1
|
Chen J, Moerenhout TMJA, Kramer NI, Rietjens IMCM. Next Generation Risk Assessment of Acute Neurotoxicity from Organophosphate Exposures Using the In Vitro-In Silico Derived Dietary Comparator Ratio. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6106-6114. [PMID: 40105283 PMCID: PMC11966747 DOI: 10.1021/acs.est.5c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Organophosphate (OP) pesticides are common environmental contaminants, of which the resulting acetylcholinesterase (AChE) inhibition and concomitant neurotoxic effects following exposure remain a global concern. To evaluate the safety upon acute exposure to OP pesticides, the Dietary Comparator Ratio (DCR) approach was used for the first time for this class of chemicals. Six OPs including chlorpyrifos, diazinon, fenitrothion, methyl parathion, profenofos, and chlorfenvinphos were selected as model compounds. Seventy-four reports of human exposures were collected, and a DCR value at each defined exposure level was calculated with in vitro determined AChE inhibition potency and in silico simulated internal exposures. Results indicate that the DCR outcomes are comparable to the actual knowledge on the presence or absence of in vivo AChE inhibition and adverse effects for the respective exposure scenarios. Of all collected scenarios, only four false positives but no false negatives were obtained. No safety concern on acute neurotoxicity appears to be raised for the evaluated environmental exposure scenarios to OPs. To conclude, the described DCR approach provides an adequate evaluation of the OP-induced adverse outcomes for humans, shedding light on its utility for 3Rs-compliant safety assessment of chemicals with different toxicity mechanisms especially for which in vitro bioassays are available.
Collapse
Affiliation(s)
- Jiaqi Chen
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Thijs M. J. A. Moerenhout
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Nynke I. Kramer
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
2
|
Najjar A, Kühnl J, Lange D, Géniès C, Jacques C, Fabian E, Zifle A, Hewitt NJ, Schepky A. Next-generation risk assessment read-across case study: application of a 10-step framework to derive a safe concentration of daidzein in a body lotion. Front Pharmacol 2024; 15:1421601. [PMID: 38962304 PMCID: PMC11220827 DOI: 10.3389/fphar.2024.1421601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only in vitro data were used for daidzein, while in vitro and legacy in vivo data for genistein were considered. Methods: The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and in vitro biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.e., interaction with molecular targets), toxicogenomics and EATS assays (endocrine disruption endpoints). Whole body rat and human PBPK models were used to convert external doses of genistein to plasma concentrations and in vitro Points of Departure (PoD) to external doses. The PBPK human dermal module was refined using in vitro human skin metabolism and penetration data. Results: The most relevant endpoint for daidzein was from the ERα assay (Lowest Observed Effective Concentration was 100 ± 0.0 nM), which was converted to an in vitro PoD of 33 nM. After application of a safety factor of 3.3 for intra-individual variability, the safe concentration of daidzein was estimated to be 10 nM. This was extrapolated to an external dose of 0.5 μg/cm2 for a body lotion and face cream, equating to a concentration of 0.1%. Discussion: When in vitro PoD of 33 nM for daidzein was converted to an external oral dose in rats, the value correlated with the in vivo NOAEL. This increased confidence that the rat oral PBPK model provided accurate estimates of internal and external exposure and that the in vitro PoD was relevant in the safety assessment of both chemicals. When plasma concentrations estimated from applications of 0.1% and 0.02% daidzein were used to calculate bioactivity exposure ratios, values were >1, indicating a good margin between exposure and concentrations causing adverse effects. In conclusion, this case study highlights the use of NAMs in a 10-step tiered workflow to conclude that the highest safe concentration of daidzein in a body lotion is 0.1%.
Collapse
Affiliation(s)
| | | | | | - Camille Géniès
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | - Carine Jacques
- Pierre Fabre Dermo-Cosmétique and Personal CareToulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
3
|
van Tongeren TCA, Wang S, Carmichael PL, Rietjens IMCM, Li H. Next generation risk assessment of human exposure to estrogens using safe comparator compound values based on in vitro bioactivity assays. Arch Toxicol 2023; 97:1547-1575. [PMID: 37087486 PMCID: PMC10182946 DOI: 10.1007/s00204-023-03480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 04/24/2023]
Abstract
In next generation risk assessment (NGRA), the Dietary Comparator Ratio (DCR) can be used to assess the safety of chemical exposures to humans in a 3R compliant approach. The DCR compares the Exposure Activity Ratio (EAR) for exposure to a compound of interest (EARtest) to the EAR for an established safe exposure level to a comparator compound (EARcomparator), acting by the same mode of action. It can be concluded that the exposure to a test compound is safe at a corresponding DCR ≤ 1. In this study, genistein (GEN) was selected as a comparator compound by comparison of reported safe internal exposures to GEN to its BMCL05, as no effect level, the latter determined in the in vitro estrogenic MCF7/Bos proliferation, T47D ER-CALUX, and U2OS ERα-CALUX assay. The EARcomparator was defined using the BMCL05 and EC50 values from the 3 in vitro assays and subsequently used to calculate the DCRs for exposures to 14 test compounds, predicting the (absence of) estrogenicity. The predictions were evaluated by comparison to reported in vivo estrogenicity in humans for these exposures. The results obtained support in the DCR approach as an important animal-free new approach methodology (NAM) in NGRA and show how in vitro assays can be used to define DCR values.
Collapse
Affiliation(s)
- Tessa C A van Tongeren
- Division of Toxicology, Wageningen University and Research, 6700 EA, Wageningen, The Netherlands.
| | - Si Wang
- Division of Toxicology, Wageningen University and Research, 6700 EA, Wageningen, The Netherlands
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6700 EA, Wageningen, The Netherlands
| | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| |
Collapse
|
4
|
PBK modelling of topical application and characterisation of the uncertainty of C max estimate: A case study approach. Toxicol Appl Pharmacol 2022; 442:115992. [PMID: 35346730 DOI: 10.1016/j.taap.2022.115992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
Combined with in vitro bioactivity data, physiologically based kinetic (PBK) models has increasing applications in next generation risk assessment for animal-free safety decision making. A tiered framework of building PBK models for such application has been developed with increasing complexity and refinements, as model parameters determined in silico, in vitro, and with human pharmacokinetic data become progressively available. PBK modelling has been widely applied for oral/intravenous administration, but less so on topically applied chemicals. Therefore, building PBK models for topical applications and characterizing their uncertainties in the tiered approach is critical to safety decision making. The purpose of this study was to assess the confidence of PBK modelling of topically applied chemicals following the tiered framework, using non-animal methods derived parameters. Prediction of maximum plasma concentration (Cmax) and area under the curve were compared to observed kinetics from published dermal clinical studies for five chemicals (diclofenac, salicylic acid, coumarin, nicotine, caffeine). A bespoke Bayesian statistical model was developed to describe the distributions of Cmax errors between the predicted and observed data. We showed a general trend that confidence in model predictions increases when more quality in vitro data, particularly those on hepatic clearance and dermal absorption, are available as model input. The overall fold error distributions are useful for characterizing model uncertainty. We concluded that by identifying and quantifying the uncertainties in the tiered approach, we can increase the confidence in using PBK modelling to help make safety decisions on topically applied chemicals in the absence of human pharmacokinetic data.
Collapse
|
5
|
Liu SZ, Luo YH, Morais CLM, Ma XJ, Yang LJ, Tan DC, Li JB, Liao BY, Wei YF, Martin FL, Pang WY. Spectrochemical determination of effects on rat liver of binary exposure to benzo[a]pyrene and 2,2',4,4'-tetrabromodiphenyl ether. J Appl Toxicol 2021; 41:1816-1825. [PMID: 33759217 DOI: 10.1002/jat.4165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/10/2022]
Abstract
Benzo[a]pyrene (B[a]P) and polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants. The effects in organisms of exposures to binary mixtures of such contaminants remain obscure. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive analytical technique allowing spectrochemical analysis of macromolecular components, and alterations thereof, within tissue samples. Herein, we employed ATR-FTIR spectroscopy to identify biomolecular changes in rat liver post-exposure to B[a]P and BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) congener mixtures. Our results demonstrate that significant separation occurs between spectra of tissue samples derived from control versus exposure categories (accuracy = 87%; sensitivity = 95%; specificity = 79%). Additionally, there is significant spectral separation between exposed categories (accuracy = 91%; sensitivity = 98%; specificity = 90%). Segregation between control and all exposure categories were primarily associated with wavenumbers ranging from 1600 to 1700 cm-1 . B[a]P and BDE-47 alone, or in combination, induces liver damage in female rats. However, it is suggested that binary exposure apparently attenuates the toxic effects in rat liver of the individual contaminants. This is supported by morphological observations of liver tissue architecture on hematoxylin and eosin (H&E)-stained liver sections. Such observations highlight the difficulties in predicting the endpoint effects in target tissues of exposures to mixtures of environmental contaminants.
Collapse
Affiliation(s)
- Shu-Zhen Liu
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - You-Hong Luo
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China.,Hengyang Central Hospital, Hengyang, China
| | | | - Xiao-Jun Ma
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Li-Jun Yang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - De-Chan Tan
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Jin-Bo Li
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Bao-Yi Liao
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | - Yuan-Feng Wei
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| | | | - Wei-Yi Pang
- Department of Environmental Health and Occupational Medicine, School of Public Health, Guilin Medical University, Guilin, China
| |
Collapse
|
6
|
van Tongeren TCA, Moxon TE, Dent MP, Li H, Carmichael PL, Rietjens IMCM. Next generation risk assessment of human exposure to anti-androgens using newly defined comparator compound values. Toxicol In Vitro 2021; 73:105132. [PMID: 33662517 DOI: 10.1016/j.tiv.2021.105132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Next Generation Risk Assessment (NGRA) can use the so-called Dietary Comparator Ratio (DCR) to evaluate the safety of a defined exposure to a compound of interest. The DCR compares the Exposure Activity Ratio (EAR) for the compound of interest, to the EAR of an established safe level of human exposure to a comparator compound with the same putative mode of action. A DCR ≤ 1 indicates the exposure evaluated is safe. The present study aimed at defining adequate and safe comparator compound exposures for evaluation of anti-androgenic effects, using 3,3-diindolylmethane (DIM), from cruciferous vegetables, and the anti-androgenic drug bicalutamide (BIC). EAR values for these comparator compounds were defined using the AR-CALUX assay. The adequacy of the new comparator EAR values was evaluated using PBK modelling and by comparing the generated DCRs of a series of test compound exposures to actual knowledge on their safety regarding in vivo anti-androgenicity. Results obtained supported the use of AR-CALUX-based comparator EARs for DCR-based NGRA for putative anti-androgenic compounds. This further validates the DCR approach as an animal free in silico/in vitro 3R compliant method in NGRA.
Collapse
Affiliation(s)
- Tessa C A van Tongeren
- Division of Toxicology, Wageningen University and Research, 6700, EA, Wageningen, the Netherlands.
| | - Thomas E Moxon
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Matthew P Dent
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, 6700, EA, Wageningen, the Netherlands
| |
Collapse
|
7
|
Baltazar MT, Cable S, Carmichael PL, Cubberley R, Cull T, Delagrange M, Dent MP, Hatherell S, Houghton J, Kukic P, Li H, Lee MY, Malcomber S, Middleton AM, Moxon TE, Nathanail AV, Nicol B, Pendlington R, Reynolds G, Reynolds J, White A, Westmoreland C. A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products. Toxicol Sci 2020; 176:236-252. [PMID: 32275751 PMCID: PMC7357171 DOI: 10.1093/toxsci/kfaa048] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next-Generation Risk Assessment is defined as an exposure-led, hypothesis-driven risk assessment approach that integrates new approach methodologies (NAMs) to assure safety without the use of animal testing. These principles were applied to a hypothetical safety assessment of 0.1% coumarin in face cream and body lotion. For the purpose of evaluating the use of NAMs, existing animal and human data on coumarin were excluded. Internal concentrations (plasma Cmax) were estimated using a physiologically based kinetic model for dermally applied coumarin. Systemic toxicity was assessed using a battery of in vitro NAMs to identify points of departure (PoDs) for a variety of biological effects such as receptor-mediated and immunomodulatory effects (Eurofins SafetyScreen44 and BioMap Diversity 8 Panel, respectively), and general bioactivity (ToxCast data, an in vitro cell stress panel and high-throughput transcriptomics). In addition, in silico alerts for genotoxicity were followed up with the ToxTracker tool. The PoDs from the in vitro assays were plotted against the calculated in vivo exposure to calculate a margin of safety with associated uncertainty. The predicted Cmax values for face cream and body lotion were lower than all PoDs with margin of safety higher than 100. Furthermore, coumarin was not genotoxic, did not bind to any of the 44 receptors tested and did not show any immunomodulatory effects at consumer-relevant exposures. In conclusion, this case study demonstrated the value of integrating exposure science, computational modeling and in vitro bioactivity data, to reach a safety decision without animal data.
Collapse
Affiliation(s)
- Maria T Baltazar
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Sophie Cable
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Paul L Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Richard Cubberley
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Tom Cull
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Mona Delagrange
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Matthew P Dent
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Sarah Hatherell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Jade Houghton
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Hequn Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Mi-Young Lee
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Sophie Malcomber
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Alistair M Middleton
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Thomas E Moxon
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Alexis V Nathanail
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Beate Nicol
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Ruth Pendlington
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Georgia Reynolds
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Joe Reynolds
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Andrew White
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Carl Westmoreland
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| |
Collapse
|
8
|
Rogiers V, Benfenati E, Bernauer U, Bodin L, Carmichael P, Chaudhry Q, Coenraads PJ, Cronin MT, Dent M, Dusinska M, Ellison C, Ezendam J, Gaffet E, Galli CL, Goebel C, Granum B, Hollnagel HM, Kern PS, Kosemund-Meynen K, Ouédraogo G, Panteri E, Rousselle C, Stepnik M, Vanhaecke T, von Goetz N, Worth A. The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology 2020; 436:152421. [DOI: 10.1016/j.tox.2020.152421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
|
9
|
Punt A, Firman J, Boobis A, Cronin M, Gosling JP, Wilks MF, Hepburn PA, Thiel A, Fussell KC. Potential of ToxCast Data in the Safety Assessment of Food Chemicals. Toxicol Sci 2020; 174:326-340. [PMID: 32040188 PMCID: PMC7098372 DOI: 10.1093/toxsci/kfaa008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tox21 and ToxCast are high-throughput in vitro screening programs coordinated by the U.S. National Toxicology Program and the U.S. Environmental Protection Agency, respectively, with the goal of forecasting biological effects in vivo based on bioactivity profiling. The present study investigated whether mechanistic insights in the biological targets of food-relevant chemicals can be obtained from ToxCast results when the chemicals are grouped according to structural similarity. Starting from the 556 direct additives that have been identified in the ToxCast database by Karmaus et al. [Karmaus, A. L., Trautman, T. D., Krishan, M., Filer, D. L., and Fix, L. A. (2017). Curation of food-relevant chemicals in ToxCast. Food Chem. Toxicol. 103, 174-182.], the results showed that, despite the limited number of assays in which the chemical groups have been tested, sufficient results are available within so-called "DNA binding" and "nuclear receptor" target families to profile the biological activities of the defined chemical groups for these targets. The most obvious activity identified was the estrogen receptor-mediated actions of the chemical group containing parabens and structurally related gallates, as well the chemical group containing genistein and daidzein (the latter 2 being particularly active toward estrogen receptor β as a potential health benefit). These group effects, as well as the biological activities of other chemical groups, were evaluated in a series of case studies. Overall, the results of the present study suggest that high-throughput screening data could add to the evidence considered for regulatory risk assessment of food chemicals and to the evaluation of desirable effects of nutrients and phytonutrients. The data will be particularly useful for providing mechanistic information and to fill data gaps with read-across.
Collapse
Affiliation(s)
- Ans Punt
- Wageningen Food Safety Research, 6700 AE Wageningen, The Netherlands
| | - James Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Alan Boobis
- National Heart & Lung Institute, Imperial College London, London W12 0NN, UK
| | - Mark Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Martin F Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, 4055 Basel, Switzerland
| | - Paul A Hepburn
- Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Anette Thiel
- DSM Nutritional Products, 4303 Kaiseraugst, Switzerland
| | | |
Collapse
|
10
|
Moxon TE, Li H, Lee MY, Piechota P, Nicol B, Pickles J, Pendlington R, Sorrell I, Baltazar MT. Application of physiologically based kinetic (PBK) modelling in the next generation risk assessment of dermally applied consumer products. Toxicol In Vitro 2020; 63:104746. [DOI: 10.1016/j.tiv.2019.104746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
|
11
|
Vinken M, Kramer N, Allen TEH, Hoffmans Y, Thatcher N, Levorato S, Traussnig H, Schulte S, Boobis A, Thiel A, Rietjens IMCM. The use of adverse outcome pathways in the safety evaluation of food additives. Arch Toxicol 2020; 94:959-966. [PMID: 32065296 DOI: 10.1007/s00204-020-02670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
In the last decade, adverse outcome pathways have been introduced in the fields of toxicology and risk assessment of chemicals as pragmatic tools with broad application potential. While their use in the pharmaceutical and cosmetics sectors has been well documented, their application in the food area remains largely unexplored. In this respect, an expert group of the International Life Sciences Institute Europe has recently explored the use of adverse outcome pathways in the safety evaluation of food additives. A key activity was the organization of a workshop, gathering delegates from the regulatory, industrial and academic areas, to discuss the potentials and challenges related to the application of adverse outcome pathways in the safety assessment of food additives. The present paper describes the outcome of this workshop followed by a number of critical considerations and perspectives defined by the International Life Sciences Institute Europe expert group.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD, Utrecht, The Netherlands
| | - Timothy E H Allen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yvette Hoffmans
- Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Natalie Thatcher
- Mondelēz International, Bournville Place, Bournville Ln, Birmingham, B30 2LU, UK
| | - Sara Levorato
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedford, MK441LQ, UK
| | - Heinz Traussnig
- Mayr-Melnhof Karton Gesellschaft m.b.H., Frohnleiten Mill, Wannersdorf 80, 8130, Frohnleiten, Austria
| | - Stefan Schulte
- Department of Product Safety, BASF SE, 67056, Ludwigshafen, Germany
| | - Alan Boobis
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Anette Thiel
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
12
|
Yu L, Li H, Zhang C, Zhang Q, Guo J, Li J, Yuan H, Li L, Carmichael P, Peng S. Integrating in vitro testing and physiologically-based pharmacokinetic (PBPK) modelling for chemical liver toxicity assessment-A case study of troglitazone. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 74:103296. [PMID: 31783317 DOI: 10.1016/j.etap.2019.103296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
In vitro to in vivo extrapolation (IVIVE) for next-generation risk assessment (NGRA) of chemicals requires computational modeling and faces unique challenges. Using mitochondria-related toxicity data of troglitazone (TGZ), a prototype drug known for liver toxicity, from HepaRG, HepG2, HC-04, and primary human hepatocytes, we explored inherent uncertainties in IVIVE, including cell models, cellular response endpoints, and dose metrics. A human population physiologically-based pharmacokinetic (PBPK) model for TGZ was developed to predict in vivo doses from in vitro point-of-departure (POD) concentrations. Compared to the 200-800 mg/d dose range of TGZ where liver injury was observed clinically, the predicted POD doses for the mean and top one percentile of the PBPK population were 28-372 and 15-178 mg/d respectively based on Cmax dosimetry, and 185-2552 and 83-1010 mg/d respectively based on AUC. In conclusion, although with many uncertainties, integrating in vitro assays and PBPK modeling is promising in informing liver toxicity-inducing TGZ doses.
Collapse
Affiliation(s)
- Lin Yu
- Academy of Military Medicine, Academy of Military Sciences, 27 Taiping Road, Beijing 100850, PR China; Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Hequn Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Chi Zhang
- Academy of Military Medicine, Academy of Military Sciences, 27 Taiping Road, Beijing 100850, PR China; Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Jiabin Guo
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Jin Li
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Haitao Yuan
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Lizhong Li
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China
| | - Paul Carmichael
- Unilever Safety and Environmental Assurance Center, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, UK
| | - Shuangqing Peng
- Institute of Disease Control and Prevention, People's Liberation Army, 20 Dongda Street, Beijing 100071, PR China.
| |
Collapse
|