1
|
Parekh P, Sherfey J, Alaybeyoglu B, Cirit M. Pathway-Based Similarity Measurement to Quantify Transcriptomics Similarity Between Human Tissues and Preclinical Models. Clin Pharmacol Ther 2025; 117:485-494. [PMID: 39377352 PMCID: PMC11747893 DOI: 10.1002/cpt.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
Accurate clinical translation of preclinical research remains challenging, primarily due to species-specific differences and disease and patient heterogeneity. An important recent advancement has been development of microphysiological systems that consist of multiple human cell types that recapitulate key characteristics of their respective human systems, allowing essential physiologic processes to be accurately assessed during drug development. However, an unmet need remains regarding a quantitative method to evaluate the similarity between diverse sample types for various contexts of use (CoU)-specific pathways. To address this gap, this study describes the development of pathway-based similarity measurement (PBSM), which leverages RNA-seq data and pathway-based information to assess the human relevance of preclinical models for specific CoU. PBSM offers a quantitative method to compare the transcriptomic similarity of preclinical models to human tissues, shown here as proof of concept for liver and cardiac tissues, enabling improved model selection and validation. Thus, PBSM can successfully support CoU selection for preclinical models, assess the impact of different gene sets on similarity calculations, and differentiate among various in vitro and in vivo models. PBSM has the potential to reduce the translational gap in drug development by allowing quantitative evaluation of the similarity of preclinical models to human tissues, facilitating model selection, and improving understanding of context-specific applications. PBSM can serve as a foundation for enhancing the physiological relevance of in vitro models and supporting the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Paarth Parekh
- Javelin Biotech, Inc., 299 Washington Street, Woburn, Massachusetts 01801, USA
| | - Jason Sherfey
- Javelin Biotech, Inc., 299 Washington Street, Woburn, Massachusetts 01801, USA
| | - Begum Alaybeyoglu
- Javelin Biotech, Inc., 299 Washington Street, Woburn, Massachusetts 01801, USA
| | - Murat Cirit
- Javelin Biotech, Inc., 299 Washington Street, Woburn, Massachusetts 01801, USA
| |
Collapse
|
2
|
Sasaki T, Hisada S, Kanki H, Nunomura K, Lin B, Nishiyama K, Kawano T, Matsumura S, Mochizuki H. Modulation of Ca 2+ oscillation following ischemia and nicotinic acetylcholine receptors in primary cortical neurons by high-throughput analysis. Sci Rep 2024; 14:27667. [PMID: 39532929 PMCID: PMC11557898 DOI: 10.1038/s41598-024-77882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Calcium oscillations in primary neuronal cultures and iPSCs have been employed to investigate arrhythmogenicity and epileptogenicity in drug development. Previous studies have demonstrated that Ca2+ influx via NMDA and nicotinic acetylcholine receptors (nAChRs) modulates Ca2+ oscillations. Nevertheless, there has been no comprehensive investigation into the impact of ischemia or nAChR-positive allosteric modulators (PAM) drugs on Ca2+ oscillations at a level that would facilitate high-throughput screening. We investigated the effects of ischemia and nAChR subtypes or nAChR PAM agonists on Ca2+ oscillations in high-density 2D and 3D-sphere primary neuronal cultures using 384-well plates with FDSS-7000. Ischemia for 1 and 2 h resulted in an increase in the frequency of Ca2+ oscillations and a decrease in their amplitude in a time-dependent manner. The NMDA and AMPA receptor inhibition significantly suppressed Ca2+ oscillation. Inhibition of NR2A or NR2B had the opposite effect on Ca oscillations. The potentiation of ischemia-induced Ca2+ oscillations was significantly inhibited by the NMDA receptor antagonist, MK-801, and the frequency of these oscillations was suppressed by the NR2B inhibitor, Ro-256981. In the 3D-neurosphere, the application of an α7nAChR agonist increased the frequency of Ca2+ oscillations, whereas the activation of α4β2 had no effect. The combination of nicotine and PNU-120596 (type II PAM) affected the frequency and amplitude of Ca2+ oscillations in a manner distinct from that of type I PAM. These systems may be useful not only for detecting epileptogenicity but also in the search for neuroprotective agents against cerebral ischemia.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Sunao Hisada
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kazuto Nunomura
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Bangzhong Lin
- Center for Supporting Drug Discovery and Life Science Research, Graduate School of Pharmaceutical Science, Osaka University, 1‑6 Yamadaoka, Suita, Osaka, 565‑0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Tomohito Kawano
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shigenobu Matsumura
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Min S, Kim S, Sim WS, Choi YS, Joo H, Park JH, Lee SJ, Kim H, Lee MJ, Jeong I, Cui B, Jo SH, Kim JJ, Hong SB, Choi YJ, Ban K, Kim YG, Park JU, Lee HA, Park HJ, Cho SW. Versatile human cardiac tissues engineered with perfusable heart extracellular microenvironment for biomedical applications. Nat Commun 2024; 15:2564. [PMID: 38519491 PMCID: PMC10960018 DOI: 10.1038/s41467-024-46928-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Engineered human cardiac tissues have been utilized for various biomedical applications, including drug testing, disease modeling, and regenerative medicine. However, the applications of cardiac tissues derived from human pluripotent stem cells are often limited due to their immaturity and lack of functionality. Therefore, in this study, we establish a perfusable culture system based on in vivo-like heart microenvironments to improve human cardiac tissue fabrication. The integrated culture platform of a microfluidic chip and a three-dimensional heart extracellular matrix enhances human cardiac tissue development and their structural and functional maturation. These tissues are comprised of cardiovascular lineage cells, including cardiomyocytes and cardiac fibroblasts derived from human induced pluripotent stem cells, as well as vascular endothelial cells. The resultant macroscale human cardiac tissues exhibit improved efficacy in drug testing (small molecules with various levels of arrhythmia risk), disease modeling (Long QT Syndrome and cardiac fibrosis), and regenerative therapy (myocardial infarction treatment). Therefore, our culture system can serve as a highly effective tissue-engineering platform to provide human cardiac tissues for versatile biomedical applications.
Collapse
Affiliation(s)
- Sungjin Min
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suran Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Cellartgen, Seoul, 03722, Republic of Korea
| | - Woo-Sup Sim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyebin Joo
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Su-Jin Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hyeok Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Baofang Cui
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jin-Ju Kim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Seok Beom Hong
- Department of Thoracic and Cardiovascular Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Yeon-Jik Choi
- Division of Cardiology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 03312, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyang-Ae Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
- Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Cellartgen, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Raniga K, Nasir A, Vo NTN, Vaidyanathan R, Dickerson S, Hilcove S, Mosqueira D, Mirams GR, Clements P, Hicks R, Pointon A, Stebbeds W, Francis J, Denning C. Strengthening cardiac therapy pipelines using human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell 2024; 31:292-311. [PMID: 38366587 DOI: 10.1016/j.stem.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Advances in hiPSC isolation and reprogramming and hPSC-CM differentiation have prompted their therapeutic application and utilization for evaluating potential cardiovascular safety liabilities. In this perspective, we showcase key efforts toward the large-scale production of hiPSC-CMs, implementation of hiPSC-CMs in industry settings, and recent clinical applications of this technology. The key observations are a need for traceable gender and ethnically diverse hiPSC lines, approaches to reduce cost of scale-up, accessible clinical trial datasets, and transparent guidelines surrounding the safety and efficacy of hiPSC-based therapies.
Collapse
Affiliation(s)
- Kavita Raniga
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK; Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.
| | - Aishah Nasir
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nguyen T N Vo
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | - Diogo Mosqueira
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gary R Mirams
- Centre for Mathematical Medicine & Biology, School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Peter Clements
- Pathology, Non-Clinical Safety, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | | | - Jo Francis
- Mechanstic Biology and Profiling, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Chris Denning
- The Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
5
|
Chen X, Liu S, Han M, Long M, Li T, Hu L, Wang L, Huang W, Wu Y. Engineering Cardiac Tissue for Advanced Heart-On-A-Chip Platforms. Adv Healthc Mater 2024; 13:e2301338. [PMID: 37471526 DOI: 10.1002/adhm.202301338] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Cardiovascular disease is a major cause of mortality worldwide, and current preclinical models including traditional animal models and 2D cell culture models have limitations in replicating human native heart physiology and response to drugs. Heart-on-a-chip (HoC) technology offers a promising solution by combining the advantages of cardiac tissue engineering and microfluidics to create in vitro 3D cardiac models, which can mimic key aspects of human microphysiological systems and provide controllable microenvironments. Herein, recent advances in HoC technologies are introduced, including engineered cardiac microtissue construction in vitro, microfluidic chip fabrication, microenvironmental stimulation, and real-time feedback systems. The development of cardiac tissue engineering methods is focused for 3D microtissue preparation, advanced strategies for HoC fabrication, and current applications of these platforms. Major challenges in HoC fabrication are discussed and the perspective on the potential for these platforms is provided to advance research and clinical applications.
Collapse
Affiliation(s)
- Xinyi Chen
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sitian Liu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lanlan Hu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Fischer B, Gwinner F, Gepp MM, Schulz A, Danz K, Dehne A, Katsen-Globa A, Neubauer JC, Gentile L, Zimmermann H. A highly versatile biopolymer-based platform for the maturation of human pluripotent stem cell-derived cardiomyocytes enables functional analysis in vitro and 3D printing of heart patches. J Biomed Mater Res A 2023; 111:1600-1615. [PMID: 37317666 DOI: 10.1002/jbm.a.37558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a valuable tool for in vitro modeling of the cardiac niche and possess great potential in tissue engineering applications. However, conventional polystyrene-based cell culture substrates have adverse effects on cardiomyocytes in vitro due to the stress applied by a stiff substrate on contractile cells. Ultra-high viscosity alginates offer a unique versatility as tunable substrates for cardiac cell cultures due to their biocompatibility, flexible biofunctionalization, and stability. In this work, we analyzed the effect of alginate substrates on hPSC-CM maturity and functionality. Alginate substrates in high-throughput compatible culture formats fostered a more mature gene expression and enabled the simultaneous assessment of chronotropic and inotropic effects upon beta-adrenergic stimulation. Furthermore, we produced 3D-printed alginate scaffolds with differing mechanical properties and plated hPSC-CMs on the surface of these to create Heart Patches for tissue engineering applications. These exhibited synchronous macro-contractions in concert with more mature gene expression patterns and extensive intracellular alignment of sarcomeric structures. In conclusion, the combination of biofunctionalized alginates and human cardiomyocytes represents a valuable tool for both in vitro modeling and regenerative medicine, due to its beneficial effects on cardiomyocyte physiology, the possibility to analyze cardiac contractility, and its applicability as Heart Patches.
Collapse
Affiliation(s)
- B Fischer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - F Gwinner
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - M M Gepp
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - A Schulz
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - K Danz
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Dehne
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - A Katsen-Globa
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - J C Neubauer
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - L Gentile
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - H Zimmermann
- Department of Stem Cell & Cryo Technology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
- Fraunhofer Project Center for Stem Cell Process Engineering, Würzburg, Germany
- Chair for Molecular and Cellular Biotechnology, Saarland University, Gebäude A, Saarbrücken, Germany
- Faculty of Marine Science, Universidad Católica del Norte, Coquimbo, Chile
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| |
Collapse
|
7
|
Ma MS, Sundaram S, Lou L, Agarwal A, Chen CS, Bifano TG. High throughput screening system for engineered cardiac tissues. Front Bioeng Biotechnol 2023; 11:1177688. [PMID: 37251575 PMCID: PMC10210164 DOI: 10.3389/fbioe.2023.1177688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Three dimensional engineered cardiac tissues (3D ECTs) have become indispensable as in vitro models to assess drug cardiotoxicity, a leading cause of failure in pharmaceutical development. A current bottleneck is the relatively low throughput of assays that measure spontaneous contractile forces exerted by millimeter-scale ECTs typically recorded through precise optical measurement of deflection of the polymer scaffolds that support them. The required resolution and speed limit the field of view to at most a few ECTs at a time using conventional imaging. Methods: To balance the inherent tradeoff among imaging resolution, field of view and speed, an innovative mosaic imaging system was designed, built, and validated to sense contractile force of 3D ECTs seeded on a 96-well plate. Results: The system performance was validated through real-time, parallel contractile force monitoring for up to 3 weeks. Pilot drug testing was conducted using isoproterenol. Discussion: The described tool increases contractile force sensing throughput to 96 samples per measurement; significantly reduces cost, time and labor needed for preclinical cardiotoxicity assay using 3D ECT. More broadly, our mosaicking approach is a general way to scale up image-based screening in multi-well formats.
Collapse
Affiliation(s)
- Marshall S. Ma
- Mechanical Engineering, Boston University, Boston, MA, United States
- Photonics Center, Boston University, Boston, MA, United States
| | | | - Lihua Lou
- Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| | - Arvind Agarwal
- Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| | | | - Thomas G. Bifano
- Mechanical Engineering, Boston University, Boston, MA, United States
- Photonics Center, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Clark AP, Wei S, Kalola D, Krogh‐Madsen T, Christini DJ. An in silico-in vitro pipeline for drug cardiotoxicity screening identifies ionic pro-arrhythmia mechanisms. Br J Pharmacol 2022; 179:4829-4843. [PMID: 35781252 PMCID: PMC9489646 DOI: 10.1111/bph.15915] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Before advancing to clinical trials, new drugs are screened for their pro-arrhythmic potential using a method that is overly conservative and provides limited mechanistic insight. The shortcomings of this approach can lead to the mis-classification of beneficial drugs as pro-arrhythmic. EXPERIMENTAL APPROACH An in silico-in vitro pipeline was developed to circumvent these shortcomings. A computational human induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) model was used as part of a genetic algorithm to design experiments, specifically electrophysiological voltage clamp (VC) protocols, to identify which of several cardiac ion channels were blocked during in vitro drug studies. Such VC data, along with dynamically clamped action potentials (AP), were acquired from iPSC-CMs before and after treatment with a control solution or a low- (verapamil), intermediate- (cisapride or quinine) or high-risk (quinidine) drug. KEY RESULTS Significant AP prolongation (a pro-arrhythmia marker) was seen in response to quinidine and quinine. The VC protocol identified block of IKr (a source of arrhythmias) by all strong IKr blockers, including cisapride, quinidine and quinine. The protocol also detected block of ICaL by verapamil and Ito by quinidine. Further demonstrating the power of the approach, the VC data uncovered a previously unidentified If block by quinine, which was confirmed with experiments using a HEK-293 expression system and automated patch-clamp. CONCLUSION AND IMPLICATIONS We developed an in silico-in vitro pipeline that simultaneously identifies pro-arrhythmia risk and mechanism of ion channel-blocking drugs. The approach offers a new tool for evaluating cardiotoxicity during preclinical drug screening.
Collapse
Affiliation(s)
| | - Siyu Wei
- Department of Physiology and PharmacologySUNY Downstate Medical CenterBrooklynNew YorkUSA
| | - Darshan Kalola
- Computational Biology Summer ProgramWeill Cornell Medicine & Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Trine Krogh‐Madsen
- Department of Physiology & BiophysicsWeill Cornell MedicineNew YorkNew YorkUSA
- Institute for Computational BiomedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - David J. Christini
- Department of Biomedical EngineeringCornell UniversityIthacaNew YorkUSA
- Department of Physiology and PharmacologySUNY Downstate Medical CenterBrooklynNew YorkUSA
| |
Collapse
|
9
|
Xu X, Yin Y, Li D, Yao B, Zhao L, Wang H, Wang H, Dong J, Zhang J, Peng R. Vicious LQT induced by a combination of factors different from hERG inhibition. Front Pharmacol 2022; 13:930831. [PMID: 35935820 PMCID: PMC9354841 DOI: 10.3389/fphar.2022.930831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Clinically, drug-induced torsades de pointes (TdP) are rare events, whereas the reduction of the human ether-à-go-go-related gene (hERG) current is common. In this study, we aimed to explore the specific factors that contribute to the deterioration of hERG inhibition into malignant ventricular arrhythmias. Cisapride, a drug removed from the market because it caused long QT (LQT) syndrome and torsade de pointes (TdP), was used to induce hERG inhibition. The effects of cisapride on the hERG current were evaluated using a whole-cell patch clamp. Based on the dose-response curve of cisapride, models of its effects at different doses (10, 100, and 1,000 nM) on guinea pig heart in vitro were established. The effects of cisapride on electrocardiogram (ECG) signals and QT interval changes in the guinea pigs were then comprehensively evaluated by multi-channel electrical mapping and high-resolution fluorescence mapping, and changes in the action potential were simultaneously detected. Cisapride dose-dependently inhibited the hERG current with a half inhibitory concentration (IC50) of 32.63 ± 3.71 nM. The complete hERG suppression by a high dose of cisapride (1,000 nM) prolonged the action potential duration (APD), but not early after depolarizations (EADs) and TdP occurred. With 1 μM cisapride and lower Mg2+/K+, the APD exhibited triangulation, dispersion, and instability. VT was induced in two of 12 guinea pig hearts. Furthermore, the combined administration of isoproterenol was not therapeutic and increased susceptibility to ventricular fibrillation (VF) development. hERG inhibition alone led to QT and ERP prolongation and exerted an anti-arrhythmic effect. However, after the combination with low concentrations of magnesium and potassium, the prolonged action potential became unstable, triangular, and dispersed, and VT was easy to induce. The combination of catecholamines shortened the APD, but triangulation and dispersion still existed. At this time, VF was easily induced and sustained.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jing Zhang
- *Correspondence: Jing Zhang, ; Ruiyun Peng,
| | | |
Collapse
|
10
|
Lu HR, Kreir M, Karel VA, Tekle F, Geyskens D, Teisman A, Gallacher DJ. Identifying Acute Cardiac Hazard in Early Drug Discovery Using a Calcium Transient High-Throughput Assay in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2022; 13:838435. [PMID: 35547580 PMCID: PMC9083324 DOI: 10.3389/fphys.2022.838435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.
Collapse
Affiliation(s)
- Hua Rong Lu
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Mohamed Kreir
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Van Ammel Karel
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Fetene Tekle
- Discovery and Nonclinical Safety Statistics, Statistics and Decision Sciences, Quantitative Sciences, Janssen R&D, A Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Danny Geyskens
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - Ard Teisman
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Predictive, Investigative and Translational Toxicology, Nonclinical Safety, Beerse, Belgium
| |
Collapse
|
11
|
Yiangou L, Blanch-Asensio A, de Korte T, Miller DC, van Meer BJ, Mol MPH, van den Brink L, Brandão KO, Mummery CL, Davis RP. Optogenetic reporters delivered as mRNA facilitate repeatable action potential and calcium handling assessment in human iPSC-derived cardiomyocytes. Stem Cells 2022; 40:655-668. [PMID: 35429386 PMCID: PMC9332902 DOI: 10.1093/stmcls/sxac029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/05/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Electrical activity and intracellular Ca 2+ transients are key features of cardiomyocytes. They can be measured using organic voltage- and Ca 2+-sensitive dyes but their photostability and phototoxicity means they are unsuitable for long-term measurements. Here, we investigated whether genetically-encoded voltage and Ca 2+ indicators (GEVIs and GECIs) delivered as modified mRNA (modRNA) into human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) would be accurate alternatives allowing measurements over long periods. These indicators were detected in hiPSC-CMs for up to 7 days after transfection and did not affect responses to proarrhythmic compounds. Furthermore, using the GEVI ASAP2f we observed action potential prolongation in long QT syndrome models, while the GECI jRCaMP1b facilitated the repeated evaluation of Ca 2+ handling responses for various tyrosine kinase inhibitors. This study demonstrated that modRNAs encoding optogenetic constructs report cardiac physiology in hiPSC-CMs without toxicity or the need for stable integration, illustrating their value as alternatives to organic dyes or other gene delivery methods for expressing transgenes.
Collapse
Affiliation(s)
- Loukia Yiangou
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Tessa de Korte
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Duncan C Miller
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
- Present Max Delbrück Center for Molecular Medicine (MDC), Berlin, Berlin, Germany
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Mervyn P H Mol
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Lettine van den Brink
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Karina O Brandão
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, Enschede, The Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
12
|
Yang H, Stebbeds W, Francis J, Pointon A, Obrezanova O, Beattie KA, Clements P, Harvey JS, Smith GF, Bender A. Deriving waveform parameters from calcium transients in human iPSC-derived cardiomyocytes to predict cardiac activity with machine learning. Stem Cell Reports 2022; 17:556-568. [PMID: 35148844 PMCID: PMC9039838 DOI: 10.1016/j.stemcr.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes have been established to detect dynamic calcium transients by fast kinetic fluorescence assays that provide insights into specific aspects of clinical cardiac activity. However, the precise derivation and use of waveform parameters to predict cardiac activity merit deeper investigation. In this study, we derived, evaluated, and applied 38 waveform parameters in a novel Python framework, including (among others) peak frequency, peak amplitude, peak widths, and a novel parameter, shoulder-tail ratio. We then trained a random forest model to predict cardiac activity based on the 25 parameters selected by correlation analysis. The area under the curve (AUC) obtained for leave-one-compound-out cross-validation was 0.86, thereby replicating the predictions of conventional methods and outperforming fingerprint-based methods by a large margin. This work demonstrates that machine learning is able to automate the assessment of cardiovascular liability from waveform data, reducing any risk of user-to-user variability and bias. An open-source algorithm was developed to derive parameters from waveform data A machine learning model was trained to predict cardiac activity of compounds Three parameters for peak width, height, and shape were found to be most predictive The model can facilitate the assessment of cardiovascular liability
Collapse
Affiliation(s)
- Hongbin Yang
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | | | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Olga Obrezanova
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Graham F Smith
- Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, UK; Imaging and Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
13
|
Arai K, Kitsuka T, Nakayama K. Scaffold-based and scaffold-free cardiac constructs for drug testing. Biofabrication 2021; 13. [PMID: 34233316 DOI: 10.1088/1758-5090/ac1257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
The safety and therapeutic efficacy of new drugs are tested in experimental animals. However, besides being a laborious, costly process, differences in drug responses between humans and other animals and potential cardiac adverse effects lead to the discontinued development of new drugs. Thus, alternative approaches to animal tests are needed. Cardiotoxicity and responses of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to drugs are conventionally evaluated by cell seeding and two-dimensional (2D) culture, which allows measurements of field potential duration and the action potentials of CMs using multielectrode arrays. However, 2D-cultured hiPSC-CMs lack 3D spatial adhesion, and have fewer intercellular and extracellular matrix interactions, as well as different contractile behavior from CMsin vivo. This issue has been addressed using tissue engineering to fabricate three-dimensional (3D) cardiac constructs from hiPSC-CMs culturedin vitro. Tissue engineering can be categorized as scaffold-based and scaffold-free. In scaffold-based tissue engineering, collagen and fibrin gel scaffolds comprise a 3D culture environment in which seeded cells exhibit cardiac-specific functions and drug responses, whereas 3D cardiac constructs fabricated by tissue engineering without a scaffold have high cell density and form intercellular interactions. This review summarizes the characteristics of scaffold-based and scaffold-free cardiac tissue engineering and discusses the applications of fabricated cardiac constructs to drug screening.
Collapse
Affiliation(s)
- Kenichi Arai
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan.,Department of Clinical Biomaterial Applied Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Takahiro Kitsuka
- Department of Cardiovascular Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine Research, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
14
|
Paci M, Koivumäki JT, Lu HR, Gallacher DJ, Passini E, Rodriguez B. Comparison of the Simulated Response of Three in Silico Human Stem Cell-Derived Cardiomyocytes Models and in Vitro Data Under 15 Drug Actions. Front Pharmacol 2021; 12:604713. [PMID: 33841140 PMCID: PMC8033762 DOI: 10.3389/fphar.2021.604713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Objectives: Improvements in human stem cell-derived cardiomyocyte (hSC-CM) technology have promoted their use for drug testing and disease investigations. Several in silico hSC-CM models have been proposed to augment interpretation of experimental findings through simulations. This work aims to assess the response of three hSC-CM in silico models (Koivumäki2018, Kernik2019, and Paci2020) to simulated drug action, and compare simulation results against in vitro data for 15 drugs. Methods: First, simulations were conducted considering 15 drugs, using a simple pore-block model and experimental data for seven ion channels. Similarities and differences were analyzed in the in silico responses of the three models to drugs, in terms of Ca2+ transient duration (CTD90) and occurrence of arrhythmic events. Then, the sensitivity of each model to different degrees of blockage of Na+ (INa), L-type Ca2+ (ICaL), and rapid delayed rectifying K+ (IKr) currents was quantified. Finally, we compared the drug-induced effects on CTD90 against the corresponding in vitro experiments. Results: The observed CTD90 changes were overall consistent among the in silico models, all three showing changes of smaller magnitudes compared to the ones measured in vitro. For example, sparfloxacin 10 µM induced +42% CTD90 prolongation in vitro, and +17% (Koivumäki2018), +6% (Kernik2019), and +9% (Paci2020) in silico. Different arrhythmic events were observed following drug application, mainly for drugs affecting IKr. Paci2020 and Kernik2019 showed only repolarization failure, while Koivumäki2018 also displayed early and delayed afterdepolarizations. The spontaneous activity was suppressed by Na+ blockers and by drugs with similar effects on ICaL and IKr in Koivumäki2018 and Paci2020, while only by strong ICaL blockers, e.g. nisoldipine, in Kernik2019. These results were confirmed by the sensitivity analysis. Conclusion: To conclude, The CTD90 changes observed in silico are qualitatively consistent with our in vitro data, although our simulations show differences in drug responses across the hSC-CM models, which could stem from variability in the experimental data used in their construction.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jussi T Koivumäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hua Rong Lu
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - David J Gallacher
- Global Safety Pharmacology, Discovery Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Kreutzer FP, Meinecke A, Schmidt K, Fiedler J, Thum T. Alternative strategies in cardiac preclinical research and new clinical trial formats. Cardiovasc Res 2021; 118:746-762. [PMID: 33693475 PMCID: PMC7989574 DOI: 10.1093/cvr/cvab075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
An efficient and safe drug development process is crucial for the establishment of new drugs on the market aiming to increase quality of life and life-span of our patients. Despite technological advances in the past decade, successful launches of drug candidates per year remain low. We here give an overview about some of these advances and suggest improvements for implementation to boost preclinical and clinical drug development with a focus on the cardiovascular field. We highlight advantages and disadvantages of animal experimentation and thoroughly review alternatives in the field of three-dimensional cell culture as well as preclinical use of spheroids and organoids. Microfluidic devices and their potential as organ-on-a-chip systems, as well as the use of living animal and human cardiac tissues are additionally introduced. In the second part, we examine recent gold standard randomized clinical trials and present possible modifications to increase lead candidate throughput: adaptive designs, master protocols, and drug repurposing. In silico and N-of-1 trials have the potential to redefine clinical drug candidate evaluation. Finally, we briefly discuss clinical trial designs during pandemic times.
Collapse
Affiliation(s)
- Fabian Philipp Kreutzer
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Anna Meinecke
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kevin Schmidt
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| |
Collapse
|
16
|
Gintant G, Kaushik EP, Feaster T, Stoelzle-Feix S, Kanda Y, Osada T, Smith G, Czysz K, Kettenhofen R, Lu HR, Cai B, Shi H, Herron TJ, Dang Q, Burton F, Pang L, Traebert M, Abassi Y, Pierson JB, Blinova K. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 2020; 117:104756. [PMID: 32822771 DOI: 10.1016/j.yrtph.2020.104756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, 60064, USA.
| | | | - Tromondae Feaster
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan.
| | | | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | | | - Ralf Kettenhofen
- Fraunhofer-Institute for Biomed Engineering IBMT, Sulzbach, Germany.
| | - Hua Rong Lu
- Nonclinical Safety, Johnson & Johnson R&D, Beerse, Belgium.
| | - Beibei Cai
- Takeda California, Inc., San Diego, CA, 92121, USA.
| | - Hong Shi
- Bristol-Myers Squibb, New York, NY, 10016, USA.
| | - Todd Joseph Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Qianyu Dang
- Office of Biostatistics, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Francis Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| | | | - Yama Abassi
- Agilent Technologies, San Diego, CA, 92121, USA.
| | | | - Ksenia Blinova
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
17
|
Bedut S, Kettenhofen R, D'Angelo JM. Voltage-sensing optical recording: A method of choice for high-throughput assessment of cardiotropic effects. J Pharmacol Toxicol Methods 2020; 105:106888. [PMID: 32579903 DOI: 10.1016/j.vascn.2020.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/20/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Voltage and calcium-sensing optical recording (VSOR and CSOR, respectively) from human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been validated for in vitro evaluation of cardiotropic effects of drugs. When compared to electrophysiological devices like microelectrode array, multi-well optical recordings present a lower sample rate that may limit their capacity to detect fast depolarization or propagation velocity alterations. Additionally, the respective sensitivities of VSOR and CSOR to different cardiac electrophysiological effects have not been compared in the same conditions. METHODS FluoVolt and Cal520 dyes were used in 96 well format on hPSC-CMs to report sodium channel block by lidocaine and propagation slowing by the junctional uncoupler carbenoxolone at three recording frequencies (60, 120 and 200 Hz) as well as their sensitivity to early and late repolarization delay. RESULTS Sodium channel block led to a dose-dependent decrease of the VSOR signal rising slope that was improved by an increased sampling frequency. In contrast, the CSOR signal rising slope was only decreased at the highest concentration with no influence from the sampling rate. A similar result was obtained with carbenoxolone. Early repolarization delay by Bay K8644 showed the same effects on VSOR and CSOR signal durations while repolarization slowing by dofetilide had a significantly stronger prolongating effect on the VSOR signal at the lowest concentration. DISCUSSION VSOR showed a higher capacity to detect sodium channel block, propagation slowing and modest late repolarization delay than CSOR. Increasing the sampling rate improved the detection threshold of VSOR for excitability and conduction velocity alterations.
Collapse
Affiliation(s)
- Stéphane Bedut
- E-physervices, 1 rue de la Collégiale, 75005 Paris, France.
| | - Ralf Kettenhofen
- Fraunhofer-Institut für Biomedizinische Technik IBMT, Joseph-von-Fraunhofer-Weg 1, 66280 Sulzbach, Germany
| | | |
Collapse
|
18
|
Martewicz S, Magnussen M, Elvassore N. Beyond Family: Modeling Non-hereditary Heart Diseases With Human Pluripotent Stem Cell-Derived Cardiomyocytes. Front Physiol 2020; 11:384. [PMID: 32390874 PMCID: PMC7188911 DOI: 10.3389/fphys.2020.00384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Non-genetic cardiac pathologies develop as an aftermath of extracellular stress-conditions. Nevertheless, the response to pathological stimuli depends deeply on intracellular factors such as physiological state and complex genetic backgrounds. Without a thorough characterization of their in vitro phenotype, modeling of maladaptive hypertrophy, ischemia and reperfusion injury or diabetes in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has been more challenging than hereditary diseases with defined molecular causes. In past years, greater insights into hPSC-CM in vitro physiology and advancements in technological solutions and culture protocols have generated cell types displaying stress-responsive phenotypes reminiscent of in vivo pathological events, unlocking their application as a reductionist model of human cardiomyocytes, if not the adult human myocardium. Here, we provide an overview of the available literature of pathology models for cardiac non-genetic conditions employing healthy (or asymptomatic) hPSC-CMs. In terms of numbers of published articles, these models are significantly lagging behind monogenic diseases, which misrepresents the incidence of heart disease causes in the human population.
Collapse
Affiliation(s)
- Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Michael Magnussen
- Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.,Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Venetian Institute of Molecular Medicine, Padua, Italy.,Department of Industrial Engineering, University of Padova, Padua, Italy
| |
Collapse
|
19
|
Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. J Mol Cell Cardiol 2019; 136:102-112. [PMID: 31526813 DOI: 10.1016/j.yjmcc.2019.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022]
Abstract
The use of recreational drugs, including new psychoactive substances (NPS), is paralleled by emergency department visits of drug users with severe cardiotoxicity. Drug-induced cardiotoxicity can be the (secondary) result of increased norepinephrine blood concentrations, but data on potential drug-induced direct effects on cardiomyocyte function are scarce. The presence of hundreds of NPS therefore calls for efficient screening models to assess direct cardiotoxicity. We investigated effects of four reference compounds (3-30 nM dofetilide, nifedipine and isoproterenol, and 1-10 μM mexiletine) and six recreational drugs (0.01-100 μM cocaine, 0.01-1000 μM amphetamine, MDMA, 4-fluoroamphetamine, α-PVP and MDPV) on cardiomyocyte function (beat rate, spike amplitude and field potential duration (FPD ≈ QT interval in ECGs)), using Pluricyte® human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes cultured on ready-to-use CardioPlate™ multi-well microelectrode arrays (mwMEAs). Moreover, the effects of exposure to recreational drugs on cell viability were assessed. Effects of reference compounds were in accordance with the literature, indicating the presence of hERG potassium (dofetilide), sodium (mexiletine) and calcium (nifedipine) channels and α-adrenergic receptors (isoproterenol). All recreational drugs decreased the spike amplitude at 10-100 μM. All amphetamine-type stimulants and α-PVP decreased the beat rate at 300 μM, while cocaine and MDPV did so at 10 μM and 30 μM, respectively. All drugs increased the FPD, however at varying concentrations. MDMA, MDPV and amphetamine affected cardiomyocyte function at concentrations relevant for human exposure, while other drugs affected cardiomyocyte function only at higher concentrations (≥ 10 μM). Cell viability was only mildly affected at concentrations well above the lowest concentrations affecting cardiomyocyte function. We demonstrate that MEA recordings of hiPSC-derived cardiomyocytes enable screening for acute, direct effects on cardiomyocyte function. Our data further indicate that tachycardia in patients exposed to recreational drugs is likely due to indirect drug effects, while prolonged repolarization periods (prolonged QTc interval) could (partly) result from direct drug effects on cardiomyocyte function.
Collapse
|