1
|
Shi M, Oh Y, Mitchell DA, MacLean JA, McLaughlin RJ, Hayashi K. Transgenerational effects of perinatal cannabis exposure on female reproductive parameters in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639897. [PMID: 40060613 PMCID: PMC11888374 DOI: 10.1101/2025.02.24.639897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The use of cannabis during pregnancy and nursing is a growing public health concern, and the multigenerational impacts of perinatal cannabis exposure remain largely unknown. To address this knowledge gap, we sought to examine the long-term consequences of perinatal cannabis use on reproductive function and how it might impact subsequent generations. Pregnant female mice were exposed to control vehicle or cannabis extract [25, 100, or 200 mg/ml Δ9-tetrahydrocannabinol (THC) in the cannabis extract] from gestational day 1 to postnatal day 21 (twice/day), encompassing the duration of pregnancy through weaning. Based on plasma THC concentrations in F0 females, we chose 100 and 200 mg/ml THC in the cannabis extract for subsequent studies. The selected doses and exposure conditions did not disrupt pregnancy or nursing in F0 females. Pregnancy and neonatal outcomes, including gestational length, litter size, and sexual ratio, were not affected by cannabis exposure. However, cannabis-exposed neonatal F1 pups were smaller. Cannabis exposure delayed vaginal opening as a sign of puberty onset and disrupted estrous cyclicity in F1 females. However, its effects were minor in F2 and F3 females. F1-F3 females showed no abnormal ovarian and uterine histology or plasma estradiol-17β levels and could produce normal offspring without pregnancy issues. These results suggest that the hypothalamus and pituitary are likely perturbed by perinatal cannabis exposure, and the early hypothalamus-pituitary-ovarian axis is disrupted in F1 females. However, they are not sufficient to compromise adult reproductive function. The present results indicate limited transgenerational effects of perinatal cannabis exposure on female reproductive parameters.
Collapse
Affiliation(s)
- Mingxin Shi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Yeongseok Oh
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Debra A. Mitchell
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - James A. MacLean
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Ryan J. McLaughlin
- Department of Integrative Physiology and Neuroscience, Washington State University, 1815 Ferdinand’s Lane, Pullman, WA, 99164, USA
| | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| |
Collapse
|
2
|
Castellanos-Ruiz D, Ojeda-Borbolla JG, Ruiz-García OV, Peña-Corona SI, Martínez-Peña AA, Ibarra-Rubio ME, Gavilanes-Ruiz M, Mendoza-Rodríguez CA. Uterine Microbiota and Bisphenols: Novel Influencers in Reproductive Health. J Xenobiot 2025; 15:26. [PMID: 39997369 PMCID: PMC11856463 DOI: 10.3390/jox15010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Infertility affects 8-12% of couples worldwide, and 30-75% of preclinical pregnancy losses are due to a failure during the implantation process. Exposure to endocrine disruptors, like bisphenols, among others, has been associated with the increase in infertility observed in the past decades. An increase in infertility has correlated with exposure to endocrine disruptors like bisphenols. The uterus harbors its own microbiota, and changes in this microbiota have been linked to several gynecological conditions, including reproductive failure. There are no studies on the effects of bisphenols on the uterine-microbiota composition, but some inferences can be gleaned by looking at the gut. Bisphenols can alter the gut microbiota, and the molecular mechanism by which gut microbiota regulates intestinal permeability involves Toll-like receptors (TLRs) and tight junction (TJ) proteins. TJs participate in embryo implantation in the uterus, but bisphenol exposure disrupts the expression and localization of TJ proteins. The aim of this review is to summarize the current knowledge on the microbiota of the female reproductive tract (FRT), its association with different reproductive diseases-particularly reproductive failure-the effects of bisphenols on microbiota composition and reproductive health, and the molecular mechanisms regulating uterine-microbiota interactions crucial for embryo implantation. This review also highlights existing knowledge gaps and outlines research needs for future risk assessments regarding the effects of bisphenols on reproduction.
Collapse
Affiliation(s)
- Dafne Castellanos-Ruiz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - J. Gerardo Ojeda-Borbolla
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Olga V. Ruiz-García
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Sheila I. Peña-Corona
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Annia A. Martínez-Peña
- División de Ciencias de la Salud, Universidad Intercontinental, A. C., Ciudad de México 14420, Mexico
| | - María Elena Ibarra-Rubio
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| | - Marina Gavilanes-Ruiz
- Facultad de Química, Departamento de Bioquímica, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - C. Adriana Mendoza-Rodríguez
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico (M.E.I.-R.)
| |
Collapse
|
3
|
Meng W, Chen Q, Zhang Y, Sun H, Li J, Sun H, Liu C, Fang M, Su G. Tracking chemical feature releases from plastic food packaging to humans. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135897. [PMID: 39298966 DOI: 10.1016/j.jhazmat.2024.135897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Humankind are being exposed to a cocktail of chemicals, such as chemicals released from plastic food packaging. It is of great importance to evaluate the prevalence of plastic food packaging-derived chemicals pollution along the flow of food-human. We developed a robust and practical database of 2101 chemical features associated with plastic food packaging that combined data from three sources, 925 of which were acquired from non-target screening of chemical extracts from eight commonly used plastic food packaging materials. In this database, 625 features, especially half of the non-targets, were potential migrants who likely entered our bodies through dietary intake. Biomonitoring analysis of plastic chemical features in foodstuffs or human serum samples showed that approximately 78 % of the 2101 features were detectable and approximately half were non-targets. Of these, 17 plastic chemicals with high detection frequencies (DFs) in the human serum were confirmed to be functional chemical additives. Together, our work indicates that the number of plastic chemicals in our bodies could be far greater than previously recognized, and human exposure to plastic chemicals might pose a potential health risk.
Collapse
Affiliation(s)
- Weikun Meng
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qianyu Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yayun Zhang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hao Sun
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, 210009 Nanjing, China.
| | - Chunsheng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, 200433 Shanghai, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
4
|
Franko N, Kodila A, Sollner Dolenc M. Adverse outcomes of the newly emerging bisphenol A substitutes. CHEMOSPHERE 2024; 364:143147. [PMID: 39168390 DOI: 10.1016/j.chemosphere.2024.143147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
BPA and its analogues are facing increasingly stringent regulations restricting their use due to the increasing knowledge of their harmful effects. It is therefore expected that novel BPA analogues and alternatives will replace them in plastic products, cans and thermal paper to circumvent restrictions imposed by legislation. This raises concerns about the safety of "BPA-free" products, as they contain BPA substitutes whose safety has not been sufficiently assessed prior to their market introduction. The regulatory agencies have recognised BPAP, BPBP, BPC2, BPE, BPFL, BPG, BPP, BPPH, BPS-MAE, BPS-MPE, BP-TMC, BPZ and the alternatives BTUM, D-90, UU and PF201 as compound with insufficient data regarding their safety. We demonstrate that the mentioned compounds are present in consumer products, food and the environment, thus exhibiting toxicological risk not only to humans, but also to other species where their toxic effects have already been described. Results of in silico, in vitro and in vivo studies examining the endocrine disruption and other effects of BPA analogues show that they disrupt the endocrine system by targeting various nuclear receptors, impairing reproductive function and causing toxic effects such as hepatotoxicity, altered behaviour and impaired reproductive function. In vitro and in vivo data on BPA alternatives are literally non-existent, although these compounds are already present in commonly used thermal papers. However, in silico studies predicted that they might cause adverse effects as well. The aim of this article is to comprehensively collate the information on selected BPA substitutes to illustrate their potential toxicity and identify safety gaps.
Collapse
Affiliation(s)
- Nina Franko
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Anja Kodila
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
6
|
Kim SG, Jeon JH, Shin SH, Varias DC, Moon SH, Ryu BY. Inhibition of reactive oxygen species generation by N-Acetyl Cysteine can mitigate male germ cell toxicity induced by bisphenol analogs. Food Chem Toxicol 2024; 188:114652. [PMID: 38583502 DOI: 10.1016/j.fct.2024.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The estrogen-like effect of bisphenol A (BPA) disrupting the maintenance of functional male germ cells is associated with male sub-fertility. This study investigated toxicity of male germ cells induced by four bisphenol analogs: BPA, BPAF, BPF, and BPS. The investigation of bisphenol analogs' impact on male germ cells included assessing proliferation, apoptosis induction, and the capacity to generate reactive oxygen species (ROS) in GC-1 spermatogonia (spg) cells, specifically type B spermatogonia. Additionally, the therapeutic potential and protective effects of N-Acetyl Cysteine (NAC) and NF-κB inhibitor parthenolide was evaluated. In comparison to BPA, BPF and BPS, BPAF exhibited the most pronounced adverse effect in GC-1 spg cell proliferation. This effect was characterized by pronounced inhibition of phosphorylation of PI3K, AKT, and mTOR, along with increased release of cytochrome c and subsequent cleavages of caspase 3, caspase 7, and poly (ADP-ribose) polymerase. Both NAC and parthenolide were effective reducing cellular ROS induced by BPAF. However, only NAC demonstrated a substantial recovery in proliferation, accompanied by a significant reduction in cytochrome c release and cleaved PARP. These results suggest that NAC supplementation may play an effective therapeutic role in countering germ cell toxicity induced by environmental pollutants with robust oxidative stress-generating capacity.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Jeong Hoon Jeon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Seung Hee Shin
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Daniel Chavez Varias
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Sung-Hwan Moon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| | - Buom-Yong Ryu
- Department of Animal Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
7
|
Gao Z, He W, Liu Y, Gao Y, Fan W, Luo Y, Shi X, Song S. Perinatal bisphenol S exposure exacerbates the oxidative burden and apoptosis in neonatal ovaries by suppressing the mTOR/autophagy axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123939. [PMID: 38593938 DOI: 10.1016/j.envpol.2024.123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Bisphenol S (BPS) is an emerging environmental endocrine disruptor capable of crossing the placental barrier, resulting in widespread exposure to pregnant women due to its extensive usage. However, the impact of perinatal maternal exposure to BPS on reproductive health in offspring and the underlying molecular mechanism remain underexplored. In this study, gestational ICR mice were provided with drinking water containing 3.33 mg/L BPS to mimic possible human exposure in some countries. Results demonstrated that BPS accelerated the breakdown of germ-cell cysts and the assembly of primordial follicles in neonates, leading to oocyte over-loss. Furthermore, the expression levels of folliculogenesis-related genes (Kit, Nobox, Gdf9, Sohlh2, Kitl, Bmp15, Lhx8, Figla, and Tgfb1) decreased, thus compromising oocyte quality and disrupting early folliculogenesis dynamics. BPS also disrupted other aspects of offspring reproduction, including advancing puberty onset, disrupting the estrus cycle, and impairing fertility. Further investigation found that BPS exposure inhibited the activities and expression levels of antioxidant-related enzymes in neonatal ovaries, leading to the substantial accumulation of MDA and ROS. The increased oxidative burden exacerbated the intracellular apoptotic signaling, manifested by increased expression levels of pro-apoptotic markers (Bax, Caspase 3, and Caspase 9) and decreased expression levels of anti-apoptotic marker (Bcl2). Concurrently, BPS inhibited autophagy by increasing p-mTOR/mTOR and decreasing p-ULK1/ULK1, subsequently down-regulating autophagy flux-related biomarkers (LC3b/LC3a and Beclin-1) and impeding the degradation of autophagy substrate p62. However, the imbalanced crosstalk between autophagy, apoptosis and oxidative stress homeostasis was restored after rapamycin treatment. Collectively, the findings demonstrated that BPS exposure induced reproductive disorders in offspring by perturbing the mTOR/autophagy axis, and such autophagic dysfunction exacerbated redox imbalance and promoted excessive apoptosis. These results provide novel mechanistic insights into the role of autophagy in mitigating BPS-induced intergenerational reproductive dysfunction.
Collapse
Affiliation(s)
- Zhangshan Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wanqiu He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yapei Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yixin Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yan Luo
- Administration for Market Regulation of Guangdong Province Key Laboratory of Supervision for Edible Agricultural Products, Shenzhen Centre of Inspection and Testing for Agricultural Products, Shenzhen, 518000, China
| | - Xizhi Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
8
|
Yu M, Yang Z, Zhou Y, Guo W, Tian L, Zhang L, Li X, Chen J. Mode of action exploration of reproductive toxicity induced by bisphenol S using human normal ovarian epithelial cells through ERβ-MAPK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116037. [PMID: 38301581 DOI: 10.1016/j.ecoenv.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND In the plastics production sector, bisphenol S (BPS) has gained popularity as a replacement for bisphenol A (BPA). However, the mode of action (MOA) of female reproductive toxicity caused by BPS remains unclear and the safety of BPS is controversial. METHODS Human normal ovarian epithelial cell line, IOSE80, were exposed to BPS at human-relevant levels for short-term exposure at 24 h or 48 h, or for long-term exposure at 28 days, either alone or together with five signaling pathway inhibitors: ICI 18,2780 (estrogen receptor [ER] antagonist), G15 (GPR30 specific inhibitor), U0126 (extracellular regulated protein kinase [ERK] 1/2 inhibitor), SP600125 (c-Jun N-terminal kinase [JNK] inhibitor) or SB203580 (p38 mitogen‑activated protein kinase [p38MAPK] inhibitor). MOA through ERβ-MAPK signaling pathway interruption was explored, and potential thresholds were estimated by the benchmark dose method. RESULTS For short-term exposure, BPS exposure at human-relevant levels elevated the ESR2 and MAPK8 mRNA levels, along with the percentage of the G0/G1 phase. For long-term exposure, BPS raised the MAPK1 and EGFR mRNA levels, the ERβ, p-ERK, and p-JNK protein levels, and the percentage of the G0/G1 phase, which was partly suppressed by U0126. The benchmark dose lower confidence limit (BMDL) of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM. CONCLUSIONS The MOA of female reproductive toxicity caused by BPS at human-relevant levels might involve: molecular initiating event (MIE)-BPS binding to ERβ receptor, key event (KE)1-the interrupted expression of GnRH, KE2-the activation of JNK (for short-term exposure) and ERK pathway (for long-term exposure), KE3-cell cycle arrest (the increased percentage of the G0/G1 phase), and KE4-interruption of cell proliferation (only for short-term exposure). The BMDL of the percentage of the S phase after 24 h exposure was the lowest among all the BMDLs of a good fit, with BMDL5 of 9.55 μM.
Collapse
Affiliation(s)
- Mengqi Yu
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhirui Yang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yongru Zhou
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wanqing Guo
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lin Tian
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Xiaomeng Li
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| | - Jinyao Chen
- Department of Nutrition and Food Safety, West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
9
|
Zheng Q, Xiao J, Zhang D, Li X, Xu J, Ma J, Xiao Q, Fu J, Guo Z, Zhu Y, Ji J, Lu S. Bisphenol analogues in infant foods in south China and implications for infant exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168509. [PMID: 37977386 DOI: 10.1016/j.scitotenv.2023.168509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Bisphenol analogues (BPs) are commonly used as modifiers, stabilizers and photo-initiators in polymer materials, including those used in food packaging. Compared to adults, infants are more sensitive to chemicals because their bodies are growing and not fully developed. Therefore, it is essential to determine the concentrations of BPs in common infant foods to assess infant exposure and prevent hazards. We collected 54 infant formula (IF) samples, 90 complementary food (CMF) samples and 62 breastmilk samples from breastfeeding women in south China. Tandem mass spectrometry coupled to liquid chromatography separation (HPLC-MS/MS) was used to detect the concentrations of 8 BPs in the three types of food samples. The estimated daily intake (EDI) of infants was also assessed. The results showed that the detection frequency of bisphenol F (BPF), bisphenol S (BPS), bisphenol AF (BPAF) and bisphenol AP (BPAP) were relatively high among the different infant foods. BPF, BPP and BPS were predominant among the detected BPs. The lowest 95th EDI for BPA was 0.67 ng kg-bw-1 day-1, exceeding the tolerable daily intake (TDI) limit for BPA set by the European Food Safety Authority in 2023. Thus, BP exposure is a significant risk to infants. More attention should be paid to the presence of BPs in daily use products and food, and intake limits should be set for BPs other than BPA.
Collapse
Affiliation(s)
- Quanzhi Zheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinqiu Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiaojiao Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jinfeng Fu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yue Zhu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Jiajia Ji
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
10
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
11
|
Bigambo FM, Wang D, Sun J, Ding X, Li X, Gao B, Wu D, Gu W, Zhang M, Wang X. Association between Urinary BPA Substitutes and Precocious Puberty among Girls: A Single-Exposure and Mixed Exposure Approach from a Chinese Case-Control Study. TOXICS 2023; 11:905. [PMID: 37999557 PMCID: PMC10675366 DOI: 10.3390/toxics11110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
There is an argument that BPA substitutes may have the same or more deleterious health effects as BPA due to their structural similarity. This study explored the association between urinary BPA substitutes and precocious puberty among girls by including 120 girls with precocious puberty (cases) aged 2-10 years enrolled at Nanjing Children's Hospital Department of Endocrinology in China between April 2021 to September 2021 and 145 healthy girls (controls) recruited from a primary school. Logistic regression was used to evaluate the effect of single exposures, and Bayesian kernel machine regression (BKMR) and quantile-based g-computation were used for the mixed effect. In the multivariate logistic regression, BPS (bisphenol S), TBBPA (tetrabromobisphenol A), and BPFL (bisphenol-FL) were significantly associated with increased risk of precocious puberty (odds ratio (OR) = 1.75, 95% confidence interval (CI): 1.13, 2.76, p = 0.014), (OR = 1.46, CI: 1.06, 2.05; p = 0.023), and (OR = 1.47, CI: 1.01, 2.18; p = 0.047), respectively. The BMKR and quantile-based g-computation models revealed consistent associations for single exposures and there was insufficient evidence for the associations of the mixed exposure of bisphenols with precocious puberty. In conclusion, BPA substitutes such as BPS, TBBPA, and BPFL may be associated with an increased risk of precocious puberty in girls.
Collapse
Affiliation(s)
- Francis Manyori Bigambo
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| | - Dandan Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| | - Jian Sun
- Department of Emergency, Pediatric Intensive Care Unit, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China;
| | - Xinliang Ding
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- Wuxi Center for Disease Control and Prevention, The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Xiuzhu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- Wuxi Center for Disease Control and Prevention, The Affiliated Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China
| | - Beibei Gao
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Di Wu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| | - Mingzhi Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (X.D.); (X.L.); (B.G.); (D.W.)
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xu Wang
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China; (F.M.B.); (D.W.); (W.G.)
| |
Collapse
|
12
|
Shoorei H, Seify M, Talebi SF, Majidpoor J, Dehaghi YK, Shokoohi M. Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon 2023; 9:e16848. [PMID: 37303564 PMCID: PMC10250808 DOI: 10.1016/j.heliyon.2023.e16848] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-β-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3β-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERβ), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Koohestani Dehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Shokoohi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Li C, Qi T, Ma L, Lan YB, Luo J, Chu K, Huang Y, Ruan F, Zhou J. In utero bisphenol A exposure disturbs germ cell cyst breakdown through the PI3k/Akt signaling pathway and BDNF expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115031. [PMID: 37210998 DOI: 10.1016/j.ecoenv.2023.115031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
PURPOSE To determine the influence of the environmental endocrine disruptor bisphenol A (BPA) on germ cell cyst breakdown and explore the possible mechanisms regulating this activity. METHODS BPA (2 μg/kg/d or 20 μg/kg/d) or tocopherol-stripped corn oil (vehicle control) was administered to pregnant mice by gavage at gestational day 11, and the offspring (prenatally treated mice) were sacrificed and ovariectomized at postnatal day (PND) 4 and PND22. Ovarian morphology was documented in the first filial (F1) generation female offspring, and the follicles were analyzed and classified morphologically on PND 4. To discover differentially expressed genes and associated target pathways, we used RNA-seq, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Gene Ontology (GO) analysis. The mRNA expression of key steroid hormone synthesis-related genes was evaluated by Q-PCR in forskolin-induced KGN cells. Western blotting (WB) and qRTPCR were used to determine the protein and gene expression levels of brain-derived neurotrophic factor (BDNF). RESULTS BPA, a typical endocrine disrupting chemical (EDC), decreased the expression of the key steroid hormone synthesis-related genes P450scc and aromatase, while the expression of Star increased significantly and caused no significant difference in the expression of Cyp17a1 or HSD3β in forskolin-induced KGN cells. Moreover, we confirmed that in utero exposure to environmentally relevant concentrations of BPA (2 μg/kg/d and 20 μg/kg/d) could significantly disrupt germ cell cyst breakdown, leading to the generation of fewer primordial follicles than in the control group. The factors mediating the inhibitory effects included the PI3K-Akt signaling pathway and a significant downregulation of BDNF. CONCLUSIONS These findings indicate that in utero exposure to BPA at low doses, which are lower than recommended as 'safe' dosages, may influence the formation of primordial follicles by inhibiting the expression of steroid hormone synthesis-related genes and partly by regulating the BDNF-mediated PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chunming Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Tongyun Qi
- Department of Gynecology, The first Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Linjuan Ma
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yi Bing Lan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jie Luo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Ketan Chu
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yizhou Huang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Fei Ruan
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jianhong Zhou
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
14
|
Panagopoulos P, Mavrogianni D, Christodoulaki C, Drakaki E, Chrelias G, Panagiotopoulos D, Potiris A, Drakakis P, Stavros S. Effects of endocrine disrupting compounds on female fertility. Best Pract Res Clin Obstet Gynaecol 2023:102347. [PMID: 37244786 DOI: 10.1016/j.bpobgyn.2023.102347] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/29/2023]
Abstract
Endocrine Disrupting Compounds or Chemicals (EDCs) constitute an extensive and varied group of mostly non-natural chemicals that have the ability to imitate any aspect of hormone action, perturbing many physiological functions in humans and animals. As for female fertility, several EDCs are associated with adverse effects in the regulation of steroidogenesis, higher miscarriage rates as well as lower fertilization and embryo implantation rates and some of them are considered to decrease the number of high-quality embryos in assisted reproductive technology (ART) pregnancy. The most common EDCs are pesticides, hexachlorobenzene (HCB), hexachlorocyclohexane (HCH) and especially phthalates and bisphenols which are used in thousands of products as plasticizers. Among all, Bisphenol A (BPA) is one of the most permeating and well-studied EDCs. BPA's action resembles that of estradiol affecting negatively the female reproductive system in various ways. This review summarizes the most recent literature on the impact of EDCs in female fertility.
Collapse
Affiliation(s)
- Periklis Panagopoulos
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Despina Mavrogianni
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece.
| | | | - Eirini Drakaki
- First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece
| | - Georgios Chrelias
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Dimitrios Panagiotopoulos
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| | - Peter Drakakis
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece; First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School of the National and Kapodistrian University of Athens, Greece
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, University Hospital "ATTIKON", Medical School of the National and Kapodistrian University of Athens, Greece
| |
Collapse
|
15
|
Mao Y, Li D, Yang Q, Pei X, Duan Z, Ma M. Prenatal BPA exposure disrupts male reproductive functions by interfering with DNA methylation and GDNF expression in the testes of male offspring rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53741-53753. [PMID: 36864339 DOI: 10.1007/s11356-023-26154-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
BPA is a ubiquitous environmental endocrine-disrupting chemical, and maternal exposure to BPA is associated with impaired male reproductive functions; however, the mechanisms remain to be elucidated. Glial cell line-derived neurotrophic factor (GDNF) plays an important role in maintaining normal spermatogenesis and fertility. However, the effect of prenatal BPA exposure on GDNF expression and its mechanism in the testis has not been reported. In this study, pregnant Sprague-Dawley rats were respectively exposed to 0, 0.05, 0.5, 5, and 50 mg/kg/day BPA via oral gavage from gestational day (GD) 5 to GD 19, with 6 pregnant rats in each group. ELISA, histochemistry, real-time PCR, western blot, and methylation-specific PCR (MSP) were used to detect the sex hormone levels, testicular histopathology, mRNA and protein expression of DNA methyltransferases (DNMTs) and GDNF, and the promoter methylation of Gdnf in the testes of male offspring at postnatal day (PND) 21 and PND 56. Prenatal BPA exposure increased body weight; decreased sperm counts and serum levels of testosterone (T), follicle-stimulating hormone (FSH), and luteinizing hormone (LH); and induced testicular histological damage, which indicated the damage of male reproductive function. Prenatal BPA exposure also upregulated Dnmt1 in 5 mg/kg group and Dnmt3b in 0.5 mg/kg group, but down-regulated Dnmt1 in 50 mg/kg group at PND 21. At PND 56, Dnmt1 was significantly increased in 0.05 mg/kg group but decreased in 0.5, 5, and 50 mg/kg groups, Dnmt3a was decreased, and Dnmt3b was markedly increased in 0.05 and 0.5 mg/kg groups but decreased in 5 and 50 mg/kg groups. The mRNA and protein expression levels of Gdnf were decreased markedly in 0.5 and 50 mg/kg groups at PND 21. And the methylation level of Gdnf promoter was significantly increased in 0.5 mg/kg group, but decreased in 5 and 50 mg/kg groups at PND 21. In conclusion, our study indicates that prenatal BPA exposure disrupts male reproductive functions, interferes with the expression of DNMTs, and decreases Gdnf expression in the testes of male offspring. Gdnf expression may be regulated by DNA methylation; however, the detailed mechanism needs to be further investigated.
Collapse
Affiliation(s)
- Yaping Mao
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Dan Li
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Qiaoqiao Yang
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Xiucong Pei
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Zhiwen Duan
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China
| | - Mingyue Ma
- Department of Toxicology, School of Public Heath, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China.
- Department of Key Laboratory of Environmental Pollution and Microecology, Shenyang Medical College, Shenyang, 110034, Liaoning Province, China.
| |
Collapse
|
16
|
Philibert P, Déjardin S, Girard M, Durix Q, Gonzalez AA, Mialhe X, Tardat M, Poulat F, Boizet-Bonhoure B. Cocktails of NSAIDs and 17α Ethinylestradiol at Environmentally Relevant Doses in Drinking Water Alter Puberty Onset in Mice Intergenerationally. Int J Mol Sci 2023; 24:ijms24065890. [PMID: 36982971 PMCID: PMC10099742 DOI: 10.3390/ijms24065890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) and 17α-ethinyl-estradiol (EE2) are among the most relevant endocrine-disrupting pharmaceuticals found in the environment, particularly in surface and drinking water due to their incomplete removal via wastewater treatment plants. Exposure of pregnant mice to NSAID therapeutic doses during the sex determination period has a negative impact on gonadal development and fertility in adults; however, the effects of their chronic exposure at lower doses are unknown. In this study, we investigated the impact of chronic exposure to a mixture containing ibuprofen, 2hydroxy-ibuprofen, diclofenac, and EE2 at two environmentally relevant doses (added to the drinking water from fetal life until puberty) on the reproductive tract in F1 exposed mice and their F2 offspring. In F1 animals, exposure delayed male puberty and accelerated female puberty. In post-pubertal F1 testes and ovaries, differentiation/maturation of the different gonad cell types was altered, and some of these modifications were observed also in the non-exposed F2 generation. Transcriptomic analysis of post-pubertal testes and ovaries of F1 (exposed) and F2 animals revealed significant changes in gene expression profiles and enriched pathways, particularly the inflammasome, metabolism and extracellular matrix pathways, compared with controls (non-exposed). This suggested that exposure to these drug cocktails has an intergenerational impact. The identified Adverse Outcome Pathway (AOP) networks for NSAIDs and EE2, at doses that are relevant to everyday human exposure, will improve the AOP network of the human reproductive system development concerning endocrine disruptor chemicals. It may serve to identify other putative endocrine disruptors for mammalian species based on the expression of biomarkers.
Collapse
Affiliation(s)
- Pascal Philibert
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Carèmeau, CHU de Nîmes, 30900 Nîmes, France
| | - Stéphanie Déjardin
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Mélissa Girard
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Quentin Durix
- IExplore-RAM, Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Université de Montpellier and Institut National de la Santé Et de la Recherche Médicale (INSERM), 34090 Montpellier, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Xavier Mialhe
- MGX-Montpellier GenomiX, UMS Biocampus, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mathieu Tardat
- Biologie des Séquences Répétées, Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, 34090 Montpellier, France
| | - Francis Poulat
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Développement et Pathologie de la Gonade, Institut de Génétique Humaine, Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, 34090 Montpellier, France
| |
Collapse
|
17
|
Li JZ, Zhou SM, Yuan WB, Chen HQ, Zeng Y, Fan J, Zhang Z, Wang N, Cao J, Liu WB. RNA binding protein YTHDF1 mediates bisphenol S-induced Leydig cell damage by regulating the mitochondrial pathway of BCL2 and the expression of CDK2-CyclinE1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121144. [PMID: 36702435 DOI: 10.1016/j.envpol.2023.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol S (BPS) causes reproductive adverse effects on humans and animals. However, the detailed mechanism is still unclear. This research aimed to clarify the role of RNA binding protein YTHDF1 in Leydig cell damage induced by BPS. The mouse TM3 Leydig cells were exposed to BPS of 0, 20, 40, and 80 μmol/L for 72 h. Results showed that TM3 Leydig cells apoptosis rate markedly increased in BPS exposure group. Meanwhile, the apoptosis-related molecule BCL2 protein level decreased significantly, and Caspase9, Caspase3, and BAX increased significantly. Moreover, the cell cycle was blocked in the G1/S phase, CDK2 and CyclinE1 were considerably down-regulated in BPS exposure groups, and the protein level of RNA binding protein YTHDF1 decreased sharply. Furthermore, after overexpression of YTHDF1, the cell viability significantly increased, and the apoptosis rate significantly decreased in TM3 Leydig cells. In the meantime, BCL2, CDK2, and CyclinE1 were significantly up-regulated, and BAX, Caspase9, and Caspase3 were significantly down-regulated. Conversely, interference with YTHDF1 decreased cell proliferation and promoted apoptosis. Importantly, overexpression of YTHDF1 alleviated the cell viability decrease induced by BPS, and interference with YTHDF1 exacerbated the situation. RIP assays showed that the binding of YTHDF1 to CDK2, CyclinE1, and BCL2 significantly increased after overexpressing YTHDF1. Collectively, our study suggested that YTHDF1 plays an essential role in BPS-induced TM3 Leydig cell damage by regulating CDK2-CyclinE1 and BCL2 mitochondrial pathway at the translational level.
Collapse
Affiliation(s)
- Jing-Zhi Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shi-Meng Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jun Fan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhe Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Na Wang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Public Health, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
18
|
Gély CA, Picard-Hagen N, Chassan M, Garrigues JC, Gayrard V, Lacroix MZ. Contribution of Reliable Chromatographic Data in QSAR for Modelling Bisphenol Transport across the Human Placenta Barrier. Molecules 2023; 28:500. [PMID: 36677565 PMCID: PMC9863378 DOI: 10.3390/molecules28020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Regulatory measures and public concerns regarding bisphenol A (BPA) have led to its replacement by structural analogues, such as BPAF, BPAP, BPB, BPF, BPP, BPS, and BPZ. However, these alternatives are under surveillance for potential endocrine disruption, particularly during the critical period of fetal development. Despite their structural analogies, these BPs differ greatly in their placental transport efficiency. For predicting the fetal exposure of this important class of emerging contaminants, quantitative structure-activity relationship (QSAR) studies were developed to model and predict the placental clearance indices (CI). The most usual input parameters were molecular descriptors obtained by modelling, but for bisphenols (BPs) with structural similarities or heteroatoms such as sulfur, these descriptors do not contrast greatly. This study evaluated and compared the capacity of QSAR models based either on molecular or chromatographic descriptors or a combination of both to predict the placental passage of BPs. These chromatographic descriptors include both the retention mechanism and the peak shape on columns that reflect specific molecular interactions between solute and stationary and mobile phases and are characteristic of the molecular structure of BPs. The chromatographic peak shape such as the asymmetry and tailing factors had more influence on predicting the placental passage than the usual retention parameters. Furthermore, the QSAR model, having the best prediction capacity, was obtained with the chromatographic descriptors alone and met the criteria of internal and cross validation. These QSAR models are crucial for predicting the fetal exposure of this important class of emerging contaminants.
Collapse
Affiliation(s)
- Clémence A. Gély
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Malika Chassan
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Jean-Christophe Garrigues
- Molecular Interactions and Chemical and Photochemical Reactivity Laboratory (IMRCP), University of Toulouse, 31062 Toulouse, France
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| | - Marlène Z. Lacroix
- Therapeutic Innovations and Resistances (INTHERES), National Research Institute for Agriculture, Food and Environment (INRAE), National Veterinay School of Toulouse (ENVT), University of Toulouse, 31076 Toulouse, France
| |
Collapse
|
19
|
Wang G, Xu G, Zhang C, Han A, Zhang G, Chen L, Xie G, Tao F, Shen T, Su P. Gestational bisphenol A exposure advances puberty onset in female offspring: Critical time window identification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114387. [PMID: 36508816 DOI: 10.1016/j.ecoenv.2022.114387] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Increasing evidence shows that the early onset of puberty in female offspring may be caused by maternal prenatal exposure to bisphenol A (BPA) during pregnancy; however, the critical time window of maternal prenatal BPA exposure remains unknown. Here, we identify the critical time window of gestational BPA exposure that induces early onset of puberty in female offspring. Pregnant CD-1 mice were gavaged with BPA (8 mg/kg) daily during the early gestational stage (GD1-GD6), middle gestational stage (GD7-GD12) or late gestational stage (GD13-GD18). We show that maternal BPA exposure during the early and middle gestational stages could advance the vaginal opening time and increase the serum levels of kisspeptin-10 and GnRH in the female offspring at PND 34. Mechanistically, maternal BPA exposure during early and middle gestation could significantly increase CpG island methylation in the Eed gene promoters but reduce the mRNA expression of Eed in the hypothalamus tissues of the female offspring. In conclusion, the critical period of maternal BPA exposure-induced early onset of puberty in female offspring is early and middle gestation; this BPA-induced early onset of puberty might be partly attributed to epigenetic programming of the Eed gene in the hypothalamus. This study provides important insights regarding the relationship and the mechanisms between BPA and offspring pubertal development.
Collapse
Affiliation(s)
- Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Geng Xu
- Xuzhou Maternal and Child Health Care Hospital, No 46 Heping Road, Xuzhou 221000, Jiangsu, China
| | - Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Azhu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Guobao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Liru Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Guodie Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
20
|
Gély CA, Lacroix MZ, Roques BB, Toutain PL, Gayrard V, Picard-Hagen N. Comparison of toxicokinetic properties of eleven analogues of Bisphenol A in pig after intravenous and oral administrations. ENVIRONMENT INTERNATIONAL 2023; 171:107722. [PMID: 36584424 DOI: 10.1016/j.envint.2022.107722] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Due to the restrictions of its use, Bisphenol A (BPA) has been replaced by many structurally related bisphenols (BPs) in consumer products. The endocrine disrupting potential similar to that of BPA has been described for several bisphenols, there is therefore an urgent need of toxicokinetic (TK) data for these emerging BPs in order to evaluate if their internal exposure could increase the risk of endocrine disruption. We investigated TK behaviors of eleven BPA substitutes (BPS, BPAF, BPB, BPF, BPM, BPZ, 3-3BPA, BP4-4, BPAP, BPP, and BPFL) by intravenous and oral administrations of mixtures of them to piglets and serial collection of blood over 72 h and urine over 24 h, to evaluate their disposition. Data were analyzed using nonlinear mixed-effects modeling and a comparison was made with TK predicted by the generic model HTTK package. The low urinary excretion of some BPs, in particular BPM, BPP and BPFL, is an important aspect to consider in predicting human exposure based on urine biomonitoring. Despite their structural similarities, for the same oral dose, all BPA analogues investigated showed a higher systemic exposure (area under the plasma concentration-time curve (AUC) of the unconjugated Bisphenol) than BPA (2 to 4 fold for 3-3BPA, BPAF, BPB and BPZ, 7-20 fold for BP4-4, BPAP, BPP, BPFL, BPF and BPM and 150 fold for BPS) due mainly to a considerable variation of oral bioavailability (proportion of BP administered by oral route that attains the systemic circulation unchanged). Given similarities in the digestive tract between pigs and humans, our TK data suggest that replacing BPA with some of its alternatives, particularly BPS, will likely lead to higher internal exposure to potential endocrine disruptive compounds. These findings are crucial for evaluating the risk of human exposure to these emerging BPs.
Collapse
Affiliation(s)
- Clémence A Gély
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| | | | | | - Pierre-Louis Toutain
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France; The Royal Veterinary College, University of London, London, United Kingdom.
| | - Véronique Gayrard
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicole Picard-Hagen
- ToxAlim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
21
|
Land KL, Miller FG, Fugate AC, Hannon PR. The effects of endocrine-disrupting chemicals on ovarian- and ovulation-related fertility outcomes. Mol Reprod Dev 2022; 89:608-631. [PMID: 36580349 PMCID: PMC10100123 DOI: 10.1002/mrd.23652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022]
Abstract
Exposure to endocrine-disrupting chemicals (EDCs) is unavoidable, which represents a public health concern given the ability of EDCs to target the ovary. However, there is a large gap in the knowledge about the impact of EDCs on ovarian function, including the process of ovulation. Defects in ovulation are the leading cause of infertility in women, and EDC exposures are contributing to the prevalence of infertility. Thus, investigating the effects of EDCs on the ovary and ovulation is an emerging area for research and is the focus of this review. The effects of EDCs on gametogenesis, uterine function, embryonic development, and other aspects of fertility are not addressed to focus on ovarian- and ovulation-related fertility issues. Herein, findings from epidemiological and basic science studies are summarized for several EDCs, including phthalates, bisphenols, per- and poly-fluoroalkyl substances, flame retardants, parabens, and triclosan. Epidemiological literature suggests that exposure is associated with impaired fecundity and in vitro fertilization outcomes (decreased egg yield, pregnancies, and births), while basic science literature reports altered ovarian follicle and corpora lutea numbers, altered hormone levels, and impaired ovulatory processes. Future directions include identification of the mechanisms by which EDCs disrupt ovulation leading to infertility, especially in women.
Collapse
Affiliation(s)
- Katie L. Land
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Frances G. Miller
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ava C. Fugate
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Patrick R. Hannon
- Department of Obstetrics & Gynecology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
22
|
Kowalczyk A, Wrzecińska M, Czerniawska-Piątkowska E, Araújo JP, Cwynar P. Molecular consequences of the exposure to toxic substances for the endocrine system of females. Biomed Pharmacother 2022; 155:113730. [PMID: 36152416 DOI: 10.1016/j.biopha.2022.113730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/02/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are common in the environment and in everyday products such as cosmetics, plastic food packaging, and medicines. These substances are toxic in small doses (even in the order of micrograms) and enter the body through the skin, digestive or respiratory system. Numerous studies confirm the negative impact of EDCs on living organisms. They disrupt endocrine functions, contributing to the development of neoplastic and neurological diseases, as well as problems with the circulatory system and reproduction. EDCs affect humans and animals by modulating epigenetic processes that can lead to disturbances in gene expression or failure and even death. They also affect steroid hormones by binding to their receptors as well as interfering with synthesis and secretion of hormones. Prenatal exposure may be related to the impact of EDCs on offspring, resulting in effects of these substances on the ovaries and leading to the reduction of fertility through disturbances in the function of steroid receptors or problems with steroidogenesis and gametogenesis. Current literature indicates the need to continue research on the effects of EDCs on the female reproductive system. The aim of this review was to identify the effects of endocrine-disrupting chemicals on the female reproductive system and their genetic effects based on recent literature.
Collapse
Affiliation(s)
- Alicja Kowalczyk
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław, Poland.
| | - Marcjanna Wrzecińska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - Ewa Czerniawska-Piątkowska
- Department of Ruminant Science, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - José Pedro Araújo
- Mountain Research Centre (CIMO), Instituto Politécnico de Viana do Castelo, Rua D. Mendo Afonso, 147, Refóios do Lima, 4990-706 Ponte de Lima, Portugal.
| | - Przemysław Cwynar
- Department of Environmental Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, Wrocław, Poland.
| |
Collapse
|
23
|
Pant MK, Ahmad AH, Naithani M, Pant J. Plastic bottle feeding produces changes in biochemical parameters in human infants - A pilot study. Clin Exp Pediatr 2022; 65:459-465. [PMID: 35588762 PMCID: PMC9441618 DOI: 10.3345/cep.2022.00234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plastic bottles are widely used by people to feed their infants when breastfeeding is not possible. Bisphenol A (BPA), an endocrine disruptor is widely used in the manufacturing of plastic wares and is leached out from these plastic wares on exposure to high temperature, changed pH, or cleaning the plastic wares by harsh detergents. PURPOSE Feeding through plastic bottles over prolong duration is expected to expose the infants to leached BPA. Hence the present study was taken up to compare the effects of breastfeeding and plastic bottle feeding on biochemical parameters in infants and also detect for the presence of free BPA or its metabolite in the infants. METHODS Biochemical tests like lipid profile, liver function tests, creatine-kinase-MB (CK-MB), serum urea, serum electrolytes were performed on blood samples obtained from infants who were breastfed and plastic bottle fed. Further, plasma and urine samples of the infants were subjected to Liquid chromatography-mass spectrometry analysis for detecting free BPA and BPA glucuronide. RESULTS Biochemical changes in form of raised triglycerides, cholesterol, low-density lipoproteins, very low-density lipoproteins and increase in CK-MB, serum urea were observed in plastic bottle fed infants. BPA glucuronide was also detected in the urine of these infants. Free BPA was not detected in plasma or urine samples of the infants except in one plasma sample from bottle-fed group. CONCLUSION Plastic bottle feeding may lead to toxic changes in the functioning of organs which manifest as altered biochemical parameters.
Collapse
Affiliation(s)
- Mahendra K Pant
- Department of Anatomy, Government Doon Medical College, Uttarakhand, India
| | - Abul H Ahmad
- College of Veterinary Sciences, G.B. Pant University of Agriculture and Technology, Uttarakhand, India
| | - Manisha Naithani
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Jayanti Pant
- Department of Physiology, All India Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
24
|
Vignault C, Cadoret V, Jarrier-Gaillard P, Papillier P, Téteau O, Desmarchais A, Uzbekova S, Binet A, Guérif F, Elis S, Maillard V. Bisphenol S Impairs Oestradiol Secretion during In Vitro Basal Folliculogenesis in a Mono-Ovulatory Species Model. TOXICS 2022; 10:toxics10080437. [PMID: 36006116 PMCID: PMC9412475 DOI: 10.3390/toxics10080437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 05/28/2023]
Abstract
Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granulosa cells from different species. Nevertheless, limited data are available on its effects during basal folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral follicles (180−240 μm, n = 168) with BPS (0.1 μM (possible human exposure dose) or 10 μM (high dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We measured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone [D15]) and expression of key follicular development and redox status genes (D15) in medium and whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control (−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment. More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal follicular development.
Collapse
Affiliation(s)
- Claire Vignault
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Véronique Cadoret
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Peggy Jarrier-Gaillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Pascal Papillier
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Ophélie Téteau
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Alice Desmarchais
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Svetlana Uzbekova
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Aurélien Binet
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Chirurgie Pédiatrique Viscérale, Urologique, Plastique et Brûlés, CHRU de Tours, 37000 Tours, France
| | - Fabrice Guérif
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, 37000 Tours, France
| | - Sebastien Elis
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| | - Virginie Maillard
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France; (C.V.); (V.C.); (P.J.-G.); (P.P.); (O.T.); (A.D.); (S.U.); (A.B.); (F.G.); (S.E.)
| |
Collapse
|
25
|
Bonaldo B, Gioiosa L, Panzica G, Marraudino M. Exposure to either Bisphenol A or S Represents a Risk for Crucial Behaviors for Pup Survival, Such as Spontaneous Maternal Behavior in Mice. Neuroendocrinology 2022; 113:1283-1297. [PMID: 35850097 DOI: 10.1159/000526074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Maternal behavior depends on a multitude of factors, including environmental ones, such as Endocrine Disrupting Chemicals (EDCs), which are increasingly attracting attention. Bisphenol A (BPA), an EDC present in plastic, is known to exert negative effects on maternal behavior. Bisphenol S (BPS), a BPA substitute, seems to share some endocrine disrupting properties. In this study, we focused on the analysis of the effects of low-dose (i.e., 4 µg/kg body weight/day, EFSA TDI for BPA) BPA or BPS exposure throughout pregnancy and lactation in mice. METHODS We administered adult C57BL/6 J females orally BPA, BPS, or vehicle from mating to offspring weaning. We assessed the number of pups at birth, the sex ratio, and the percentage of dead pups in each litter, and during the first postnatal week, we observed spontaneous maternal behavior. At the weaning of the pups, we sacrificed the dams and analyzed the oxytocin system, known to be involved in the control of maternal care, in the hypothalamic magnocellular nuclei. RESULTS At birth, pups from BPA-treated dams tended to have a lower male-to-female ratio compared to controls, while the opposite was observed among BPS-treated dams' litters. During the first postnatal week, offspring mortality impacted differentially in the BPA and BPS litters, with more female dead pups among the BPA litters, while more male dead pups in the BPS litters, sharpening the difference in the sex ratio. BPA- and BPS-treated dams spent significantly less time in pup-related behaviors than controls. Oxytocin immunoreactivity in the paraventricular and supraoptic nuclei was increased only in the BPA-treated dams. DISCUSSION/CONCLUSIONS Alterations in maternal care, along with the treatment itself, may affect, later in life, the offspring's physiology and behavior. Exposure to BPs during sensitive developmental periods represents a risk for both dams and offspring, even at low environmentally relevant doses, through the functional alteration of neural circuits controlling fundamental behaviors for pup survival, such as maternal behaviors.
Collapse
Affiliation(s)
- Brigitta Bonaldo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini," University of Turin, Turin, Italy
| | - Laura Gioiosa
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - GianCarlo Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini," University of Turin, Turin, Italy
| | - Marilena Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, Turin, Italy
- Department of Neuroscience "Rita Levi-Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
26
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
27
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
28
|
Beausoleil C, Le Magueresse-Battistoni B, Viguié C, Babajko S, Canivenc-Lavier MC, Chevalier N, Emond C, Habert R, Picard-Hagen N, Mhaouty-Kodja S. Regulatory and academic studies to derive reference values for human health: The case of bisphenol S. ENVIRONMENTAL RESEARCH 2022; 204:112233. [PMID: 34688643 DOI: 10.1016/j.envres.2021.112233] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
The close structural analogy of bisphenol (BP) S with BPA, a recognized endocrine-disrupting chemical and a substance of very high concern in the European Union, highlights the need to assess the extent of similarities between the two compounds and carefully scrutinize BPS potential toxicity for human health. This analysis aimed to investigate human health toxicity data regarding BPS, to find a point of departure for the derivation of human guidance values. A systematic and transparent methodology was applied to determine whether European or international reference values have been established for BPS. In the absence of such values, the scientific literature on human health effects was evaluated by focusing on human epidemiological and animal experimental studies. The results were analyzed by target organ/system: male and female reproduction, mammary gland, neurobehavior, and metabolism/obesity. Academic experimental studies were analyzed and compared to regulatory data including subchronic studies and an extended one-generation and reproduction study. In contrast to the regulatory studies, which were performed at dose levels in the mg/kg bw/day range, the academic dataset on specific target organs or systems showed adverse effects for BPS at much lower doses (0.5-10 μg/kg bw/day). A large disparity between the lowest-observed-adverse-effect levels (LOAELs) derived from regulatory and academic studies was observed for BPS, as for BPA. Toxicokinetic data on BPS from animal and human studies were also analyzed and showed a 100-fold higher oral bioavailability compared to BPA in a pig model. The similarities and differences between the two bisphenols, in particular the higher bioavailability of BPS in its active (non-conjugated) form and its potential impact on human health, are discussed. Based on the available experimental data, and for a better human protection, we propose to derive human reference values for exposure to BPS from the N(L)OAELs determined in academic studies.
Collapse
Affiliation(s)
| | | | - Catherine Viguié
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sylvie Babajko
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | | | - Nicolas Chevalier
- Université Côte d'Azur, Centre Hospitalier Universitaire (CHU) de Nice, INSERM U1065, C3M, Nice, France
| | - Claude Emond
- University of Montreal, School of Public Health, DSEST, Montreal, Quebec, Canada
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, University Paris Diderot, Institut National de la Santé et de la Recherche Médicale (Inserm) U 967 - CEA, Fontenay-aux-Roses, France
| | - Nicole Picard-Hagen
- Toxalim, Institut National de la Recherche Agronomique et de l'Environnement (INRAE), Toulouse University, Ecole Nationale Vétérinaire de Toulouse (ENVT), Ecole d'Ingénieurs de Purpan (EIP), Université Paul Sabatier (UPS), Toulouse, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| |
Collapse
|
29
|
Liang J, Yang C, Liu T, Tan HJJ, Sheng Y, Wei L, Tang P, Huang H, Zeng X, Liu S, Huang D, Qiu X. Prenatal exposure to bisphenols and risk of preterm birth: Findings from Guangxi Zhuang birth cohort in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112960. [PMID: 34781130 DOI: 10.1016/j.ecoenv.2021.112960] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Preterm birth (PTB), a serious adverse birth outcome, is the leading cause of perinatal mortality and morbidity. Bisphenols induce endocrine disruption that spreads across the placenta, which may affect fetal growth and development. However, the effects of bisphenols on PTB, particularly their combined effects, remain unknown. This study investigated the association between prenatal bisphenol exposure and PTB. Study participants were 2023 mother-infant pairs that were selected from the Guangxi Zhuang Birth Cohort. Maternal serum bisphenol levels were measured using ultrahigh performance liquid chromatography-tandem mass spectrometry, and pregnancy outcomes were obtained from medical records. Multivariate logistic regression, restricted cubic spline, principal component analysis (PCA), quantile g-computation (Qgcomp), and Bayesian kernel machine regression (BKMR) were used to examine the association between serum bisphenol levels and PTB. Ln-transformed BPA concentrations were associated with an increased risk of PTB only in female infants (OR = 1.30, 95% CI: 1.02, 1.64). Ln-transformed bisphenol F (BPF) concentrations were positively associated with the risk of PTB (OR = 1.73, 95% CI: 1.18, 2.55). Inverse U-shaped relationships were observed between bisphenol B (BPB), bisphenol S (BPS), and tetrabromobisphenol A (TBBPA) levels and the risk of PTB (P-overall < 0.05, P-non-linear < 0.05). After sex stratification, the association between BPA analogs and PTB was only observed in males. In Qgcomp analysis, bisphenol mixtures were related to an increased risk of PTB (OR = 1.52, 95% CI: 1.04, 2.21), with BPF (43.7%), BPS (29.6%) and BPA (26.8%) having the greatest positive contribution. Results indicate that prenatal exposure to bisphenol mixtures might increase the risk of PTB, which might be primarily driven by BPA, BPF and BPS. There may also be sex-specific and nonmonotonic dose-dependent effects.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chunxiu Yang
- The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua 418000, Hunan, China
| | - Hui Juan Jennifer Tan
- Ngee Ann Polytechnic, School of Life Sciences & Chemical Technology, 535 Clementi Rd, Singapore 599489, Singapore
| | - Yonghong Sheng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Liangjia Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
30
|
Wang J, Mei H, Zhou AF, Huang LL, Cao ZQ, Hong AB, Yang M, Xie QT, Chen D, Yang SP, Xiao H, Yang P. The associations of birth outcome differences in twins with prenatal exposure to bisphenol A and its alternatives. ENVIRONMENTAL RESEARCH 2021; 200:111459. [PMID: 34126051 DOI: 10.1016/j.envres.2021.111459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) and its alternatives, including BPF and BPS, exhibit endocrine disruption activities. However, the effects of bisphenols on fetal growth in twins remain unclear. OBJECTIVE To explore the associations of prenatal BPA, BPF, and BPS exposure with birth outcome differences in twins. METHODS We recruited 289 twin pregnant women who visited the hospital for prenatal examination during the first trimester from 2013 to 2016. Urinary bisphenol levels were determined during the first, second, and third trimesters. The associations of maternal exposure to bisphenols with birth outcome differences in twins were analyzed after stratification by different trimesters. We applied the multiple informant model to estimate trimester-specific associations between urinary bisphenol concentrations and birth outcome differences in twins. RESULTS We found low reproducibility (ICC<0.40) for maternal urinary BPA and moderate reproducibility (0.40 < ICC<0.75) for BPF and BPS. Urinary BPA concentrations were positively associated with within-pair twin birth weight difference when comparing the third vs. the first tertile in each of the three trimesters (i.e., 133.06 g, 95% CI: 68.19, 197.94; 144.5 g, 95%CI: 81.82-207.18 g; and 135.04 g, 95%CI: 71.37-198.71 g for the 1st, 2nd, and 3rd trimester, respectively). The effect of urinary BPA concentration on increased birth length difference within-pair twins were also observed across different trimesters (All P for trends < 0.05). Urinary BPA levels were positively associated with the within-pair birth weight and birth length differences across pregnancy trimesters (All of Type 3 P for values < 0.05). CONCLUSION Maternal BPA exposure appeared to influence birth wight and birth length differences in twins. Our results warrant further confirmation.
Collapse
Affiliation(s)
- Jie Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ai-Fen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Zhong-Qiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ao-Bo Hong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi-Tong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Shao-Ping Yang
- Department of Child Public Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
31
|
KHAN MR, ALAMMARI AM, AQEL A, AZAM M. Trace analysis of environmental endocrine disrupting contaminant bisphenol A in canned, glass and polyethylene terephthalate plastic carbonated beverages of diverse flavors and origin. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.03420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Montes-Grajales D, Morelos-Cortes X, Olivero-Verbel J. Discovery of New Protein Targets of BPA Analogs and Derivatives Associated with Noncommunicable Diseases: A Virtual High-Throughput Screening. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:37009. [PMID: 33769846 PMCID: PMC7997610 DOI: 10.1289/ehp7466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bisphenol A analogs and derivatives (BPs) have emerged as new contaminants with little or no information about their toxicity. These have been found in numerous everyday products, from thermal paper receipts to plastic containers, and measured in human samples. OBJECTIVES The objectives of this research were to identify in silico new protein targets of BPs associated with seven noncommunicable diseases (NCDs), and to study their protein-ligand interactions using computer-aided tools. METHODS Fifty BPs were identified by a literature search and submitted to a virtual high-throughput screening (vHTS) with 328 proteins associated with NCDs. Protein-protein interactions between predicted targets were examined using STRING, and the protocol was validated in terms of binding site recognition and correlation between in silico affinities and in vitro data. RESULTS According to the vHTS, several BPs may target proteins associated with NCDs, some of them with stronger affinities than bisphenol A (BPA). The best affinity score (the highest in silico affinity absolute value) was obtained after docking 4,4'-bis(N-carbamoyl-4-methylbenzensulfonamide)diphenylmethane (BTUM) on estradiol 17-beta-dehydrogenase 1 (-13.7 kcal/mol). However, other molecules, such as bisphenol A bis(diphenyl phosphate) (BDP), bisphenol PH (BPPH), and Pergafast 201 also exhibited great affinities (top 10 affinity scores for each disease) with proteins related to NCDs. DISCUSSION Molecules such as BTUM, BDP, BPPH, and Pergafast 201 could be targeting key signaling pathways related to NCDs. These BPs should be prioritized for in vitro and in vivo toxicity testing and to further assess their possible role in the development of these diseases. https://doi.org/10.1289/EHP7466.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Xiomara Morelos-Cortes
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
33
|
Abstract
Endocrine disrupting chemicals pose a threat to health and reproduction. Plasticizers such as phthalates and bisphenols are particularly problematic because they are present in many consumer products and exposure can begin in utero and continue throughout the lifetime of the individual. Evidence suggests that these chemicals can have ancestral and transgenerational effects, making them a huge public health concern for the reproductive health of current and future generations. Studies performed in rodents or using rodent- or human-derived tissues have been critical for understanding the toxic effects of plasticizers on the ovary and their mechanisms of action. This review addresses current in vitro and rodent-based in vivo studies investigating the effects of bisphenols and phthalates on ovarian health, female reproduction, and correlations between human exposure and reproductive pathologies.
Collapse
|
34
|
Abdel-Wahab A, Hassanin KMA, Ibrahim SS, El-Kossi DMMH, Abdel-Razik ARH. Developmental Programming: Physiological Impacts of Prenatal Melatonin Administration on Reproductive Capacity and Serum Triiodothyronine of Adult Female Offspring Rat Born to Moms Exposed to Bisphenol A During Pregnancy. Reprod Sci 2021; 28:1956-1966. [PMID: 33469879 DOI: 10.1007/s43032-020-00452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Gestational bisphenol A (BPA) exposure induced multiple programmed diseases in the adult offsprings. Thus, this study targeted exploring the physiological impacts of melatonin (MEL) as a reprogramming strategy against in utero BPA exposure on reproductive capacity of adult F1 female rat offspring. Forty adult pregnant albino female rats were divided equally into 5 groups (n = 8): group I (control), group II (low-dose BPA; 25 μg BPA/kg B.w.t.), group III (low-dose BPA + 10 mg MEL/kg B.w.t.), group IV (high-dose BPA; 250 μg/kg B.w.t.), and group V (high-dose BPA + MEL). Treatments were given daily by subcutaneous (s/c) injection from the fourth day of pregnancy until full term. After delivery, female offspring were selected, and on postnatal day 60, adult offspring were examined for estrus regularity and then were sacrificed at estrus to collect blood and tissue samples. Findings clarified that in utero BPA exposure (both doses) increased significantly (P < 0.05) the ovarian weights and the serum levels of estrogen but decreased that of triiodothyronine (T3) compared to control groups. Significant increasing of serum malondialdehyde (MDA) and decreasing of total antioxidant capacity (TAC) were also detected. Both doses of BPA disturbed remarkably the estrus cycles and caused marked aberrations in ovarian and uterine tissues. Interestingly, prenatal MEL co-treatment with BPA mitigated significantly all of these degenerative changes. Thus, this study first demonstrated that prenatal MEL therapy could be used as a potent reprogramming intervention against BPA-induced reproductive disorders in the adult F1 female rat offspring.
Collapse
Affiliation(s)
- Ahmed Abdel-Wahab
- Physiology Department, Faculty of Veterinary Medicine, Minia University, Minia, 61519, Egypt.
| | - Kamel M A Hassanin
- Biochemistry Department, Faculty of Veterinary Medicine, Minia University, Minia, 61519, Egypt
| | - Shawky S Ibrahim
- Physiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Dina M M H El-Kossi
- Physiology Department, Faculty of Veterinary Medicine, Minia University, Minia, 61519, Egypt
| | | |
Collapse
|
35
|
The Influence of Environmental Factors on Ovarian Function, Follicular Genesis, and Oocyte Quality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:41-62. [PMID: 33523429 DOI: 10.1007/978-981-33-4187-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) exist ubiquitously in the environment. Epidemiological data suggest that the increasing prevalence of infertility may be related to the numerous chemicals. Exposure to EDCs may have significant adverse impacts on the reproductive system including fertility, ovarian reserve, and sex steroid hormone levels. This chapter covers the common exposure ways, the origins of EDCs, and their effects on ovarian function, follicular genesis, and oocyte quality. Furthermore, we will review the origin and the physiology of ovarian development, as well as explore the mechanisms in which EDCs act on the ovary from human and animal data. And then, we will focus on the bisphenol A (BPA), which has been shown to reduce fertility and ovarian reserve, as well as disrupt steroidogenesis in animal and human models. Finally, we will discuss the future direction of prevention and solution methods.
Collapse
|
36
|
Gingrich J, Pu Y, Upham BL, Hulse M, Pearl S, Martin D, Avery A, Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. CHEMOSPHERE 2021; 263:128304. [PMID: 33155548 PMCID: PMC7726030 DOI: 10.1016/j.chemosphere.2020.128304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 05/08/2023]
Abstract
Gap junction intercellular communication (GJIC) is necessary for ovarian function, and it is temporospatially regulated during follicular development and ovulation. At outermost layer of the antral follicle, theca cells provide structural, steroidogenic, and vascular support. Inter- and extra-thecal GJIC is required for intrafollicular trafficking of signaling molecules. Because GJIC can be altered by hormones and endocrine disrupting chemicals (EDCs), we tested if any of five common EDCs (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), perfluorooctanesulfonic acid (PFOS), and triphenyltin chloride (TPT)) can interfere with theca cell GJIC. Since most chemicals are reported to repress GJIC, we hypothesized that all chemicals tested, within environmentally relevant human exposure concentrations, will inhibit theca cell GJICs. To evaluate this hypothesis, we used a scrape loading/dye transfer assay. BPS, but no other chemical tested, enhanced GJIC in a dose- and time-dependent manner in ovine primary theca cells. A signal-protein inhibitor approach was used to explore the GJIC-modulatory pathways involved. Phospholipase C and mitogen-activated protein kinase (MAPK) inhibitors significantly attenuated BPS-induced enhanced GJIC. Human theca cells were used to evaluate translational relevance of these findings. Human primary theca cells had a ∼40% increase in GJIC in response to BPS, which was attenuated with a MAPK inhibitor, suggestive of a conserved mechanism. Upregulation of GJIC could result in hyperplasia of the theca cell layer or prevent ovulation by holding the oocyte in meiotic arrest. Further studies are necessary to understand in vitro to in vivo translatability of these findings on follicle development and fertility outcomes.
Collapse
Affiliation(s)
- Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, USA
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, 48824, USA
| | - Madeline Hulse
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Sarah Pearl
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Denny Martin
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA
| | - Anita Avery
- Department of Obstetrics and Gynecology, Sparrow Health System, Lansing, MI, 48912, USA; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
37
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
38
|
Zhang MY, Tian Y, Yan ZH, Li WD, Zang CJ, Li L, Sun XF, Shen W, Cheng SF. Maternal Bisphenol S exposure affects the reproductive capacity of F1 and F2 offspring in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115382. [PMID: 32866863 DOI: 10.1016/j.envpol.2020.115382] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol S (BPS) is an endocrine disruptor which is widely used in commercial plastic products. Previous studies have shown that exposure to BPS has toxic effects on various aspects of mammalian, but there are few reports about reproductive toxicity. In order to investigate the effects of maternal BPS exposure on the reproductive of F1 and F2 female mice, the pregnant mice were orally administered with different dosages of BPS only once every day from 12.5 to 15.5 days post-coitus (dpc). The results showed that maternal BPS exposure to 2 μg per kg of body weight per day (2 μg/kg) and 10 μg/kg accelerated the meiotic prophase I (MPI) of F1 female mice and the expression of the genes related to meiotic were increased. Further studies showed that maternal BPS exposure resulted in a significant increase in the percentage of oocytes enclosed in primordial follicles in the 3 days post-partum (3 dpp) ovaries of F1 female mice. And at the time of 21 days post-partum (21 dpp) in F1 female mice, the number of antral follicles were significantly lower compare to controls. In the study of five-week female mice of F1, we found that BPS disturbed the folliculogenesis, and the maturation rates and fertilization rates of oocytes were significantly decreased. Of note, maternal BPS exposure disrupted H3K4 and H3K9 tri-methylation levels in F1 ovaries. Maternal BPS exposure only affected the cyst breakdown in F2 female mice. Taken together, our results suggest that, maternal BPS exposure impaired the process of meiosis and oogenesis of F1 and F2 offspring, resulting in abnormal follicular development and serious damage to the reproduction.
Collapse
Affiliation(s)
- Ming-Yu Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Tian
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei-Dong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chuan-Jie Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
39
|
Shi M, Whorton AE, Sekulovski N, MacLean JA, Hayashi K. Prenatal Exposure to Bisphenol A, E, and S Induces Transgenerational Effects on Male Reproductive Functions in Mice. Toxicol Sci 2020; 172:303-315. [PMID: 31532523 DOI: 10.1093/toxsci/kfz207] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study was performed to examine the transgenerational effects of bisphenol (BP) A analogs, BPE, and BPS on male reproductive functions using mice as a model. CD-1 mice (F0) were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5 or 50 µg/kg/day) from gestational day 7 (the presence of vaginal plug = 1) to birth. Mice from F1 and F2 offspring were used to generate F3 males. Prenatal exposure to BPA, BPE, and BPS decreased sperm counts and/or motility and disrupted the progression of germ cell development as morphometric analyses exhibited an abnormal distribution of the stages of spermatogenesis in F3 males. Dysregulated serum levels of estradiol-17β and testosterone, as well as expression of steroidogenic enzymes in F3 adult testis were also observed. In the neonatal testis, although apoptosis and DNA damage were not affected, mRNA levels of DNA methyltransferases, histone methyltransferases, and their associated factors were increased by BP exposure. Furthermore, BP exposure induced immunoreactive expression of DNMT3A in Sertoli cells, strengthened DNMT3B, and weakened H3K9me2 and H3K9me3 in germ cells of the neonatal testis, whereas DNMT1, H3K4me3, and H3K27ac were not affected. In adult testis, stage-specific DNMT3B was altered by BP exposure, although DNMT3A, H3K9me2, and H3K9me3 expression remained stable. These results suggest that prenatal exposure to BPA, BPE, and BPS induces transgenerational effects on male reproductive functions probably due to altered epigenetic modification following disruption of DNMTs and histone marks in the neonatal and/or adult testis.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
40
|
Řimnáčová H, Štiavnická M, Moravec J, Chemek M, Kolinko Y, García-Álvarez O, Mouton PR, Trejo AMC, Fenclová T, Eretová N, Hošek P, Klein P, Králíčková M, Petr J, Nevoral J. Low doses of Bisphenol S affect post-translational modifications of sperm proteins in male mice. Reprod Biol Endocrinol 2020; 18:56. [PMID: 32466766 PMCID: PMC7254721 DOI: 10.1186/s12958-020-00596-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on reproduction in male mice. METHODS To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received 8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 μg/kg body weight (bw)/day, BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser desorption ionisation time-of-flight MS (MALDI-TOF MS). RESULTS The results indicate that compared to vehicle, 100 μg/kg/day exposure (BPS3) leads to 1) significant histopathology in testicular tissue; and, 2) higher levels of the histone protein γH2AX, a reliable marker of DNA damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 μg/kg bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome and phosphorylome in mice treated with the lowest exposure (0.001 μg/kg/day; BPS1), although the dose is several times lower than what has been published so far. CONCLUSIONS In summary, this range of qualitative and quantitative findings in young male mice raise the possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of sperm proteins.
Collapse
Affiliation(s)
- Hedvika Řimnáčová
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic.
| | - Miriam Štiavnická
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Jiří Moravec
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Marouane Chemek
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- LR11ES41: Génétique, Biodiversité et Valorisation des Bioressources, Institut de Biotechnologie, Université de Monastir, 5000, Monastir, Tunisia
| | - Yaroslav Kolinko
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Olga García-Álvarez
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- SaBio IREC (CSIC-UCLM- JCCM), Albacete, Spain
| | - Peter R Mouton
- SRC Biosciences & University of South Florida, Tampa, FL, USA
| | - Azalia Mariel Carranza Trejo
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Tereza Fenclová
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Nikola Eretová
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Petr Hošek
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Pavel Klein
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
| | - Milena Králíčková
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Jan Nevoral
- Biomedical Center in Pilsen, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
41
|
Mustieles V, Zhang Y, Yland J, Braun JM, Williams PL, Wylie BJ, Attaman JA, Ford JB, Azevedo A, Calafat AM, Hauser R, Messerlian C. Maternal and paternal preconception exposure to phenols and preterm birth. ENVIRONMENT INTERNATIONAL 2020; 137:105523. [PMID: 32120140 PMCID: PMC7169435 DOI: 10.1016/j.envint.2020.105523] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Phenol exposure during pregnancy has been associated with preterm birth, but the potential effect of preconception exposure in either parent is unknown. There is a growing body of evidence to suggest that the preconception period is a critical window of vulnerability for adverse pregnancy outcomes. OBJECTIVE We examined whether maternal and paternal preconception urinary concentrations of select phenols were associated with the risk of preterm birth among couples attending fertility care. METHODS The analysis included 417 female and 229 male participants of the Environment and Reproductive Health (EARTH) Study who gave birth to 418 singleton infants between 2005 and 2018 and for whom we had phenol biomarkers quantified in at least one urine sample collected before conception. Mothers and fathers provided an average of 4 and 3 urine samples during the preconception period, respectively. We calculated the geometric mean of bisphenol A (BPA), bisphenol S (BPS), benzophenone-3, triclosan, and the molar sum of parabens (ΣParabens) urinary concentrations to estimate each participant's preconception exposure. Risk ratios (RRs) of preterm birth (live birth before 37 completed weeks' gestation) were estimated using modified Poisson regression models adjusted for covariates. RESULTS The mean (SD) gestational age among singletons was 39.3 (1.7) weeks with 8% born preterm. A natural log-unit increase in maternal preconception BPA (RR 1.94; 95% CI: 1.20, 3.14) and BPS (RR 2.42; 95% CI: 1.01, 5.77) concentration was associated with an increased risk of preterm birth. These associations remained after further adjustment for maternal prenatal and paternal preconception biomarker concentrations. Paternal preconception ΣParabens concentrations showed a possible elevated risk of preterm birth (RR 1.36; 95% CI: 0.94, 1.96). No consistent pattern of association was observed for benzophenone-3 or triclosan biomarkers in either parent. DISCUSSION Maternal preconception urinary BPA and BPS concentrations, as well as paternal preconception urinary parabens concentrations were prospectively associated with a higher risk of preterm birth. Subfertile couples' exposure to select phenols during the preconception period may be an unrecognized risk factor for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain. Instituto de Investigación Biosanitaria Ibs GRANADA, Spain. Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 18100, Spain
| | - Yu Zhang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; School of Health Humanities, Peking University Health Science Center, Beijing, Beijing, China
| | - Jennifer Yland
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Blair J Wylie
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jill A Attaman
- Department of Obstetrics and Gynecology, Massachusetts General Hospital Fertility Center, Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alexandra Azevedo
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
42
|
Fan H, Jiang L, Lee YL, Wong CKC, Ng EHY, Yeung WSB, Lee KF. Bisphenol compounds regulate decidualized stromal cells in modulating trophoblastic spheroid outgrowth and invasion in vitro†. Biol Reprod 2020; 102:693-704. [PMID: 31742322 DOI: 10.1093/biolre/ioz212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/14/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Bisphenol A (BPA) is commonly found in epoxy resins used in the manufacture of plastic coatings in food packaging and beverage cans. There is a growing concern about BPA as a weak estrogenic compound that can affect human endocrine function. Chemicals structurally similar to BPA, such as bisphenol F (BPF) and bisphenol S (BPS), have been developed as substitutes in the manufacturing industry. Whether these bisphenol substitutes have adverse effects on human endocrine and reproductive systems remains largely unknown. This study investigated the effects of BPA, BPF, and BPS on regulating the function of decidualized human primary endometrial stromal cells on trophoblast outgrowth and invasion by indirect and direct co-culture models. All three bisphenols did not affect the stromal cell decidualization process. However, BPA- and BPF-treated decidualized stromal cells stimulated trophoblastic spheroid invasion in the indirect coculture model. The BPA-treated decidualized stromal cells had upregulated expressions of several invasion-related molecules including leukemia inhibitory factor (LIF), whereas both BPA- and BPF-treated decidualized stromal cells had downregulated expressions of anti-invasion molecules including plasminogen activator inhibitor type 1 (PAI-1) and tumor necrosis factor (TNFα) . Taken together, BPA and BPF altered the expression of invasive and anti-invasive molecules in decidualized stromal cells modulating its function on trophoblast outgrowth and invasion, which could affect the implantation process and subsequent pregnancy outcome.
Collapse
Affiliation(s)
- Hongjie Fan
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Luhan Jiang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yin-Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris K C Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
43
|
Bisphenol S in Food Causes Hormonal and Obesogenic Effects Comparable to or Worse than Bisphenol A: A Literature Review. Nutrients 2020; 12:nu12020532. [PMID: 32092919 PMCID: PMC7071457 DOI: 10.3390/nu12020532] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years, bisphenol analogues such as bisphenol S (BPS) have come to replace bisphenol A in food packaging and food containers, since bisphenol A (BPA) has been shown to leach into food and water, causing numerous negative health effects. Unfortunately, little or no research was done to determine the safety of these BPA-free products before they were marketed to the public as a healthier alternative. The latest studies have shown that some of these bisphenol analogues may be even more harmful than the original BPA in some situations. This article used a literature survey to investigate the bisphenol analogue BPS and compare it to BPA and other analogues with regards to increased obesity, metabolic disorders, cancer, and reproductive defects; among others. It was found that BPS works via different pathways than does BPA while causing equivalent obesogenic effects, such as activating preadipocytes, and that BPS was correlated with metabolic disorders, such as gestational diabetes, that BPA was not correlated with. BPS was also shown to be more toxic to the reproductive system than BPA and was shown to hormonally promote certain breast cancers at the same rate as BPA. Therefore, a strong argument may be made to regulate BPS in exactly the same manner as BPA.
Collapse
|
44
|
Andújar N, Gálvez-Ontiveros Y, Zafra-Gómez A, Rodrigo L, Álvarez-Cubero MJ, Aguilera M, Monteagudo C, Rivas AA. Bisphenol A Analogues in Food and Their Hormonal and Obesogenic Effects: A Review. Nutrients 2019; 11:nu11092136. [PMID: 31500194 PMCID: PMC6769843 DOI: 10.3390/nu11092136] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Bisphenol A (BPA) is the most well-known compound from the bisphenol family. As BPA has recently come under pressure, it is being replaced by compounds very similar in structure, but data on the occurrence of these BPA analogues in food and human matrices are limited. The main objective of this work was to investigate human exposure to BPA and analogues and the associated health effects. We performed a literature review of the available research made in humans, in in vivo and in vitro tests. The findings support the idea that exposure to BPA analogues may have an impact on human health, especially in terms of obesity and other adverse health effects in children.
Collapse
Affiliation(s)
- Natalia Andújar
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Yolanda Gálvez-Ontiveros
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, Campus of Fuentenueva, 18071 Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology, University of Granada, 18071 Granada, Spain
| | - María Jesús Álvarez-Cubero
- Department of Biochemistry & Molecular Biology III, University of Granada, PTS, 18016 Granada, Spain.
- GENYO, Pfizer-University of Granada-Junta de Andalucía Centre for Genomics and Oncological Research, Av. de la Ilustración 114, 18016 Granada, Spain.
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18016 Granada, Spain
| | - Celia Monteagudo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18016 Granada, Spain
| | - And Ana Rivas
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, 18016 Granada, Spain
| |
Collapse
|
45
|
Chen Y, Panter B, Hussain A, Gibbs K, Ferreira D, Allard P. BPA interferes with StAR-mediated mitochondrial cholesterol transport to induce germline dysfunctions. Reprod Toxicol 2019; 90:24-32. [PMID: 31445225 DOI: 10.1016/j.reprotox.2019.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/24/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Bisphenol A is an endocrine disruptor associated with hormone synthesis and reproduction alterations. However, the initiating events underpinning these dysfunctions are still unclear. Here, we address the hypothesis that BPA interferes with the highly evolutionary conserved process of mitochondrial cholesterol transport, a crucial step in steroid hormone biosynthesis, by using the model organism C. elegans. We observed that embryonic lethality and germline apoptosis, hallmarks of BPA's reproductive toxicity in C. elegans, are fully rescued by low exogenous cholesterol supplementation. We also observed that increasing BPA concentrations proportionally reduced mitochondrial cholesterol levels. Mutants for strl-1 (ortholog of StAR), but not C41G7.9 (ortholog of TSPO), show reproductive defects similar to BPA's while BPA exposure in a strl-1 background did not worsen these effects. Finally, cholesterol supplementation rescued these defects for all strl-1 genotype/BPA combinations assessed. Together, these results uncover a novel mechanism underlying BPA's germline toxicity through the alteration of cholesterol transport.
Collapse
Affiliation(s)
- Yichang Chen
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Blake Panter
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aleena Hussain
- California State University Northridge, Northridge, CA 91330, USA
| | - Katherine Gibbs
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Ferreira
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
Abstract
Abstract
Breastfeeding plays an essential role in the healthy development of a newborn, but human milk is obviously compromised by pollutants from our environment. The main contaminants of human milk with endocrine-disrupting compound (EDCs) have raised concern for public and environmental health. Bisphenol A (BPA), which can leach from plastics, are among the most well-studied. Since EDs are known to cross the mammary gland barrier and BPA may accumulate in the neonate, “BPA-free” products have been introduced to the market. However, recent studies have shown that alternative bisphenols (e.g. BPS, BPF) can be detected in breast milk, have ED activities and may have developmental effects similar to BPA.
Collapse
|