suggests that various bisphenols, including BPA β-d-glucuronide, affect epigenetic mechanisms, especially miRNAs. These results should stimulate extended toxicological studies of multiple bisphenols and a potential use of miRNAs as markers.
Collapse
Affiliation(s)
- Julia Oldenburg
- Department of Nutritional Sciences, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria
| | - Maria Fürhacker
- Department of WAU, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | | | | | - Rojin Banaderakhshan
- Department of WAU, Institute of Sanitary Engineering and Water Pollution Control, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, Vienna 1190, Austria
| | - Alexander Haslberger
- **Correspondence address. Department of Nutritional Sciences, University of Vienna, Althanstraße 14 (UZA II), Vienna 1090, Austria. Tel: +4369912211212; E-mail:
| |
Collapse
|
39
|
Effect of selected bisphenol derivatives on nuclear receptor expression in ovarian cell line COV434. Endocr Regul 2020; 54:275-283. [PMID: 33885253 DOI: 10.2478/enr-2020-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objectives. Bisphenol A (BPA), as an indispensable plastic additive, has also been proven as an endocrine disruptor associated with adverse health effects including impaired ovarian function and cancer. Due to the restrictions of its usage, several analogs have been employed to replace BPA. Although many studies revealed a harmfulness in the biological effects of BPA analogs, their specific targets remain largely unknown. Nuclear receptors (NRs) may be one of the most important targets of bisphenols. Therefore, in this study, our attention was directed to explore the effect of BPA and its analogs, AF and S, on the mRNA expression of selected NRs involved in the steroidogenic and carcinogenic pathways in the human granulosa cell line COV434. The NRs investigated included: thyroid hormone receptor α (THRA), peroxisome proliferator activating receptor β/δ (PPARD), retinoid X receptor α (RXRA), chicken ovalbumin upstream promoter-transcription factor II (COUPTFII), nuclear receptor-related protein 1 (NURR1), and liver receptor homolog-1 (LRH1).Methods. COV434 cells were treated with the bisphenols at the concentrations of 10-9 M, 10-7 M, and 10-5 M, and after 24 and 48 h, cell viability was monitored by the MTS assay and gene expressions were analyzed using RT-qPCR.Results. Bisphenol treatment did not alter the COV434 cell viability. After 24 h, the expression of neither of the NRs was changed. Likewise, after 48 h, the expression of the selected genes was not altered. However, both BPAF and BPS increased, at the highest concentration (10-5 M) used, the mRNA levels of both PPARD and NURR1 NRs after 48 h of the treatment. In the BPA-treated groups, no significant upregulation was observed.Conclusions. In the present study, the effect of bisphenols on COUP-TFII, Nurr1, and LRH-1 NRs was investigated for the first time. Although generally we did not observe that BPs provoked any alterations in the expression of the selected NRs in COV434 cells, at specific concentrations and time points they might alter mRNA expression of certain NRs (NURR1, PPARD).
Collapse
|
40
|
Bisphenol A impaired cell adhesion by altering the expression of adhesion and cytoskeleton proteins on human podocytes. Sci Rep 2020; 10:16638. [PMID: 33024228 PMCID: PMC7538920 DOI: 10.1038/s41598-020-73636-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Bisphenol A (BPA), a chemical -xenoestrogen- used in food containers is present in the urine of almost the entire population. Recently, several extensive population studies have proven a significant association between urinary excretion of BPA and albuminuria. The alteration of glomerular podocytes or "podocytopathy" is a common event in chronic albuminuric conditions. Since many podocytes recovered from patients' urine are viable, we hypothesized that BPA could impair podocyte adhesion capabilities. Using an in vitro adhesion assay, we observed that BPA impaired podocyte adhesion, an effect that was abrogated by Tamoxifen (an estrogen receptor blocker). Genomic and proteomic analyses revealed that BPA affected the expression of several podocyte cytoskeleton and adhesion proteins. Western blot and immunocytochemistry confirmed the alteration in the protein expression of tubulin, vimentin, podocin, cofilin-1, vinculin, E-cadherin, nephrin, VCAM-1, tenascin-C, and β-catenin. Moreover, we also found that BPA, while decreased podocyte nitric oxide production, it lead to overproduction of ion superoxide. In conclusion, our data show that BPA induced a novel type of podocytopathy characterizes by an impairment of podocyte adhesion, by altering the expression of adhesion and cytoskeleton proteins. Moreover, BPA diminished production of podocyte nitric oxide and induced the overproduction of oxygen-free metabolites. These data provide a mechanism by which BPA could participate in the pathogenesis and progression of renal diseases.
Collapse
|
41
|
Dumitrascu MC, Mares C, Petca RC, Sandru F, Popescu RI, Mehedintu C, Petca A. Carcinogenic effects of bisphenol A in breast and ovarian cancers. Oncol Lett 2020; 20:282. [PMID: 33014160 DOI: 10.3892/ol.2020.12145] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous chemical compounds ubiquitously found in everyday life of the modern world. EDCs enter the human body where they act similarly to endogenous hormones, altering the functions of the endocrine system and causing adverse effects on human health. Bisphenol A (BPA), the principal representative of this class, is a carbon-based synthetic plastic, and a key element in manufacturing cans, reusable water bottles and medical equipment. BPA mimics the actions of estrogen on multiple levels by activating estrogen receptors α and β. BPA regulates various processes, such as cell proliferation, migration and apoptosis, leading to neoplastic changes. Considering genetic mechanisms, BPA exerts its functions via multiple oncogenic signaling pathways, including the STAT3, PI3K/AKT and MAPK pathways. Furthermore, BPA is associated with various modifications of the reproductive system in both males and females. These alterations include benign lesions, such as endometrial hyperplasia, the development of ovarian cysts, an increase in the ductal density of mammary gland cells and other preneoplastic lesions. These benign lesions may continue to develop to breast or ovarian cancer; the effects of BPA depend on various molecular and epigenetic mechanisms that dictate whether the endocrine or reproductive system is impacted, wherein preexisting benign lesions can become cancerous. The present review supports the need for continuous research on BPA, considering its widespread use and most available data suggesting a carcinogenic effect of BPA on the female reproductive system. Although most studies on BPA have been conducted in vitro with human cells or in vivo with animal models, it can be argued that more studies should be conducted in vivo with humans to further promote understanding of the impact of BPA.
Collapse
Affiliation(s)
- Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Cristian Mares
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Razvan-Cosmin Petca
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania.,Department of Urology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, 011461 Bucharest, Romania.,Department of Dermatology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Razvan-Ionut Popescu
- Department of Urology, 'Prof. Dr. Th. Burghele' Clinical Hospital, 050659 Bucharest, Romania
| | - Claudia Mehedintu
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Malaxa Clinical Hospital, 022441 Bucharest, Romania
| | - Aida Petca
- Department of Obstetrics and Gynecology, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania.,Department of Obstetrics and Gynecology, Elias Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
42
|
Li J, Ji Z, Luo X, Li Y, Yuan P, Long J, Shen N, Lu Q, Zeng Q, Zhong R, Shen Y, Cheng L. Urinary bisphenol A and its interaction with ESR1 genetic polymorphism associated with non-small cell lung cancer: findings from a case-control study in Chinese population. CHEMOSPHERE 2020; 254:126835. [PMID: 32348927 DOI: 10.1016/j.chemosphere.2020.126835] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/07/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor, was reported to promote migration and invasion of lung cancer cells, but findings in human study is absent. A case-control study in Chinese population was conducted to evaluate the association between BPA exposure and non-small cell lung cancer (NSCLC), and explore the interaction between BPA exposure and estrogen-related genetic polymorphism on NSCLC. BPA concentrations were measured in urine samples using an UHPLC-MS method and rs2046210 in estrogen receptor α (ESR1) gene was genotyped by TaqMan genotyping system. Logistic regression was performed to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for the association analyses. As a result, 615 NSCLC cases and 615 healthy controls were enrolled from Wuhan, central China. The mean age was 58.0 (SD: 7.9) years old for controls and 59.2 (SD: 8.8) years old for cancer cases. The creatinine-adjusted BPA levels were significantly higher in NSCLC cases than that in healthy controls (median: 0.97 vs 0.73 μg/L, P < 0.001). Exposure to high levels of BPA was significantly associated with NSCLC (adjusted OR = 1.91, 95%CI: 1.39-2.62, P < 0.001 for the highest quartile). We also observed a shallow concave dose-response relationship about the overall association between BPA and NSCLC. Moreover, interaction analyses showed that BPA exposure interacted multiplicatively with rs2046210, with a marginal P value (P = 0.049), to contribute to NSCLC. In conclusion, exposure to high levels BPA may be associated with NSCLC and the relationship may be modified by genetic polymorphism in ESR1.
Collapse
Affiliation(s)
- Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Ji
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Luo
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peihong Yuan
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyi Long
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Zeng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Shen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
43
|
Jing J, Pu Y, Gingrich J, Veiga-Lopez A. Gestational Exposure to Bisphenol A and Bisphenol S Leads to Fetal Skeletal Muscle Hypertrophy Independent of Sex. Toxicol Sci 2020; 172:292-302. [PMID: 31501865 DOI: 10.1093/toxsci/kfz198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gestational exposure to bisphenol A (BPA) can lead to offspring insulin resistance. However, despite the role that the skeletal muscle plays in glucose homeostasis, it remains unknown whether gestational exposure to BPA, or its analog bisphenol S (BPS), impairs skeletal muscle development. We hypothesized that gestational exposure to BPA or BPS will impair fetal muscle development and lead to muscle-specific insulin resistance. To test this, pregnant sheep (n = 7-8/group) were exposed to BPA or BPS from gestational day (GD) 30 to 100. At GD120, fetal skeletal muscle was harvested to evaluate fiber size, fiber type, and gene and protein expression related to myogenesis, fiber size, fiber type, and inflammation. Fetal primary myoblasts were isolated to evaluate proliferation and differentiation. In fetal skeletal muscle, myofibers were larger in BPA and BPS groups in both females and males. BPA females had higher MYH1 (reflective of type-IIX fast glycolytic fibers), whereas BPS females had higher MYH2 and MYH7, and higher myogenic regulatory factors (Myf5, MyoG, MyoD, and MRF4) mRNA expression. No differences were observed in males. Myoblast proliferation was not altered in gestationally BPA- or BPS-exposed myoblasts, but upon differentiation, area and diameter of myotubes were larger independent of sex. Females had larger myofibers and myotubes than males in all treatment groups. In conclusion, gestational exposure to BPA or BPS does not result in insulin resistance in fetal myoblasts but leads to fetal fiber hypertrophy in skeletal muscle independent of sex and alters fiber type distribution in a sex-specific manner.
Collapse
Affiliation(s)
- Jiongjie Jing
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
44
|
Farahani M, Rezaei-Tavirani M, Arjmand B. A systematic review of microRNA expression studies with exposure to bisphenol A. J Appl Toxicol 2020; 41:4-19. [PMID: 32662106 DOI: 10.1002/jat.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), as a common industrial component, is generally consumed in the synthesis of polymeric materials. To gain a deeper understanding of the detrimental effects of BPA, BPA-induced microRNA (miRNA) alterations were investigated. A systematic search was performed in the PubMed, SCOPUS and Web of Science databases to evoke relevant published data up to August 10, 2019. We identified altered miRNAs that have been repeated in at least three studies. Moreover, miRNA homology analysis between human and nonhuman species was performed to determine the toxicity signatures of BPA in human exposure. In addition, to reflect the effects of environmental exposure levels of BPA, the study designs were categorized into two groups, including low and high doses according to the previous definitions. In total, 28 studies encountered our criteria and 17 miRNAs were identified that were differentially expressed in at least three independent studies. Upregulating miR-146a and downregulating miR-192, miR-134, miR-27b and miR-324 were found in three studies. MiR-122 and miR-29a were upregulated in four studies after BPA exposure, and miR-21 was upregulated in six studies. The results indicate that BPA at low-level exposures can also alter miRNA expression in response to toxicity. Finally, the miRNA-related pathways showed that BPA seriously can affect human health through various cell signaling pathways, which were predictable and consistent with existing studies. Overall, our findings suggest that further studies should be conducted to examine the role of miRNA level changes in human BPA exposure.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Guo Y, Li B, Yan X, Shen X, Ma J, Liu S, Zhang D. Bisphenol A and polychlorinated biphenyls enhance the cancer stem cell properties of human ovarian cancer cells by activating the WNT signaling pathway. CHEMOSPHERE 2020; 246:125775. [PMID: 31918092 DOI: 10.1016/j.chemosphere.2019.125775] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Cancer stem cells (CSCs) are a very small subpopulation that have stem-cell qualities, such as exhibiting self-renewal, immortality, and pluripotency, and the capability to differentiate into different tumor cell subtypes. CSCs contribute to tumor onset, expansion, metastasis, resistance and recurrence. Meanwhile, organic pollutants, including nonpersistent pollutants, such as bisphenol A (BPA), and persistent pollutants, such as polychlorinated biphenyls (PCBs), are toxic chemicals that can be readily ingested via dietary exposure and other exposure routes and can accumulate through the food chain. Many organic pollutants increase the risk of ovarian cancer depending on their estrogenic effects. Nonetheless, most previous studies have focused on the toxic effects of these pollutants on the proliferation, metastasis and development of ovarian cancer cells. However, little research has investigated the adverse effect of these pollutants on ovarian cancer stem cells. The current study found that BPA, PCB126 and PCB153 greatly enhanced the formation of cancer stem-like cell spheres of OVCAR-3 cells (human ovarian cancer cells) under low-dose exposure. In parallel, the CD44highCD24low cell subpopulation was increased in treated cells relative to untreated cells. Elevated expression of cancer stem cell markers, including ALDH1A1, CD133, SOX2, NANOG and OCT4, was demonstrated in treated cells compared to untreated cells. In summary, these data demonstrate that the oncogenic effects of pollutants can be evaluated according to changes in caner stem cell properties.
Collapse
Affiliation(s)
- Yifan Guo
- Weifang Medical University, Weifang, 261053, China; Weihai Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Bin Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Xu Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xinming Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Daoqiang Zhang
- Weifang Medical University, Weifang, 261053, China; Weihai Key Laboratory of Autoimmunity, Weihai Central Hospital, Weihai, 264400, China.
| |
Collapse
|
46
|
de Aguiar Greca SC, Kyrou I, Pink R, Randeva H, Grammatopoulos D, Silva E, Karteris E. Involvement of the Endocrine-Disrupting Chemical Bisphenol A (BPA) in Human Placentation. J Clin Med 2020; 9:jcm9020405. [PMID: 32028606 PMCID: PMC7074564 DOI: 10.3390/jcm9020405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Endocrine-disrupting chemicals (EDCs) are environmental chemicals/toxicants that humans are exposed to, interfering with the action of multiple hormones. Bisphenol A (BPA) is classified as an EDC with xenoestrogenic activity with potentially adverse effects in reproduction. Currently, a significant knowledge gap remains regarding the complete spectrum of BPA-induced effects on the human placenta. As such, the present study examined the effects of physiologically relevant doses of BPA in vitro. Methods: qRT-PCR, Western blotting, immunofluorescence, ELISA, microarray analyses, and bioinformatics have been employed to study the effects of BPA using nonsyncytialised (non-ST) and syncytialised (ST) BeWo cells. Results: Treatment with 3 nM BPA led to an increase in cell number and altered the phosphorylation status of p38, an effect mediated primarily via the membrane-bound estrogen receptor (GPR30). Nonbiased microarray analysis identified 1195 and 477 genes that were differentially regulated in non-ST BeWo cells, whereas in ST BeWo cells, 309 and 158 genes had altered expression when treated with 3 and 10 nM, respectively. Enriched pathway analyses in non-ST BeWo identified a leptin and insulin overlap (3 nM), methylation pathways (10 nM), and differentiation of white and brown adipocytes (common). In the ST model, most significantly enriched were the nuclear factor erythroid 2-related factor 2 (NRF2) pathway (3 nM) and mir-124 predicted interactions with cell cycle and differentiation (10 nM). Conclusion: Collectively, our data offer a new insight regarding BPA effects at the placental level, and provide a potential link with metabolic changes that can have an impact on the developing fetus.
Collapse
Affiliation(s)
| | - Ioannis Kyrou
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK;
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Ryan Pink
- Dept of Bio. & Med. Sci., Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Harpal Randeva
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Dimitris Grammatopoulos
- Institute of Precision Diagnostics and Translational Medicine, UHCW NHS Trust, Coventry CV4 7AL, UK; (H.R.); (D.G.)
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Elisabete Silva
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| | - Emmanouil Karteris
- College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
- Correspondence: (E.S.); (E.K.)
| |
Collapse
|
47
|
Üstündağ ÜV, Emekli-Alturfan E. Wnt pathway: A mechanism worth considering in endocrine disrupting chemical action. Toxicol Ind Health 2020; 36:41-53. [DOI: 10.1177/0748233719898989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are defined as exogenous substances that can alter the development and functioning of the endocrine system. The Wnt signaling pathway is an evolutionarily conserved pathway consisting of proteins that transmit cell-to-cell receptors through cell surface receptors, regulating important aspects of cell migration, polarity, neural formation, and organogenesis, which determines the fate of the cell during embryonic development. Although the effects of EDCs have been studied in terms of many molecular mechanisms; because of its critical role in embryogenesis, the Wnt pathway is of special interest in EDC exposure. This review provides information about the effects of EDC exposure on the Wnt/β-catenin pathway focusing on studies on bisphenol A, di-(2-ethylhexyl) phthalate, diethylstilbestrol, cadmium, and 2,3,7,8-tetrachlorodibenzo-p-dioxin.
Collapse
Affiliation(s)
- Ünsal Veli Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
48
|
Wang X, Wei L, Zhu J, He B, Kong B, Xue Z, Jin X, Fu Z. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages. CHEMOSPHERE 2019; 236:124413. [PMID: 31545206 DOI: 10.1016/j.chemosphere.2019.124413] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/01/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
TBBPA is one of the main brominated flame retardants and is ubiquitous in the environment. TBBPA can directly encounter immune cells via the bloodstream, posing potential immunotoxicity. To understand the immunomodulating effect of TBBPA on macrophages, the murine macrophages, RAW 264.7, were exposed to TBBPA at environmentally relevant concentrations (1-100 nM). The results showed that TBBPA at the selected concentrations did not alter cell viability of RAW 264.7 cells with or without LPS stimulation. TBBPA upregulated the expression of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, whereas it attenuated the LPS-stimulated expression of these pro-inflammatory cytokines, and the expression of anti-inflammatory cytokines, including IL-4, IL-10, and IL-13. In addition, TBBPA reduced the mRNA levels of antigen-presenting-related genes, including H2-K2, H2-Aa, Cd80, and Cd86. Moreover, TBBPA impaired the phagocytic activity of macrophages. Furthermore, exposure to TBBPA significantly elevated the protein levels of phosphorylated NF-κB p65 (p-p65), while it reduced LPS-stimulated p-p65 protein levels. DCFH-DA staining assays showed that TBBPA caused a slight but significant elevation in reactive oxygen species levels. The data obtained in the present study demonstrated that exposure to environmentally relevant concentrations of TBBPA posed immunotoxicity in macrophages and unveiled a potential health risk of TBBPA.
Collapse
Affiliation(s)
- Xia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lai Wei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianbo Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baida Kong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zimeng Xue
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xini Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
49
|
Nomiri S, Hoshyar R, Ambrosino C, Tyler CR, Mansouri B. A mini review of bisphenol A (BPA) effects on cancer-related cellular signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8459-8467. [PMID: 30712204 DOI: 10.1007/s11356-019-04228-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/10/2019] [Indexed: 04/15/2023]
Abstract
Bisphenol A (BPA) is a plasticizer used widely in many industrial products and is now well established as an endocrine-disrupting chemical (EDC). BPA readily leaches out from these products into the environment and into foodstuffs (from packaging materials) and human exposure can be considerable. Many studies have shown that BPA exposure is associated with a range of chronic human health conditions, including diabetes, cardiovascular disorders, polycystic ovarian disease, hepatotoxicity, and various types of cancer. BPA exerts its effects through deregulating cell signaling pathways associated with cell growth, proliferation, migration, invasion, and apoptosis. Previous studies on the molecular mechanisms of BPA have illustrated a variety of pathways impaired at very low exposure concentrations and that stimulate cellular responses relating to tumorigenesis both in cancer onset and progression. In this mini review, the recent advancements made through in vitro analyses are reported on for the effect of BPA on various cellular signaling pathways focusing on the signaling pathways that play a major role in carcinogenesis.
Collapse
Affiliation(s)
- Samira Nomiri
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Clinical Biochemistry Department, Birjand University of Medical Sciences, Birjand, Iran.
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100, Benevento, Italy
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131, Naples, Italy
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope, Stocker Road, Exeter, Devon, EX4 4QD, United Kingdom
| | - Borhan Mansouri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
50
|
Tong S, Yang S, Li T, Gao R, Hu J, Luo T, Qing H, Zhen Q, Hu R, Li X, Yang Y, Peng C, Li Q. Role of neutrophil extracellular traps in chronic kidney injury induced by bisphenol-A. J Endocrinol 2019; 241:JOE-18-0608.R2. [PMID: 30798321 DOI: 10.1530/joe-18-0608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 01/17/2023]
Abstract
Bisphenol-A (BPA) is a common environmental pollutant, and exposure to it is associated with proteinuria and may predict the progression of chronic kidney disease,however, the mechanism is not clear. Neutrophil extracellular traps (NETs) is a DNA skeleton coated with various proteases, and it is associated with various autoimmune nephritis. In this study, we examine whether NETs is involved in BPA-induced chronic kidney injury. In vivo, BPA exposure resulted in impaired renal function and altered renal morphology, including glomerular mesangial matrix expansion and increased renal interstitial fibroblast markers. Meanwhile, more dsDNA can be detected in the serum, and the NETs-associated proteins, MPO and citH3 were deposited in the renal system. In vitro, BPA and NETs treatment caused podocyte injury, a loss of marker proteins, and disorder in the actin skeleton. After NETs inhibition via DNase administration, BPA-induced injuries were significantly relieved. In conclusion, the increase of NETosis in circulation and the renal system during BPA exposure suggests that NETs may be involved in BPA-induced chronic kidney injury.
Collapse
Affiliation(s)
- Shiyun Tong
- S Tong, Department of Endocrinology , The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shumin Yang
- S Yang, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Li
- T Li, Department of Endocrinology, Department of Endocrinology, the First Affiliated Hospital of Chengdu Medical College, ChengDu, China
| | - Rufei Gao
- R Gao, Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China, Chongqing Medical University, Chongqing, China
| | - Jinbo Hu
- J Hu, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China., Chongqing, 400016, China
| | - Ting Luo
- T Luo, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Qing
- H Qing, Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, ChongQing, China
| | - Qianna Zhen
- Q Zhen, Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Renzhi Hu
- R Hu, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Xuan Li
- X Li, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Yi Yang
- Y Yang, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, Department of Endocrinology, Chongqing, China
| | - Chuan Peng
- C Peng, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China, The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing, China
| | - Qifu Li
- Q Li, Department of Endocrine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|