1
|
Gao H, Wang Y, Liang X, Wen J, Liu R, Meng Q, Martyniuk CJ. Long-term exposure to 2,4-di-tert-butylphenol impairs zebrafish fecundity and affects offspring development. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138108. [PMID: 40188547 DOI: 10.1016/j.jhazmat.2025.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/08/2025]
Abstract
As a widely used antioxidant, 2,4-di-tert-butylphenol (2,4-DTBP) has been frequently detected in the environment and biota. Although a few studies reported its hormone-like activity in vitro, the endocrine disrupting potential of 2,4-DTBP and its effect on reproduction are not yet elucidated. In this study, adult zebrafish were exposed to 5 and 50 nM 2,4-DTBP for 60 days. Reduction in cumulative egg production was observed after 45 days of exposure. Gonadal maturation was also delayed in both female and male zebrafish following 2,4-DTBP exposure. The impaired fecundity was attributed to an imbalance of 17β-estradiol/testosterone ratio (E2/T) and altered transcripts involved in the hypothalamic-pituitary-gonadal (HPG) axis. Upon exposure, aromatase (CYP19) and E2 levels were significantly decreased in females, but were increased in males. Additionally, molecular docking revealed potential binding of 2,4-DTBP to estrogen receptors and CYP19, highlighting molecular initiating events that may interfere with steroid hormone synthesis. We also showed that 2,4-DTBP can be transferred to offspring, affecting their development and compromising immunity. The expression of triiodothyronine (T3) and hatching-related genes (esr2α, esr2β, and zhe2) were altered, suggesting that parental exposure to 2,4-DTBP resulted in intergenerational toxicity in F1 larvae. Taken together, these findings provide novel insight into the reproductive toxicity of 2,4-DTBP, contributing to its ecological risk assessment.
Collapse
Affiliation(s)
- Huina Gao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Jinfeng Wen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ruimin Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Qingjian Meng
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Low Carbon Resource Utilization, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Ly TK, Chadili E, Palluel O, Le Menach K, Budzinski H, Tebby C, Hinfray N, Beaudouin R. PBK-TD modelling of the gonadotropic axis: Case study with two azole fungicides in female zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107337. [PMID: 40158424 DOI: 10.1016/j.aquatox.2025.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Endocrine disruptors (EDs) can disrupt the gonadotropic axis, which consists of the Hypothalamus-Pituitary-Gonads (HPG), notably by altering aromatase (cyp19a), a key enzyme regulating the endocrine system and reproductive function in fish. The effects of EDs can be predicted by integrating both toxicokinetic (TK) and toxicodynamic (TD) processes in order to relate adverse outcomes to external exposures. In this study, we developed a physiologically based kinetic-toxicodynamic model to simulate the disruption of the HPG axis (PBK-TD, hereafter named PBK-HPG) in female zebrafish exposed to either of two aromatase inhibitors, imazalil or prochloraz. The model was calibrated using Bayesian methods and supported by novel experimental data, including measurements of vitellogenin, 17β-estradiol, and 11-ketotestosterone levels, along with in vivo monitoring of the cyp19a1a gene in transgenic cyp19a1a-GFP ebrafish. Seamless integration of a PBK model within a TD model of the HPG-axis, provided the link between external exposure and internal levels of imazalil and prochloraz in key organs, allowing for mechanistic predictions of their inhibitory effects on gonadal aromatase. Our PBK-HPG model accurately predicted both baseline homeostasis and the effects of aromatase inhibition, with all endocrine endpoints including reproductive disruption, i.e., decreased egg production, falling within a twofold range of both experimental and literature data. Therefore, our PBK-HPG model could further support the development of a mechanistic qAOP with TK considerations. The model offers significant potential for improving environmental risk assessments of EDs and possibly other stressors across species.
Collapse
Affiliation(s)
- Tu-Ky Ly
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil en Halatte 65550, France; UMR-I 02 SEBIO, INERIS, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, Verneuil en Halatte 65550, France; Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Edith Chadili
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Olivier Palluel
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Karyn Le Menach
- UMR CNRS 5805 EPOC, Université de Bordeaux, Talence 33405, France
| | - Hélène Budzinski
- UMR CNRS 5805 EPOC, Université de Bordeaux, Talence 33405, France
| | - Cleo Tebby
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil en Halatte 65550, France
| | - Nathalie Hinfray
- Ecotoxicology of Substances and Environments Unit, INERIS, Verneuil-en-Halatte 65550, France
| | - Rémy Beaudouin
- Experimental Toxicology and Modeling Unit, INERIS, Verneuil en Halatte 65550, France; UMR-I 02 SEBIO, INERIS, Université de Reims Champagne-Ardenne, Université Le Havre Normandie, Normandie Univ, Verneuil en Halatte 65550, France.
| |
Collapse
|
3
|
Yao W, Liu X, Liu H, Song Y. Development and Cross-Validation of a Zebrafish Quantitative Adverse Outcome Pathway Model on Aromatase Inhibition Leading to Reproductive Dysfunction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9886-9895. [PMID: 40359424 DOI: 10.1021/acs.est.4c12090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Adverse outcome pathway (AOP) has become a key component in next-generation risk assessment (NGRA), as AOPs provide mechanistic and causal basis for linking toxicological responses across multiple levels of biological organization, thus allowing utilization of new approach methodologies (NAMs) to support prioritization, classification, and hazard assessment of chemicals. Quantitative AOPs (qAOPs) further allow estimation of points of departure (PODs) along a cascade of toxicological events and prediction of final adverse outcome(s) based on early key events. The present study developed a zebrafish-based qAOP model for an OECD-endorsed AOP linking aromatase inhibition to reproductive dysfunction (AOPWiki, AOP no. 25). The model was built based on newly generated laboratory data from a prototypical aromatase inhibitor propiconazole (PRO) and further challenged by another chemical tebuconazole (TEB) to evaluate the model's performance and applicability. We found that female and male zebrafish have different effects to establish AOP after exposure to PRO and qAOP was expanded and applied to cross-species prediction with fathead minnow. During the environmentally relevant concentrations of PRO and TEB for 21 days, aromatase CYP19, vitellogenin, and steroidogenesis were affected significantly, and the reproduction of zebrafish significantly decreased. The present study aimed to expand the mechanism of aromatase and assembled quantitative AOP in zebrafish and further linked with in vitro, which extended aromatase inhibitor-mediated reproductive dysfunction as a demonstrative case of published qAOP model in fathead minnow Pimephales promelas (AOPWiki, AOP no. 25).
Collapse
Affiliation(s)
- Wenying Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - You Song
- Section of Ecotoxicology and Risk Assessment, Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| |
Collapse
|
4
|
Alcaraz AJ, Murray S, Ankley P, Park B, Raes K, Kurukulasuriya S, Crump D, Basu N, Brinkmann M, Hecker M, Hogan N. Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[ a]pyrene in Early-Life-Stage Rainbow Trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6971-6982. [PMID: 40167481 DOI: 10.1021/acs.est.4c11870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
New approach methods (NAMs) are urgently needed to address the significant ethical and economic concerns associated with live animal testing as well as the low throughput associated with current toxicity testing frameworks. NAMs such as rapid mechanistic early-life-stage fish assays are promising alternatives to current hazard assessment approaches, as they can be used to derive toxicity thresholds and guide decision-makers on identifying or prioritizing chemicals of concern. This study aimed to derive benchmark concentrations from RNaseq data (transcriptomic points-of-departure; tPOD) from a short-term exposure study with early life stages of rainbow trout (RBT; Oncorhynchus mykiss) using benzo[a]pyrene (B[a]P) as the model compound. tPODs were then calibrated with higher organizational-level responses observed during an extended 28 day exposure period. RBT were exposed from 1 to 28 days post-hatch (dph) to 0.079, 0.35, 1.5, 7.4, and 29 μg/L (28 d time weighted average measured) B[a]P, as well as 0.05% dimethyl sulfoxide and water only controls. Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[a]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPODEROD,28dph of 0.599 μg/L B[a]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPODlength,28dph of 1.77 μg/L B[a]P, with a notable decreasing trend in body weight. A toxicity pathway model constructed from genes and apical end points exhibiting concentration-dependent responses provided further evidence supporting the utility of tPODs from short-term RBT early-life-stage assay to support chemical risk assessment to guide decision-makers in chemical testing prioritization.
Collapse
Affiliation(s)
- Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 9B4, Canada
| | - Sydney Murray
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Bradley Park
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Katherine Raes
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Shakya Kurukulasuriya
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Doug Crump
- National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec H9X 3 V9, Canada
| | - Markus Brinkmann
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of the Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C8, Canada
| | - Natacha Hogan
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
5
|
Williams BL, Pintor LM, Gray SM. Alteration of reproductive behaviors by aromatase inhibition is population dependent in an African cichlid fish. J Exp Biol 2025; 228:JEB249497. [PMID: 40013564 DOI: 10.1242/jeb.249497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Although hormones are vital to an organism's ability to respond to environmental stressors, they can be directly altered by the environment and impact reproductive behavior. For example, in some fishes, aquatic hypoxia (low dissolved oxygen) inhibits the aromatase enzyme that converts testosterone to estradiol. Here, we examined the effects of short-term aromatase inhibition on reproductive behavior in male Pseudocrenilabrus multicolor, a widespread African cichlid, from one normoxic river population and one hypoxic swamp population. We further tested the response of females to treated and untreated males. We predicted that aromatase inhibition would decrease courtship and competitive behaviors, but the swamp population would be less affected given generational exposure to hypoxia. Specifically, we compared competition and courtship behavior of males treated with a short-term exposure to an aromatase inhibitor with control fish from the two populations. We found that both courtship and competitive behaviors were affected by the interaction between treatment and population. River fish performed fewer courtship and competitive behaviors under the aromatase inhibition treatment while the behavior of swamp males was unaffected. Additionally, we found that females from the swamp population preferred males from the aromatase inhibition treatment and river females preferred control males. While we found behavioral effects of short-term aromatase inhibition, we did not find any effects on male nuptial coloration. Overall, these results indicate that the effects of short-term aromatase inhibition on behavior could depend on local adaptation in response to hypoxia.
Collapse
Affiliation(s)
- Bethany L Williams
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Lauren M Pintor
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
| | - Suzanne M Gray
- School of Environment and Natural Resources, The Ohio State University, Columbus, OH 43210, USA
- Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada, C1A 4P3
| |
Collapse
|
6
|
Qiao K, Wang S, Wang A, Liang Z, Yang S, Ma Y, Li S, Ye Q, Gui W. QSAR modeling on aromatase inhibitory activity of 23 triazole fungicides by tritium-water release assay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125832. [PMID: 39929427 DOI: 10.1016/j.envpol.2025.125832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
The 1,2,4-triazole fungicides are extensively used in agriculture, and their impacts on aquatic organisms by continuous release are increasingly concerned. Aromatase, a rate-limiting enzyme for androgens converting to estrogens, is considered as a potential target for triazole fungicides. To reveal and predict the aromatase inhibition capacity of the existing and future developed triazole fungicides, 23 commonly used 1,2,4-triazole fungicides were used for the evaluation of their inhibitory effects (expressed as the 50% inhibitory concentration (IC50)) on human aromatase by 3H-H2O release assay in the present study. Result showed the IC50 values spanned four orders of magnitude from the strongest of 44 nM (flusilazole) to the lowest of 0.330 mM (bitertanol). The aromatase inhibitory activity of the triazoles was also verified in vivo by zebrafish use two triazoles with relatively weak inhibition. Subsequently, the Quantitative Structure-Activity Relationship (QSAR) modeling on the triazoles as aromatase inhibitors was constructed using stepwise regression analysis with the chemical structural descriptors including physicochemical, electronic and topological parameters. The optimal QSAR model was defined as pIC50 = -22.936-2.668 EHomo + 0.938 logD - 0.715 NHBD. The effectiveness and robustness of the model were evaluated by internal and external validation with residual assessment. The internal validation showed that the R2 and Radj2 were both higher than 0.700. The CCC and CCCExt were in acceptable levels as the cutoff value of 0.850. The cross-validation correlation coefficient Q2 and the external predictive correlation coefficients (Q2-F1, Q2-F2, and Q2-F3) were all greater than 0.600. The results of Y-Scrambling with 2000 iterations indicated the model had no accidental correlation as the average R2 of 0.166 and Q2 of -0.378. The findings offered data support for the potential risks associated with triazole fungicides in aquatic environment and provided theoretical guidance to expedite drug development and risk assessment.
Collapse
Affiliation(s)
- Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, PR China
| | - Shuting Wang
- Hangzhou Center for Disease Control and Prevention (Hangzhou Health Supervision Institution), Hangzhou, Zhejiang, 310021, PR China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhuoying Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Siyu Yang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Hangzhou, 310058, PR China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, PR China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Hangzhou, 310058, PR China.
| |
Collapse
|
7
|
Doering JA, Dubiel J, Stock E, Collins CH, Frick I, Johnson HM, Lowrey-Dufour CM, Miller JGP, Xia Z, Tomy GT, Wiseman S. A Quantitative Adverse Outcome Pathway for Embryonic Activation of the Aryl Hydrocarbon Receptor of Fishes by Polycyclic Aromatic Hydrocarbons Leading to Decreased Fecundity at Adulthood. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2145-2156. [PMID: 39092785 DOI: 10.1002/etc.5964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Quantitative adverse outcome pathways (qAOPs) describe the response-response relationships that link the magnitude and/or duration of chemical interaction with a specific molecular target to the probability and/or severity of the resulting apical-level toxicity of regulatory relevance. The present study developed the first qAOP for latent toxicities showing that early life exposure adversely affects health at adulthood. Specifically, a qAOP for embryonic activation of the aryl hydrocarbon receptor 2 (AHR2) of fishes by polycyclic aromatic hydrocarbons (PAHs) leading to decreased fecundity of females at adulthood was developed by building on existing qAOPs for (1) activation of the AHR leading to early life mortality in birds and fishes, and (2) inhibition of cytochrome P450 aromatase activity leading to decreased fecundity in fishes. Using zebrafish (Danio rerio) as a model species and benzo[a]pyrene as a model PAH, three linked quantitative relationships were developed: (1) plasma estrogen in adult females as a function of embryonic exposure, (2) plasma vitellogenin in adult females as a function of plasma estrogen, and (3) fecundity of adult females as a function of plasma vitellogenin. A fourth quantitative relationship was developed for early life mortality as a function of sensitivity to activation of the AHR2 in a standardized in vitro AHR transactivation assay to integrate toxic equivalence calculations that would allow prediction of effects of exposure to untested PAHs. The accuracy of the predictions from the resulting qAOP were evaluated using experimental data from zebrafish exposed as embryos to another PAH, benzo[k]fluoranthene. The qAOP developed in the present study demonstrates the potential of the AOP framework in enabling consideration of latent toxicities in quantitative ecological risk assessments and regulatory decision-making. Environ Toxicol Chem 2024;43:2145-2156. © 2024 SETAC.
Collapse
Affiliation(s)
- Jon A Doering
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Justin Dubiel
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Eric Stock
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Cameron H Collins
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Ian Frick
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
- Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Hunter M Johnson
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Christopher M Lowrey-Dufour
- Department of Environmental Sciences, College of the Coast & Environment, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Justin G P Miller
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Zhe Xia
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Steve Wiseman
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
8
|
Robitaille J, Desrosiers M, Veilleux É, Métivier M, Guay I, Lefebvre-Raine M, Langlois VS. Is Seven Days Enough? Comparing A 7-Day Exposure to the Classical 21-Day OECD TG 229 Fish Short-Term Reproduction Assay in Fathead Minnow. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:222-233. [PMID: 39289235 DOI: 10.1007/s00244-024-01089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
The OECD (Organisation for Economic Co-operation and Development) test guidelines (TG) 229-fish short-term reproduction assay (FSTRA) is one of the gold standard methods used to identify endocrine disrupting chemicals (EDCs). While informative, the FSTRA's 5-6 week duration makes it difficult to use routinely. Prior studies have shown that EDCs' impact on fecundity, vitellogenin (VTG) and steroid levels can be detected after less than 1 week of exposure suggesting the FSTRA could be shortened. This study compares both 7- and 21-day FSTRAs using fathead minnows (Pimephales promelas) for three known EDCs: 17α-ethinylestradiol (EE2; 40 ng/L), 17β-trenbolone (TRB; 50 µg/L), and propiconazole (PRP; 500 µg/L). All three compounds led to arrested fertility after 24 h of exposure, except for the 7-day EE2 treatment which still decreased reproduction. Moreover, independently of time of exposure, EE2 induced VTG production in males, and decreased estrogen levels in females and testosterone levels in males. In contrast, TRB-induced VTG production in males, while the levels were not different from controls in females even though testosterone levels increased, and masculinization was observed. Finally, PRP led to a decrease in VTG levels which was only significant during the 21-day exposure, and surprisingly, no effect on steroid levels were observed despite its known effects on steroidogenesis. For two of the three EDCs tested, both times of exposure led to similar outcomes supporting the shortening of the FSTRA to seven days. This proposed 7-day FSTRA could be used to screen EDCs in routine monitoring of environmental samples.
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Mélanie Desrosiers
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Éloïse Veilleux
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Marianne Métivier
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Isabelle Guay
- Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs (MELCCFP), Quebec City, QC, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), 490 de La Couronne, Quebec City, QC, G1K 9A9, Canada.
| |
Collapse
|
9
|
Guerrero-Limón G, Muller M. Exploring estrogen antagonism using CRISPR/Cas9 to generate specific mutants for each of the receptors. CHEMOSPHERE 2024; 364:143100. [PMID: 39159765 DOI: 10.1016/j.chemosphere.2024.143100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Endocrine disruptors are chemicals that have been in the spotlight for some time now. Their modulating action on endocrine signaling pathways made them a particularly interesting topic of research within the field of ecotoxicology. Traditionally, endocrine disrupting properties are studied using exposure to suspected chemicals. In recent years, a major breakthrough in biology has been the advent of targeted gene editing tools to directly assess the function of specific genes. Among these, the CRISPR/Cas9 method has accelerated progress across many disciplines in biology. This versatile tool allows to address antagonism differently, by directly inactivating the receptors targeted by endocrine disruptors. Here, we used the CRISPR/Cas9 method to knock out the different estrogen receptors in zebrafish and we assessed the potential effects this generates during development. We used a panel of biological tests generally used in zebrafish larvae to investigate exposure to compounds deemed as endocrine disrupting chemicals. We demonstrate that the absence of individual functional estrogen receptors (Esr1, Esr2b, or Gper1) does affect behavior, heart rate and overall development. Each mutant line was viable and could be grown to adulthood, the larvae tended to be morphologically grossly normal. A substantial fraction (70%) of the esr1 mutants presented severe craniofacial deformations, while the remaining 30% of esr1 mutants also had changes in behavior. esr2b mutants had significantly increased heart rate and significant impacts on craniofacial morphometrics. Finally, mutation of gper1 affected behavior, decreased standard length, and decreased bone mineralization as assessed in the opercle. Although the exact molecular mechanisms underlying these effects will require further investigations in the future, we added a new concept and new tools to explore and better understand the actions of the large group of endocrine disrupting chemicals found in our environment.
Collapse
Affiliation(s)
- Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA Institute, University of Liège, Liège, Belgium.
| |
Collapse
|
10
|
Miller DH, LaLone CA, Villeneuve DL, Ankley GT. Projection of Interspecific Competition (PIC) Matrices: A Conceptual Framework for Inclusion in Population Risk Assessments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1406-1422. [PMID: 38651999 PMCID: PMC11296611 DOI: 10.1002/etc.5867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Accepted: 03/09/2024] [Indexed: 04/25/2024]
Abstract
Accounting for intraspecific and interspecific competition when assessing the effects of chemical and nonchemical stressors is an important uncertainty in ecological risk assessments. We developed novel projection of interspecific competition (PIC) matrices that allow for analysis of population dynamics of two or more species exposed to a given stressor(s) that compete for shared resources within a landscape. We demonstrate the application of PIC matrices to investigate the population dynamics of two hypothetical fish species that compete with one another and have differences in net reproductive rate and intrinsic rate of population increase. Population status predictions were made under scenarios that included exposure to a chemical stressor that reduced fecundity for one or both species. The results of our simulations demonstrated that measures obtained from the life table and Leslie matrix of an organism, including net reproductive rate and intrinsic rate of increase, can result in erroneous conclusions of population status and viability in the absence of a consideration of resource limitation and interspecific competition. This modeling approach can be used in conjunction with field monitoring efforts and/or laboratory testing to link effects due to stressors to possible outcomes within an ecosystem. In addition, PIC matrices could be combined with adverse outcome pathways to allow for ecosystem projection based on taxonomic conservation of molecular targets of chemicals to predict the likelihood of relative cross-species susceptibility. Overall, the present study shows how PIC matrices can integrate effects across the life cycles of multiple species, provide a linkage between endpoints observed in individual and population-level responses, and project outcomes at the community level for multiple generations for multiple species that compete for limited resources. Environ Toxicol Chem 2024;43:1406-1422. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- David H. Miller
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| | - Carlie A. LaLone
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| | - Gerald T. Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota 55804, USA
| |
Collapse
|
11
|
König Kardgar A, Ghosh D, Sturve J, Agarwal S, Carney Almroth B. Chronic poly(l-lactide) (PLA)- microplastic ingestion affects social behavior of juvenile European perch (Perca fluviatilis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163425. [PMID: 37059150 DOI: 10.1016/j.scitotenv.2023.163425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 06/01/2023]
Abstract
Juvenile perch were exposed to 2 % (w/w) poly(l-lactide) (PLA) microplastic particles (90-150 μm) in food pellets, or 2 % (w/w) kaolin particles, and a non-particle control food over 6 months. Chronic ingestion of PLA microplastics significantly affected the social behavior of juvenile perch, evident as a significantly increased reaction to the vision of conspecifics. PLA ingestion did not alter life cycle parameters, or gene expression levels. In addition to reactions to conspecifics, fish that ingested microplastic particles showed tendencies to decrease locomotion, internal schooling distance, and active predator responses. The ingestion of natural particles (kaolin) significantly downregulated the expression of genes related to oxidative stress and androgenesis in the liver of juvenile perch, and we found tendencies to downregulated expression of genes related to xenobiotic response, inflammatory response, and thyroid disruption. The present study demonstrated the importance of natural particle inclusion and the potential behavioral toxicity of one of the commercially available biobased and biodegradable polymers.
Collapse
Affiliation(s)
- Azora König Kardgar
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Dipannita Ghosh
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany.
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany.
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Ankley GT, Santana-Rodriguez K, Jensen KM, Miller DH, Villeneuve DL. AOP Report: Adverse Outcome Pathways for Aromatase Inhibition or Androgen Receptor Agonism Leading to Male-Biased Sex Ratio and Population Decline in Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:747-756. [PMID: 36848318 PMCID: PMC10772967 DOI: 10.1002/etc.5581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Screening and testing of potential endocrine-disrupting chemicals for ecological effects are examples of risk assessment/regulatory activities that can employ adverse outcome pathways (AOPs) to establish linkages between readily measured alterations in endocrine function and whole organism- and population-level responses. Of particular concern are processes controlled by the hypothalamic-pituitary-gonadal/thyroidal (HPG/T) axes. However, the availability of AOPs suitable to meet this need is currently limited in terms of species and life-stage representation relative to the diversity of endpoints influenced by HPG/T function. In our report we describe two novel AOPs that comprise a simple AOP network focused on the effects of chemicals on sex differentiation during early development in fish. The first AOP (346) documents events starting with inhibition of cytochrome P450 aromatase (CYP19), resulting in decreased availability of 17β-estradiol during gonad differentiation, which increases the occurrence of testis formation, resulting in a male-biased sex ratio and consequent population-level declines. The second AOP (376) is initiated by activation of the androgen receptor (AR), also during sexual differentiation, again resulting in a male-biased sex ratio and population-level effects. Both AOPs are strongly supported by existing physiological and toxicological evidence, including numerous fish studies with model CYP19 inhibitors and AR agonists. Accordingly, AOPs 346 and 376 provide a basis for more focused screening and testing of chemicals with the potential to affect HPG function in fish during early development. Environ Toxicol Chem 2023;42:747-756. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T. Ankley
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kelvin Santana-Rodriguez
- Oak Ridge Institute for Science and Education, Research Participant at U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kathleen M. Jensen
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - David H. Miller
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Ann Arbor, MI, USA
| | - Daniel L. Villeneuve
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| |
Collapse
|
13
|
Exposure to the pesticides linuron, dimethomorph and imazalil alters steroid hormone profiles and gene expression in developing rat ovaries. Toxicol Lett 2022; 373:114-122. [PMID: 36410587 DOI: 10.1016/j.toxlet.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Inhibition of androgen signaling during critical stages of ovary development can disrupt folliculogenesis with potential consequences for reproductive function later in life. Many environmental chemicals can inhibit the androgen signaling pathway, which raises the question if developmental exposure to anti-androgenic chemicals can negatively impact female fertility. Here, we report on altered reproductive hormone profiles in prepubertal female rats following developmental exposure to three pesticides with anti-androgenic potential: linuron (25 and 50 mg/kg bw/d), dimethomorph (60 and 180 mg/kg bw/d) and imazalil (8 and 24 mg/kg bw/d). Dams were orally exposed from gestational day 7 (dimethomorph and imazalil) or 13 (linuron) until birth, then until end of dosing at early postnatal life. Linuron and dimethomorph induced dose-related reductions to plasma corticosterone levels, whereas imazalil mainly suppressed gonadotropin levels. In the ovaries, expression levels of target genes were affected by linuron and dimethomorph, suggesting impaired follicle growth. Based on our results, we propose that anti-androgenic chemicals can negatively impact female reproductive development. This highlights a need to integrate data from all levels of the hypothalamic-pituitary-gonadal axis, as well as the hypothalamic-pituitary-adrenal axis, when investigating the potential impact of endocrine disruptors on female reproductive development and function.
Collapse
|
14
|
Zakariaee H, Sudagar M, Hosseini SS, Paknejad H, Baruah K. In vitro Selection of Synbiotics and in vivo Investigation of Growth Indices, Reproduction Performance, Survival, and Ovarian Cyp19α Gene Expression in Zebrafish Danio rerio. Front Microbiol 2021; 12:758758. [PMID: 34671338 PMCID: PMC8521104 DOI: 10.3389/fmicb.2021.758758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we tested the compatibility of two extracts from the plant Jerusalem artichokes and button mushrooms with two different Lactobacillus probiotics (Lactobacillus acidophilus; La and Lactobacillus delbrueckii subsp. Bulgaricus; Lb) to develop a synbiotic formulation to improve the growth, survival, and reproductive performances of farmed fishes. Initially, we employed in vitro approach to monitor the growth of the probiotic lactobacilli in the presence of the different doses of the plant-based prebiotics, with the aim of selecting interesting combination(s) for further verification under in vivo conditions using zebrafish as a model. Results from the in vitro screening assay in the broth showed that both the probiotic species showed a preference for 50% mushroom extract as a source of prebiotic. A synbiotic formulation, developed with the selected combination of L. acidophilus, L. bulgaricus, and 50% mushroom extract, showed a positive influence on the growth and reproductive performances of the zebrafish. Our findings also imply that the improvement in the reproductive indices was associated with the upregulation of a cyp19a gene. Overall results suggest that a combination of L. acidophilus, L. bulgaricus, and mushroom extract can be considered as a potential synbiotic for the successful production of aquaculture species.
Collapse
Affiliation(s)
- Hamideh Zakariaee
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Mohammad Sudagar
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Seyede Sedighe Hosseini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamed Paknejad
- Department of Aquaculture, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agriculture Sciences and Natural Resources, Gorgan, Iran
| | - Kartik Baruah
- Department of Animal Nutrition and Management, Aquaculture Nutraceuticals Research Group, Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Villeneuve DL, Blackwell BR, Cavallin JE, Cheng WY, Feifarek DJ, Jensen KM, Kahl MW, Milsk RY, Poole ST, Randolph EC, Saari TW, Ankley GT. Case Study in 21st Century Ecotoxicology: Using In Vitro Aromatase Inhibition Data to Predict Short-Term In Vivo Responses in Adult Female Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1155-1170. [PMID: 33332681 PMCID: PMC8127875 DOI: 10.1002/etc.4968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 05/11/2023]
Abstract
The present study evaluated whether in vitro measures of aromatase inhibition as inputs into a quantitative adverse outcome pathway (qAOP) construct could effectively predict in vivo effects on 17β-estradiol (E2) and vitellogenin (VTG) concentrations in female fathead minnows. Five chemicals identified as aromatase inhibitors in mammalian-based ToxCast assays were screened for their ability to inhibit fathead minnow aromatase in vitro. Female fathead minnows were then exposed to 3 of those chemicals: letrozole, epoxiconazole, and imazalil in concentration-response (5 concentrations plus control) for 24 h. Consistent with AOP-based expectations, all 3 chemicals caused significant reductions in plasma E2 and hepatic VTG transcription. Characteristic compensatory upregulation of aromatase and follicle-stimulating hormone receptor (fshr) transcripts in the ovary were observed for letrozole but not for the other 2 compounds. Considering the overall patterns of concentration-response and temporal concordance among endpoints, data from the in vivo experiments strengthen confidence in the qualitative relationships outlined by the AOP. Quantitatively, the qAOP model provided predictions that fell within the standard error of measured data for letrozole but not for imazalil and epoxiconazole. However, the inclusion of measured plasma concentrations of the test chemicals as inputs improved model predictions, with all predictions falling within the range of measured values. Results highlight both the utility and limitations of the qAOP and its potential use in 21st century ecotoxicology. Environ Toxicol Chem 2021;40:1155-1170. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
- Address Correspondence to
| | - Brett R. Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Jenna E. Cavallin
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Wan-Yun Cheng
- US Environmental Protection Agency, Integrated Systems Toxicology Division, Research Triangle Park, NC, USA
| | - David J. Feifarek
- Student Services Contractor, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kathleen M. Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Michael W. Kahl
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Rebecca Y. Milsk
- ORISE Participant, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Shane T. Poole
- Student Services Contractor, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Eric C. Randolph
- ORISE Participant, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Travis W. Saari
- Student Services Contractor, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| |
Collapse
|
16
|
Doering JA, Villeneuve DL, Tilton CB, Kittelson AR, Blackwell BR, Kahl MD, Jensen KM, Poole ST, Cavallin JE, Cole AR, Dean KN, LaLone CA, Ankley GT. Assessing effects of aromatase inhibition on fishes with group-synchronous oocyte development using western mosquitofish (Gambusia affinis) as a model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105741. [PMID: 33450672 PMCID: PMC8255332 DOI: 10.1016/j.aquatox.2020.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Exposure to certain anthropogenic chemicals can inhibit the activity to cytochrome P450 aromatase (CYP19) in fishes leading to decreased plasma 17β-estradiol (E2), plasma vitellogenin (VTG), and egg production. Reproductive dysfunction resulting from exposure to aromatase inhibitors has been extensively investigated in several laboratory model species of fish. These model species have ovaries that undergo asynchronous oocyte development, but many fishes have ovaries with group-synchronous oocyte development. Fishes with group-synchronous oocyte development have dynamic reproductive cycles which typically occur annually and are often triggered by complex environmental cues. This has resulted in a lack of test data and uncertainty regarding sensitivities to and adverse effects of aromatase inhibition. The present study used the western mosquitofish (Gambusia affinis) as a laboratory model to investigate adverse effects of chemical aromatase inhibition on group-synchronous oocyte development. Adult female western mosquitofish were exposed to either 0, 2, or 30 μg/L of the model nonsteroidal aromatase inhibiting chemical, fadrozole, for a complete reproductive cycle. Fish were sampled at four time-points representing pre-vitellogenic resting, early vitellogenesis, late vitellogenesis/early ovarian recrudescence, and late ovarian recrudescence. Temporal changes in numerous reproductive parameters were measured, including gonadosomatic index (GSI), plasma sex steroids, and expression of selected genes in the brain, liver, and gonad that are important for reproduction. In contrast to fish from the control treatment, fish exposed to 2 and 30 μg/L of fadrozole had persistent elevated expression of cyp19 in the ovary, depressed expression of vtg in the liver, and a low GSI. These responses suggest that completion of a group-synchronous reproductive cycle was unsuccessful during the assay in fish from either fadrozole treatment. These adverse effects data show that exposure to aromatase inhibitors has the potential to cause reproductive dysfunction in a wide range of fishes with both asynchronous and group-synchronous reproductive strategies.
Collapse
Affiliation(s)
- Jon A Doering
- National Research Council, 6201 Congdon Boulevard, Duluth, MN, 55804, United States.
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Charlene B Tilton
- Oak Ridge Institute of Science Education, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Ashley R Kittelson
- Oak Ridge Institute of Science Education, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Michael D Kahl
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Kathleen M Jensen
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Shane T Poole
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Jenna E Cavallin
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Alexander R Cole
- Oak Ridge Institute of Science Education, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Kendra N Dean
- Oak Ridge Institute of Science Education, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, 6201 Congdon Boulevard, Duluth, MN, 55804, United States
| |
Collapse
|
17
|
Bhagat J, Singh N, Nishimura N, Shimada Y. A comprehensive review on environmental toxicity of azole compounds to fish. CHEMOSPHERE 2021; 262:128335. [PMID: 33182121 DOI: 10.1016/j.chemosphere.2020.128335] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Azoles are considered as one of the most efficient fungicides for the treatment of humans, animals, and plant fungal pathogens. They are of significant clinical importance as antifungal drugs and are widely used in personal care products, ultraviolet stabilizers, and in aircraft for its anti-corrosive properties. The prevalence of azole compounds in the natural environment and its accumulation in fish raises questions about its impact on aquatic organisms. OBJECTIVES The objective of this paper is to review the scientific studies on the effects of azole compounds in fish and to discuss future opportunities for the risk evaluation. METHODS A systematic literature search was conducted on Web of Science, PubMed, and ScienceDirect to locate peer-reviewed scientific articles on occurrence, environmental fate, and toxicological impact of azole fungicides on fish. RESULTS Studies included in this review provide ample evidence that azole compounds are not only commonly detected in the natural environment but also cause several detrimental effects on fish. Future studies with environmentally relevant concentrations of azole alone or in combination with other commonly occurring contaminants in a multigenerational study could provide a better understanding. CONCLUSION Based on current knowledge and studies reporting adverse biological effects of azole on fish, considerable attention is required for better management and effective ecological risk assessment of these emerging contaminants.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Nisha Singh
- Environment Nanoscience Laboratory, Department of Earth Science, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan.
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie, 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
18
|
Qian L, Qi S, Zhang J, Duan M, Schlenk D, Jiang J, Wang C. Exposure to Boscalid Induces Reproductive Toxicity of Zebrafish by Gender-Specific Alterations in Steroidogenesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14275-14287. [PMID: 33138376 DOI: 10.1021/acs.est.0c02871] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Boscalid is a succinate dehydrogenase inhibitor fungicide and is frequently detected in surface water. Due to the frequent detection of boscalid, we evaluated its impact on the reproduction of adult zebrafish following a 21 d exposure to 0, 0.01, 0.1, and 1.0 mg/L. Following exposure to boscalid, the fertility of female zebrafish and fertilization rate of spawning eggs were reduced in a concentration-dependent manner up to a respective 87% and 20% in the highest concentration. A significant 16% reduction in the percentage of late vitellogenic oocytes was noted in ovaries, and a significant 74% reduction in the percentage of spermatids in testis was also observed after treatment with 1.0 mg/L. 17β-Estradiol (E2) concentrations decreased significantly in females (34% decrease) but significantly increased in males (15% increase) following 1.0 mg/L boscalid treatment. The expression of genes (such as era, er2b, cyp19a, and cyp19b) related to the hypothalamus-pituitary-gonad-liver (HPGL) axis was significantly altered and positively correlated with E2 concentrations in female and male zebrafish (p < 0.05). Molecular docking results revealed that the binding modes between boscalid and target proteins (ER and CYP19) of zebrafish were similar to that of the reference compounds and the target proteins. The binding energies indicate that boscalid may have a weak estrogen-like binding effect or CYP19 inhibition, potentially altering the HPGL axis, thereby reducing E2 concentrations and fecundity in females. In contrast, boscalid caused significant induction of E2 steroidogenesis and subsequent feminization of gonads in males, indicating gender-specific adverse outcome pathways.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Product Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, People's Republic of China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Manman Duan
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| | - Jiazhen Jiang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
19
|
McArdle ME, Freeman EL, Staveley JP, Ortego LS, Coady KK, Weltje L, Weyers A, Wheeler JR, Bone AJ. Critical Review of Read-Across Potential in Testing for Endocrine-Related Effects in Vertebrate Ecological Receptors. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:739-753. [PMID: 32030793 PMCID: PMC7154679 DOI: 10.1002/etc.4682] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/01/2019] [Accepted: 02/03/2020] [Indexed: 05/21/2023]
Abstract
Recent regulatory testing programs have been designed to evaluate whether a chemical has the potential to interact with the endocrine system and could cause adverse effects. Some endocrine pathways are highly conserved among vertebrates, providing a potential to extrapolate data generated for one vertebrate taxonomic group to others (i.e., biological read-across). To assess the potential for biological read-across, we reviewed tools and approaches that support species extrapolation for fish, amphibians, birds, and reptiles. For each of the estrogen, androgen, thyroid, and steroidogenesis (EATS) pathways, we considered the pathway conservation across species and the responses of endocrine-sensitive endpoints. The available data show a high degree of confidence in the conservation of the hypothalamus-pituitary-gonadal axis between fish and mammals and the hypothalamus-pituitary-thyroid axis between amphibians and mammals. Comparatively, there is less empirical evidence for the conservation of other EATS pathways between other taxonomic groups, but this may be due to limited data. Although more information on sensitive pathways and endpoints would be useful, current developments in the use of molecular target sequencing similarity tools and thoughtful application of the adverse outcome pathway concept show promise for further advancement of read-across approaches for testing EATS pathways in vertebrate ecological receptors. Environ Toxicol Chem 2020;39:739-753. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | - Lisa S. Ortego
- Environmental Safety, Bayer CropScienceChesterfieldMissouriUSA
| | - Katherine K. Coady
- Toxicology and Environmental Research and Consulting, Dow ChemicalMidlandMichiganUSA
| | - Lennart Weltje
- BASF SE, Agricultural Solutions‐EcotoxicologyLimburgerhofGermany
| | - Arnd Weyers
- Crop Science DivisionBayerMonheim am RheinGermany
| | | | - Audrey J. Bone
- Environmental Safety, Bayer CropScienceChesterfieldMissouriUSA
| |
Collapse
|
20
|
Doering JA, Villeneuve DL, Poole ST, Blackwell BR, Jensen KM, Kahl MD, Kittelson AR, Feifarek DJ, Tilton CB, LaLone CA, Ankley GT. Quantitative Response-Response Relationships Linking Aromatase Inhibition to Decreased Fecundity are Conserved Across Three Fishes with Asynchronous Oocyte Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10470-10478. [PMID: 31386814 DOI: 10.1021/acs.est.9b02606] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantitative adverse outcome pathways (qAOPs) describe quantitative response-response relationships that can predict the probability or severity of an adverse outcome for a given magnitude of chemical interaction with a molecular initiating event. However, the taxonomic domain of applicability for these predictions is largely untested. The present study began defining this applicability for a previously described qAOP for aromatase inhibition leading to decreased fecundity developed using data from fathead minnow (Pimephales promelas). This qAOP includes quantitative response-response relationships describing plasma 17β-estradiol (E2) as a function of plasma fadrozole, plasma vitellogenin (VTG) as a function of plasma E2, and fecundity as a function of plasma VTG. These quantitative response-response relationships simulated plasma E2, plasma VTG, and fecundity measured in female zebrafish (Danio rerio) exposed to fadrozole for 21 days but not these responses measured in female Japanese medaka (Oryzias latipes). However, Japanese medaka had different basal levels of plasma E2, plasma VTG, and fecundity. Normalizing basal levels of each measurement to equal those of female fathead minnow enabled the relationships to accurately simulate plasma E2, plasma VTG, and fecundity measured in female Japanese medaka. This suggests that these quantitative response-response relationships are conserved across these three fishes when considering relative change rather than absolute measurements. The present study represents an early step toward defining the appropriate taxonomic domain of applicability and extending the regulatory applications of this qAOP.
Collapse
Affiliation(s)
- Jon A Doering
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
- National Research Council , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Shane T Poole
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Brett R Blackwell
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Kathleen M Jensen
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Michael D Kahl
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Ashley R Kittelson
- Oak Ridge Institute of Science Education , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - David J Feifarek
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Charlene B Tilton
- Oak Ridge Institute of Science Education , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Carlie A LaLone
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| | - Gerald T Ankley
- Mid-Continent Ecology Division , U.S. Environmental Protection Agency , Duluth , Minnesota 55804 United States
| |
Collapse
|