1
|
Lyrio MVV, Alberto NJ, Debona DG, Frinhani RQ, Ramalho JC, Pereira LL, de Castro EVR, Partelli FL, Romão W. Comprehensive chemical profiling of wild Coffea racemosa, C. Zanguebariae, C. arabica, and C. canephora: A Metabolomic approach using LC-MS n and multivariate analysis. Food Chem 2025; 481:144062. [PMID: 40168870 DOI: 10.1016/j.foodchem.2025.144062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
Besides the need to adapt coffee cultivation to climate change, the growing demand for high-quality and exotic coffee has increased interest in species such as Coffea racemosa and C. zanguebariae. These species offer drought and pest resistance, fast maturation, and distinct sensory profiles. However, there is a lack of information regarding their chemical profile. Therefore, this study employed a metabolomic approach using LC-MS, ESI(±)MS, and multivariate analysis to assess the chemical profiles of these species and compare them with C. arabica and C. canephora cv. Conilon. Sixty-four compounds were identified, including chlorogenic acids, lipids, carbohydrates, amino acids, and glycosylated diterpenes. The results indicate that C. racemosa shares chemical similarities with C. arabica, particularly in their trigonelline and amino acid abundance, while C. zanguebariae is characterized by a high phospholipid content, which may influence mouthfeel. Additionally, LC-MS allows isomer separation, whereas ESI(±)MS emerged as a fast alternative for chemometric modeling.
Collapse
Affiliation(s)
- Marcos Valério Vieira Lyrio
- Federal University of Espírito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitoria, Espírito Santo, Brazil.
| | - Niquisse José Alberto
- Federal University of Espírito Santo/UFES, Genetic Breeding Program, Campus Alegre, Bairro Guararema, S/N, CEP 29500-000 Alegre, Espírito Santo, Brazil
| | - Danieli Grancieri Debona
- Federal University of Espírito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitoria, Espírito Santo, Brazil
| | - Roberta Quintino Frinhani
- Federal University of Espírito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitoria, Espírito Santo, Brazil
| | - José Cochicho Ramalho
- Plant Stress & Biodiversity Laboratory, Forest Research Center (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), Lisbon University (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal; GeoBioSciences, GeoTechnologies and GeoEngineering Unit (GeoBioTec), NOVA School of Science and Technology (FCT/UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Lucas Louzada Pereira
- Federal University of Espírito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitoria, Espírito Santo, Brazil; Federal Institute of Espírito Santo - Campus Venda Nova do Imigrante, Av. Elizabeth Minete Perim, S/N, Bairro São Rafael, 29375-000, Venda Nova do Imigrante, Espírito Santo, Brazil
| | - Eustáquio Vinícius Ribeiro de Castro
- Federal University of Espírito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitoria, Espírito Santo, Brazil.
| | - Fábio Luiz Partelli
- Federal University of Espírito Santo/UFES, Department of Agrarian and Biological Sciences (DCAB), Rod. BR 101 Norte, Km 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, Espírito Santo, Brazil.
| | - Wanderson Romão
- Federal University of Espírito Santo/UFES, Department of Chemistry, Campus Goiabeiras, Avenida Fernando Ferrari, 514, CEP 29075-910 Vitoria, Espírito Santo, Brazil; Federal Institute of Espírito Santo - Campus Vila Velha, Av. Ministro Salgado Filho, Soteco, Vila Velha, Espírito Santo 29106-010, Brazil
| |
Collapse
|
2
|
Yu J, Wang F, Jiang A, Hu M, Zheng Y. Chlorophyll fluorescence characteristics and lipid metabolism in endangered Cycas panzhihuaensis exposed to drought, high temperature and their combination1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109858. [PMID: 40184904 DOI: 10.1016/j.plaphy.2025.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/23/2025] [Accepted: 03/29/2025] [Indexed: 04/07/2025]
Abstract
Cycas panzhihuaensis, an endangered species distributed in the dry-hot valleys of southwestern China, faces drought (D), heat (H), and their combination (DH) under current and future climatic conditions. To explore the responses of C. panzhihuaensis to D, H, and DH, chlorophyll fluorescence and the lipid and fatty acid profiles were determined. Leaf water loss and leaf damage only occurred following DH treatment. The photochemical activity was least impacted by D stress and most severely impacted by DH stress. D treatment reduced the levels of most lipid categories and total fatty acids. Both the H and DH treatments led to a significant decrease in the levels of saccharolipids, lysophospholipids, sphingolipids, and fatty acyls, while significantly increasing the levels of neutral glycerolipids and fatty acids. Moreover, odd-numbered fatty acids and trans-fatty acids-C18:2ttn-6 accumulated significantly following both H and DH treatments. However, the levels of both total fatty acids and total lipids were significantly lower after DH stress compared to H stress. The proportion of saturated fatty acids increased after D treatment and that of polyunsaturated fatty acids increased after both H and DH treatments. Following various treatments, the degree of unsaturation in total phospholipids decreased, while that in total saccharolipids remained unchanged. Additionally, the unsaturation levels of diacylglycerol and triacylglycerol showed no change after D stress, but increased after H and DH treatments. In conclusion, C. panzhihuaensis exhibited varying levels of tolerance to D, H, and DH treatments, which may be related to the differential adjustments in lipid composition and unsaturation levels.
Collapse
Affiliation(s)
- Jiao Yu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Fang Wang
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Aiguo Jiang
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Miaomiao Hu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China.
| |
Collapse
|
3
|
Shi S, Li H, Wang X, Wang Z, Xu J, He X, Yang Z. Greater Biomass Production Under Elevated CO 2 Is Attributed to Physiological Optimality, Trade-Offs in Nutrient Allocation, and Oxidative Defense in Drought-Stressed Mulberry. Antioxidants (Basel) 2025; 14:383. [PMID: 40298623 PMCID: PMC12024246 DOI: 10.3390/antiox14040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Mulberry (Morus alba L.), a species of significant ecological and economic importance, is widely cultivated for sericulture, soil conservation, and environmental restoration. Despite its remarkable resilience to environmental stresses, the combined impact of elevated CO2 (eCO2) and drought stress on aboveground-root-soil interactions remains poorly understood, particularly in the context of global climate change. Here, we investigated the effects of eCO2 and drought on physiological leaf and root indicators, nutrient absorption and allocation, and soil properties in mulberry seedlings. Mulberry seedlings were grown in environmentally auto-controlled growth chambers under ambient CO2 (420/470 ppm, day/night) or eCO2 (710/760 ppm) and well-watered (75-85% soil relative water content, RWC), moderate-drought (55-65% RWC), or severe-drought (35-45% RWC) conditions. Results showed that both above- and below-ground plant biomass production were significantly promoted by eCO2, particularly by 36% and 15% under severe drought, respectively. This could be attributed to several factors. Firstly, eCO2 improved leaf photosynthesis by 25-37% and water use efficiency by 104-163% under drought stresses while reducing negative effects of drought on the effective quantum yield of PSII photochemistry and the photochemical quenching coefficient. Secondly, eCO2 significantly decreased proline accumulation while increasing soluble sugar contents, as well as peroxidase and superoxide dismutase activities, in both leaves and roots under drought stress. Lastly, eCO2 promoted soil sucrase, urease, and phosphatase activities, as well as plant nitrogen, phosphorus and potassium uptake while facilitating their allocation into roots under drought stress. These findings demonstrate that eCO2 enhanced the drought tolerance of mulberry plants through improvements in photosystem II efficiency, water use efficiency, antioxidative defense capacity, and nutrient uptake and allocation, providing critical insights for sustainable mulberry plantation management under future climate change scenarios.
Collapse
Affiliation(s)
- Songmei Shi
- Key Laboratory of Vegetable Biology in Yunnan, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (H.L.); (X.W.); (Z.W.); (J.X.)
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Huakang Li
- Key Laboratory of Vegetable Biology in Yunnan, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (H.L.); (X.W.); (Z.W.); (J.X.)
| | - Xinju Wang
- Key Laboratory of Vegetable Biology in Yunnan, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (H.L.); (X.W.); (Z.W.); (J.X.)
| | - Ziran Wang
- Key Laboratory of Vegetable Biology in Yunnan, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (H.L.); (X.W.); (Z.W.); (J.X.)
| | - Junqiang Xu
- Key Laboratory of Vegetable Biology in Yunnan, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (H.L.); (X.W.); (Z.W.); (J.X.)
| | - Xinhua He
- Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400716, China
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 95616, USA
| | - Zheng’an Yang
- Key Laboratory of Vegetable Biology in Yunnan, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (S.S.); (H.L.); (X.W.); (Z.W.); (J.X.)
| |
Collapse
|
4
|
Machado Filho J, Costa P, Arantes LDEO, Dousseau-Arantes S, Rodrigues W, Crasque J, Campostrini E. Hydraulic conductivity and photosynthetic capacity of seedlings of Coffea canephora genotypes. PHOTOSYNTHETICA 2024; 62:351-360. [PMID: 39811714 PMCID: PMC11726287 DOI: 10.32615/ps.2024.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 01/16/2025]
Abstract
The aim was to investigate the morphological, photosynthetic, and hydraulic physiological characteristics of different genotypes of Coffea canephora under controlled cultivation conditions. Growth, conductance, and hydraulic conductivity of the root system of 16 C. canephora genotypes were evaluated in Experiment 1 (November 2013). In Experiment 2 (December 2014), in addition to the previous characteristics, gas exchange, photochemical efficiency, leaf water potential, and leaf hydraulic conductivity were investigated in five genotypes. No significant differences were observed in specific leaf hydraulic conductance, stomatal density, or gas exchange. The correlation between root hydraulic conductance and leaf area and dry mass indicates a physiological balance, reflecting the root system's ability to supply water to the aerial parts and maintain leaf water potential and photosynthetic activity during periods of high atmospheric evapotranspiration. These characteristics are important for genotypes cultivated under low water supply and high evaporative demand, even under irrigation.
Collapse
Affiliation(s)
- J.A. Machado Filho
- Capixaba Research Institute, Technical Assistance and Rural Extension, BR 101, Km 151, Bebedouro (Cx postal 62), Linhares, ES, Brazil
| | - P.R. Costa
- Capixaba Research Institute, Technical Assistance and Rural Extension, BR 101, Km 151, Bebedouro (Cx postal 62), Linhares, ES, Brazil
| | - L. DE O. Arantes
- Capixaba Research Institute, Technical Assistance and Rural Extension, BR 101, Km 151, Bebedouro (Cx postal 62), Linhares, ES, Brazil
| | - S. Dousseau-Arantes
- Capixaba Research Institute, Technical Assistance and Rural Extension, BR 101, Km 151, Bebedouro (Cx postal 62), Linhares, ES, Brazil
| | - W.P. Rodrigues
- Center for Agricultural, Natural, and Literature Sciences, State University of the Tocantins do Maranhão Region, Avenida Brejo do Pinto, S/N, 65975-000, MA, Brazil
| | - J. Crasque
- Capixaba Research Institute, Technical Assistance and Rural Extension, BR 101, Km 151, Bebedouro (Cx postal 62), Linhares, ES, Brazil
| | - E. Campostrini
- Plant Physiology Sector, State University of Norte Fluminense, Center for Sciences and Agricultural Technologies (CCTA), Avenida Alberto Lamego, 2000, 28015-620, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
5
|
Ling Z, Lu E, Peng X, Yang Y, Zheng Y. The physiochemical characteristics and glycerolipid profile of Cycas panzhihuaensis in response to individual and combined drought and freezing temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108907. [PMID: 38972242 DOI: 10.1016/j.plaphy.2024.108907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The frequency and intensity of the occurrence of drought (D) events during winter are increasing in most areas of China. To explore the interactive effects of D and freezing temperature (F) on plants of endangered Cycas panzhihuaensis, some physiochemical characteristics and the lipid profile were determined. Drought and F stress had no or little impact on the traits of leaves, which, however, bleached following a combination of D and F treatment (DF). Drought treatment did not affect the chlorophyll fluorescence parameters and the flavonoid content of C. panzhihuaensis. Besides the increase in flavonoid content, a decrease of photochemical efficiency and an increase of heat dissipation were induced by both F and DF treatment, with the effects being greater in the latter treatment. The malondialdehyde content decreased significantly and the total antioxidant capacity increased significantly in the plants exposed to both D and DF treatments. The D treatment did not impact the amount of phospholipids but led to an accumulation of saccharolipids. Additionally, the amount of both phospholipids and saccharolipids remained unchanged following F treatment but decreased significantly following DF treatment compared with those of the control. The unsaturation level did not change significantly in most lipid classes of membrane glycerolipids following various stresses but increased significantly in phosphatidylserine, monogalactosylmonoacylglycerol, digalactosyldiacylglycerol and sulphoquinovosyldiacylglycerol following D or both D and F treatments. Generally, plants of C. panzhihuaensis showed relatively strong tolerance to individual D stress, while D aggravated the F-induced damage, which was likely caused by the degradation of the membrane glycerolipids.
Collapse
Affiliation(s)
- Zhiwei Ling
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, China
| | - Erya Lu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, China
| | - Xiaoling Peng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, China
| | - Yongqiong Yang
- Sichuan Cycas panzhihuaensis National Nature Reserve, Panzhihua, China, 617000, China.
| | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, China.
| |
Collapse
|
6
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Rodrigues AP, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Transcriptomic Analyses Reveal That Coffea arabica and Coffea canephora Have More Complex Responses under Combined Heat and Drought than under Individual Stressors. Int J Mol Sci 2024; 25:7995. [PMID: 39063237 PMCID: PMC11277005 DOI: 10.3390/ijms25147995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Dora Batista
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Ana P. Rodrigues
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Fábio L. Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| |
Collapse
|
7
|
Daccak D, Marques AC, Pessoa CC, Coelho ARF, Luís IC, Brito G, Kullberg JC, Ramalho JC, Rodrigues AP, Scotti-Campos P, Pais IP, Semedo JN, Silva MM, Legoinha P, Galhano C, Simões M, Reboredo FH, Lidon FC. Foliar Spraying with ZnSO 4 or ZnO of Vitis vinifera cv. Syrah Increases the Synthesis of Photoassimilates and Favors Winemaking. PLANTS (BASEL, SWITZERLAND) 2024; 13:1962. [PMID: 39065488 PMCID: PMC11280998 DOI: 10.3390/plants13141962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Zinc enrichment of edible food products, through the soil and/or foliar application of fertilizers, is a strategy that can increase the contents of some nutrients, namely Zn. In this context, a workflow for agronomic enrichment with zinc was carried out on irrigated Vitis vinifera cv. Syrah, aiming to evaluate the mobilization of photoassimilates to the winegrapes and the consequences of this for winemaking. During three productive cycles, foliar applications were performed with ZnSO4 or ZnO, at concentrations ranging between 150 and 1350 g.ha-1. The normal vegetation index as well as some photosynthetic parameters indicated that the threshold of Zn toxicity was not reached; it is even worth noting that with ZnSO4, a significant increase in several cases was observed in net photosynthesis (Pn). At harvest, Zn biofortification reached a 1.2 to 2.3-fold increase with ZnSO4 and ZnO, respectively (being significant relative to the control, in two consecutive years, with ZnO at a concentration of 1350 g.ha-1). Total soluble sugars revealed higher values with grapes submitted to ZnSO4 and ZnO foliar applications, which can be advantageous for winemaking. It was concluded that foliar spraying was efficient with ZnO and ZnSO4, showing potential benefits for wine quality without evidencing negative impacts.
Collapse
Affiliation(s)
- Diana Daccak
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Ana Coelho Marques
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Cláudia Campos Pessoa
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Ana Rita F. Coelho
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Inês Carmo Luís
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Graça Brito
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - José Carlos Kullberg
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - José C. Ramalho
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Avenida da República, 2784-505 Oeiras, Portugal
| | - Ana Paula Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Laboratório Associado TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Paula Scotti-Campos
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Paulo Legoinha
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Carlos Galhano
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Manuela Simões
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Fernando H. Reboredo
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| | - Fernando C. Lidon
- Departamento de Ciências da Terra, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.C.M.); (C.C.P.); (A.R.F.C.); (I.C.L.); (G.B.); (J.C.K.); (M.M.S.); (P.L.); (C.G.); (M.S.); (F.H.R.); (F.C.L.)
- Centro de Investigação de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (J.C.R.); (P.S.-C.); (I.P.P.); (J.N.S.)
| |
Collapse
|
8
|
Misiukevičius E, Mažeikienė I, Stanys V. Ploidy's Role in Daylily Plant Resilience to Drought Stress Challenges. BIOLOGY 2024; 13:289. [PMID: 38785771 PMCID: PMC11117801 DOI: 10.3390/biology13050289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
This study aimed to understand the differences in the performance of diploid and tetraploid daylily cultivars under water deficit conditions, which are essential indicators of drought tolerance. This research revealed that tetraploid daylilies performed better than diploid varieties in arid conditions due to their enhanced adaptability and resilience to water deficit conditions. The analysis of the results highlighted the need to clarify the specific physiological and molecular mechanisms underlying the enhanced drought tolerance observed in tetraploid plants compared to diploids. This research offers valuable knowledge for improving crop resilience and sustainable floricultural practices in changing environmental conditions. The morphological and physiological parameters were analyzed in 19 diploid and 21 tetraploid daylily cultivars under controlled water deficit conditions, and three drought resistance groups were formed based on the clustering of these parameters. In a high drought resistance cluster, 93.3% tetraploid cultivars were exhibited. This study demonstrates the significance of ploidy in shaping plant responses to drought stress. It emphasizes the importance of studying plant responses to water deficit in landscape horticulture to develop drought-tolerant plants and ensure aspects of climate change.
Collapse
Affiliation(s)
- Edvinas Misiukevičius
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas Street 30, 54333 Babtai, Lithuania; (I.M.); (V.S.)
| | | | | |
Collapse
|
9
|
Kim D, Guadagno CR, Ewers BE, Mackay DS. Combining PSII photochemistry and hydraulics improves predictions of photosynthesis and water use from mild to lethal drought. PLANT, CELL & ENVIRONMENT 2024; 47:1255-1268. [PMID: 38178610 DOI: 10.1111/pce.14806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Rising temperatures and increases in drought negatively impact the efficiency and sustainability of both agricultural and forest ecosystems. Although hydraulic limitations on photosynthesis have been extensively studied, a solid understanding of the links between whole plant hydraulics and photosynthetic processes at the cellular level under changing environmental conditions is still missing, hampering our predictive power for plant mortality. Here, we examined plant hydraulic traits and CO2 assimilation rate under progressive water limitation by implementing Photosystem II (PSII) dynamics with a whole plant process model (TREES). The photosynthetic responses to plant water status were parameterized based on measurements of chlorophyll a fluorescence, gas exchange and water potential for Brassica rapa (R500) grown in a greenhouse under fully watered to lethal drought conditions. The updated model significantly improved predictions of photosynthesis, stomatal conductance and leaf water potential. TREES with PSII knowledge predicted a larger hydraulic safety margin and a decrease in percent loss of conductivity. TREES predicted a slower decrease in leaf water potential, which agreed with measurements. Our results highlight the pressing need for incorporating PSII drought photochemistry into current process models to capture cross-scale plant water dynamics from cell to whole plant level.
Collapse
Affiliation(s)
- Dohyoung Kim
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| | | | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, Wyoming, USA
| | - D Scott Mackay
- Department of Geography, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
10
|
Rodrigues AP, Pais IP, Leitão AE, Dubberstein D, Lidon FC, Marques I, Semedo JN, Rakocevic M, Scotti-Campos P, Campostrini E, Rodrigues WP, Simões-Costa MC, Reboredo FH, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Uncovering the wide protective responses in Coffea spp. leaves to single and superimposed exposure of warming and severe water deficit. FRONTIERS IN PLANT SCIENCE 2024; 14:1320552. [PMID: 38259931 PMCID: PMC10801242 DOI: 10.3389/fpls.2023.1320552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.
Collapse
Affiliation(s)
- Ana P. Rodrigues
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Isabel P. Pais
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - António E. Leitão
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Danielly Dubberstein
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
- Assistência Técnica e Gerencial em Cafeicultura - Serviço Nacional de Aprendizagem Rural (SENAR), Porto Velho, RO, Brazil
| | - Fernando C. Lidon
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Isabel Marques
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - José N. Semedo
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Miroslava Rakocevic
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Paula Scotti-Campos
- Unidade de Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Eliemar Campostrini
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
| | - Weverton P. Rodrigues
- Setor de Fisiologia Vegetal, Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense, Rio de Janeiro, Brazil
- Centro de Ciências Agrárias, Naturais e Letras, Universidade Estadual da Região Tocantina do Maranhão, Maranhão, Brazil
| | - Maria Cristina Simões-Costa
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
| | - Fernando H. Reboredo
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Fábio L. Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), São Mateus, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - José C. Ramalho
- Laboratório de Interações Planta-Ambiente e Biodiversidade (PlantStress & Biodiversity), Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Oeiras, Lisboa, Portugal
- Laboratório Associado TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, (ISA/ULisboa), Lisboa, Portugal
- Unidade de GeoBiociências, GeoEngenharias e GeoTecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
11
|
de Oliveira US, de Souza AH, de Andrade MT, Oliveira LA, Gouvea DG, Martins SCV, Ramalho JDC, Cardoso AA, DaMatta FM. Carbon gain is coordinated with enhanced stomatal conductance and hydraulic architecture in coffee plants acclimated to elevated [CO 2]: The interplay with irradiance supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108145. [PMID: 37907041 DOI: 10.1016/j.plaphy.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/02/2023]
Abstract
We recently demonstrated that, under elevated [CO2] (eCa), coffee (Coffea arabica L.) plants grown at high light (HL), but not at low light (LL), display higher stomatal conductance (gs) than at ambient [CO2] (aCa). We then hypothesized that the enhanced gs at eCa/HL, if sustained at the long-term, would lead to adjustments in hydraulic architecture. To test this hypothesis, potted plants of coffee were grown in open-top chambers for 12 months under HL or LL (ca. 9 or 1 mol photons m-2 day-1, respectively); these light treatments were combined with two [CO2] levels (ca. 437 or 705 μmol mol-1, respectively). Under eCa/HL, increased gs was closely accompanied by increases in branch and leaf hydraulic conductances, suggesting a coordinated response between liquid- and vapor-phase water flows throughout the plant. Still under HL, eCa also resulted in increased Huber value (sapwood area-to-total leaf area), sapwood area-to-stem diameter, and root mass-to-total leaf area, thus further improving the water supply to the leaves. Our results demonstrate that Ca is a central player in coffee physiology increasing carbon gain through a close association between stomatal function and an improved hydraulic architecture under HL conditions.
Collapse
Affiliation(s)
- Uéliton S de Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Antonio H de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Moab T de Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil; Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Débora G Gouvea
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - José D C Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505, Oeiras, Portugal; Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal
| | - Amanda A Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
12
|
de Oliveira KKP, de Oliveira RR, Chalfun-Junior A. Small RNAs: Promising Molecules to Tackle Climate Change Impacts in Coffee Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:3531. [PMID: 37895993 PMCID: PMC10610182 DOI: 10.3390/plants12203531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023]
Abstract
Over the centuries, human society has evolved based on the ability to select and use more adapted species for food supply, which means making plant species tastier and more productive in particular environmental conditions. However, nowadays, this scenario is highly threatened by climate change, especially by the changes in temperature and greenhouse gasses that directly affect photosynthesis, which highlights the need for strategic studies aiming at crop breeding and guaranteeing food security. This is especially worrying for crops with complex phenology, genomes with low variability, and the ones that support a large production chain, such as Coffea sp. L. In this context, recent advances shed some light on the genome function and transcriptional control, revealing small RNAs (sRNAs) that are responsible for environmental cues and could provide variability through gene expression regulation. Basically, sRNAs are responsive to environmental changes and act on the transcriptional and post-transcriptional gene silencing pathways that regulate gene expression and, consequently, biological processes. Here, we first discuss the predicted impact of climate changes on coffee plants and coffee chain production and then the role of sRNAs in response to environmental changes, especially temperature, in different species, together with their potential as tools for genetic improvement. Very few studies in coffee explored the relationship between sRNAs and environmental cues; thus, this review contributes to understanding coffee development in the face of climate change and towards new strategies of crop breeding.
Collapse
Affiliation(s)
| | | | - Antonio Chalfun-Junior
- Laboratory of Plant Molecular Physiology, Plant Physiology Sector, Institute of Biology, Federal University of Lavras, Lavras 3037, Brazil; (K.K.P.d.O.); (R.R.d.O.)
| |
Collapse
|
13
|
Marques AC, Lidon FC, Coelho ARF, Pessoa CC, Daccak D, Luís IC, Simões M, Scotti-Campos P, Almeida AS, Guerra M, Leitão RG, Bagulho A, Moreira J, Pessoa MF, Legoinha P, Ramalho JC, Semedo JN, Palha L, Silva C, Silva MM, Oliveira K, Pais IP, Reboredo FH. Elemental Composition and Implications on Brown Rice Flour Biofortified with Selenium. PLANTS (BASEL, SWITZERLAND) 2023; 12:1611. [PMID: 37111835 PMCID: PMC10140823 DOI: 10.3390/plants12081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Rice (Oryza sativa L.) is one of the most economically and socially important cereals in the world. Several strategies such as biofortification have been developed in a way eco-friendly and sustainable to enhance crop productivity. This study implemented an agronomic itinerary in Ariete and Ceres rice varieties in experimental fields using the foliar application of selenium (Se) to increase rice nutritional value. At strategic phases of the plant's development (at the end of booting, anthesis, and at the milky grain stage), they were sprayed with sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3). In the first foliar application plants were sprayed with 500 g Se·ha-1 and in the remaining two foliar applications were sprayed with 300 g Se·ha-1. The effects of Se in the level of micro and macronutrients in brown grains, the localization of Se in these grains, and the subsequent quality parameters such as colorimetric characteristics and total protein were considered. After grain harvesting, the application of selenite showed the highest enrichment in all grain with levels reaching 17.06 µg g-1 Se and 14.28 µg g-1 Se in Ariete and Ceres varieties, respectively. In the Ceres and Ariete varieties, biofortification significantly affected the K and P contents. Regarding Ca, a clear trend prevailed suggesting that Se antagonizes the uptake of it, while for the remaining elements in general (except Mn) no significant differences were noted. Protein content increased with selenite treatment in the Ariete variety but not in Ceres. Therefore, it was possible to conclude, without compromising quality, that there was an increase in the nutritional content of Se in brown rice grain.
Collapse
Affiliation(s)
- Ana Coelho Marques
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Ana Rita F. Coelho
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Cláudia Campos Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Diana Daccak
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Inês Carmo Luís
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Manuela Simões
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Paula Scotti-Campos
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2780-157 Oeiras, Portugal
| | - Ana Sofia Almeida
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Estrada de Gil Vaz 6, 7351-901 Elvas, Portugal
| | - Mauro Guerra
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal (R.G.L.)
| | - Roberta G. Leitão
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal (R.G.L.)
| | - Ana Bagulho
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Estrada de Gil Vaz 6, 7351-901 Elvas, Portugal
| | - José Moreira
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Estrada de Gil Vaz 6, 7351-901 Elvas, Portugal
| | - Maria F. Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Paulo Legoinha
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Associate Laboratory TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Associate Laboratory TERRA, Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José N. Semedo
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2780-157 Oeiras, Portugal
| | - Lourenço Palha
- Centro de Competências do Arroz (COTARROZ), 2120-014 Salvaterra de Magos, Portugal (C.S.)
| | - Cátia Silva
- Centro de Competências do Arroz (COTARROZ), 2120-014 Salvaterra de Magos, Portugal (C.S.)
| | - Maria Manuela Silva
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Karliana Oliveira
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Isabel P. Pais
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2780-157 Oeiras, Portugal
| | - Fernando H. Reboredo
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
de Souza AH, de Oliveira US, Oliveira LA, de Carvalho PHN, de Andrade MT, Pereira TS, Gomes Junior CC, Cardoso AA, Ramalho JDC, Martins SCV, DaMatta FM. Growth and Leaf Gas Exchange Upregulation by Elevated [CO 2] Is Light Dependent in Coffee Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1479. [PMID: 37050105 PMCID: PMC10097104 DOI: 10.3390/plants12071479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eCa), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eCa and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m-2 day-1, respectively), and aCa or eCa (437 or 705 μmol mol-1, respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aCa, our main findings were (i) a greater stomatal conductance (gs) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater gs during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eCa improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.
Collapse
Affiliation(s)
- Antonio H. de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Ueliton S. de Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Leonardo A. Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Pablo H. N. de Carvalho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Moab T. de Andrade
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Talitha S. Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Carlos C. Gomes Junior
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Amanda A. Cardoso
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - José D. C. Ramalho
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Laboratório Associado Terra, Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Samuel C. V. Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| |
Collapse
|
15
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Partelli F, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Overexpression of Water-Responsive Genes Promoted by Elevated CO 2 Reduces ROS and Enhances Drought Tolerance in Coffea Species. Int J Mol Sci 2023; 24:ijms24043210. [PMID: 36834624 PMCID: PMC9966387 DOI: 10.3390/ijms24043210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
Drought is a major constraint to plant growth and productivity worldwide and will aggravate as water availability becomes scarcer. Although elevated air [CO2] might mitigate some of these effects in plants, the mechanisms underlying the involved responses are poorly understood in woody economically important crops such as Coffea. This study analyzed transcriptome changes in Coffea canephora cv. CL153 and C. arabica cv. Icatu exposed to moderate (MWD) or severe water deficits (SWD) and grown under ambient (aCO2) or elevated (eCO2) air [CO2]. We found that changes in expression levels and regulatory pathways were barely affected by MWD, while the SWD condition led to a down-regulation of most differentially expressed genes (DEGs). eCO2 attenuated the impacts of drought in the transcripts of both genotypes but mostly in Icatu, in agreement with physiological and metabolic studies. A predominance of protective and reactive oxygen species (ROS)-scavenging-related genes, directly or indirectly associated with ABA signaling pathways, was found in Coffea responses, including genes involved in water deprivation and desiccation, such as protein phosphatases in Icatu, and aspartic proteases and dehydrins in CL153, whose expression was validated by qRT-PCR. The existence of a complex post-transcriptional regulatory mechanism appears to occur in Coffea explaining some apparent discrepancies between transcriptomic, proteomic, and physiological data in these genotypes.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Dora Batista
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Fábio Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
- Correspondence: (A.I.R.-B.); or (J.C.R.)
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Associate Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
- Correspondence: (A.I.R.-B.); or (J.C.R.)
| |
Collapse
|
16
|
P. Pais I, Moreira R, Semedo JN, Reboredo FH, Lidon FC, Coutinho J, Maçãs B, Scotti-Campos P. Phenotypic Diversity of Seminal Root Traits in Bread Wheat Germplasm from Different Origins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2842. [PMID: 36365295 PMCID: PMC9657832 DOI: 10.3390/plants11212842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Bread wheat (Triticum aestivum L.) is a major staple crop, and more adapted varieties are needed to ensure productivity under unpredictable stress scenarios resulting from climate changes. In the development of new genotypes, root system traits are essential since roots have a key function in water and nutrient uptake, and root architecture determines the plant's ability to spatially explore the soil resources. Genetic variation in wheat root system may be assessed at the early stages of development. This study evaluates in vitro and at the seedling stage, the genetic diversity of root growth angle (RGA), seminal root number (SRN), and radicle length (RadL) in 30 bread wheat genotypes from different origins and belonging to distinct evolutive or breeding groups. SRN and RadL were analyzed at 1, 2, 3 and 6 days after sowing (DAS) and RGA was measured through the angle between the first pair of seminal roots. A large variability was found in RGA values that ranged from 63° to 122°. Although differences were found between genotypes within the same groups, the narrower angles tended to occur among landraces, while the higher RGA values were observed in advanced lines and Australian varieties. Differences were also observed as regards the SRN (1.0-3.0, 2.7-4.7, 3.2-5.0 and 4.4-6.3 at 1, 2, 3 and 6 DAS, respectively) and RadL (0.1-1.5, 2.1-5.0, 4.0-7.5 and 5.1-13.7 cm at 1, 2, 3 and 6 DAS, respectively). Genetic variability in root traits at seedling stage allows more rapid selection of genotypes better adapted to environmental and soil constraints, necessary to Portuguese Wheat Breeding Program. It will also contribute to the definition of wheat ideotypes with improved performance under Mediterranean climate conditions.
Collapse
Affiliation(s)
- Isabel P. Pais
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Rita Moreira
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - José N. Semedo
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Coutinho
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estrada Gil Vaz, Ap. 6, 7350-901 Elvas, Portugal
| | - Benvindo Maçãs
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estrada Gil Vaz, Ap. 6, 7350-901 Elvas, Portugal
| | - Paula Scotti-Campos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
- GeoBioTec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
17
|
Vinci G, Marques I, Rodrigues AP, Martins S, Leitão AE, Semedo MC, Silva MJ, Lidon FC, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Protective Responses at the Biochemical and Molecular Level Differ between a Coffea arabica L. Hybrid and Its Parental Genotypes to Supra-Optimal Temperatures and Elevated Air [CO 2]. PLANTS (BASEL, SWITZERLAND) 2022; 11:2702. [PMID: 36297726 PMCID: PMC9610391 DOI: 10.3390/plants11202702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Climate changes with global warming associated with rising atmospheric [CO2] can strongly impact crop performance, including coffee, which is one of the most world's traded agricultural commodities. Therefore, it is of utmost importance to understand the mechanisms of heat tolerance and the potential role of elevated air CO2 (eCO2) in the coffee plant response, particularly regarding the antioxidant and other protective mechanisms, which are crucial for coffee plant acclimation. For that, plants of Coffea arabica cv. Geisha 3, cv. Marsellesa and their hybrid (Geisha 3 × Marsellesa) were grown for 2 years at 25/20 °C (day/night), under 400 (ambient CO2, aCO2) or 700 µL (elevated CO2, eCO2) CO2 L-1, and then gradually submitted to a temperature increase up to 42/30 °C, followed by recovery periods of 4 (Rec4) and 14 days (Rec14). Heat (37/28 °C and/or 42/30 °C) was the major driver of the response of the studied protective molecules and associated genes in all genotypes. That was the case for carotenoids (mostly neoxanthin and lutein), but the maximal (α + β) carotenes pool was found at 37/28 °C only in Marsellesa. All genes (except VDE) encoding for antioxidative enzymes (catalase, CAT; superoxide dismutases, CuSODs; ascorbate peroxidases, APX) or other protective proteins (HSP70, ELIP, Chape20, Chape60) were strongly up-regulated at 37/28 °C, and, especially, at 42/30 °C, in all genotypes, but with maximal transcription in Hybrid plants. Accordingly, heat greatly stimulated the activity of APX and CAT (all genotypes) and glutathione reductase (Geisha3, Hybrid) but not of SOD. Notably, CAT activity increased even at 42/30 °C, concomitantly with a strongly declined APX activity. Therefore, increased thermotolerance might arise through the reinforcement of some ROS-scavenging enzymes and other protective molecules (HSP70, ELIP, Chape20, Chape60). Plants showed low responsiveness to single eCO2 under unstressed conditions, while heat promoted changes in aCO2 plants. Only eCO2 Marsellesa plants showed greater contents of lutein, the pool of the xanthophyll cycle components (V + A + Z), and β-carotene, compared to aCO2 plants at 42/30 °C. This, together with a lower CAT activity, suggests a lower presence of H2O2, likely also associated with the higher photochemical use of energy under eCO2. An incomplete heat stress recovery seemed evident, especially in aCO2 plants, as judged by the maintenance of the greater expression of all genes in all genotypes and increased levels of zeaxanthin (Marsellesa and Hybrid) relative to their initial controls. Altogether, heat was the main response driver of the addressed protective molecules and genes, whereas eCO2 usually attenuated the heat response and promoted a better recovery. Hybrid plants showed stronger gene expression responses, especially at the highest temperature, when compared to their parental genotypes, but altogether, Marsellesa showed a greater acclimation potential. The reinforcement of antioxidative and other protective molecules are, therefore, useful biomarkers to be included in breeding and selection programs to obtain coffee genotypes to thrive under global warming conditions, thus contributing to improved crop sustainability.
Collapse
Affiliation(s)
- Gabriella Vinci
- Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum, The University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana P. Rodrigues
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Sónia Martins
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - António E. Leitão
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Magda C. Semedo
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Maria J. Silva
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil
| | - Ana I. Ribeiro-Barros
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Oeiras, 2784-505 Lisboa, Portugal
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
18
|
Daccak D, Lidon FC, Luís IC, Marques AC, Coelho ARF, Pessoa CC, Caleiro J, Ramalho JC, Leitão AE, Silva MJ, Rodrigues AP, Guerra M, Leitão RG, Campos PS, Pais IP, Semedo JN, Alvarenga N, Gonçalves EM, Silva MM, Legoinha P, Galhano C, Kullberg JC, Brito M, Simões M, Pessoa MF, Reboredo FH. Zinc Biofortification in Vitis vinifera: Implications for Quality and Wine Production. PLANTS (BASEL, SWITZERLAND) 2022; 11:2442. [PMID: 36145843 PMCID: PMC9501456 DOI: 10.3390/plants11182442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/02/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, there is a growing concern about micronutrient deficits in food products, with agronomic biofortification being considered a mitigation strategy. In this context, as Zn is essential for growth and maintenance of human health, a workflow for the biofortification of grapes from the Vitis vinifera variety Fernão Pires, which contains this nutrient, was carried out considering the soil properties of the vineyard. Additionally, Zn accumulation in the tissues of the grapes and the implications for some quality parameters and on winemaking were assessed. Vines were sprayed three times with ZnO and ZnSO4 at concentrations of 150, 450, and 900 g ha-1 during the production cycle. Physiological data were obtained through chlorophyll a fluorescence data, to access the potential symptoms of toxicity. At harvest, treated grapes revealed significant increases of Zn concentration relative to the control, being more pronounced for ZnO and ZnSO4 in the skin and seeds, respectively. After winemaking, an increase was also found regarding the control (i.e., 1.59-fold with ZnSO4-450 g ha-1). The contents of the sugars and fatty acids, as well as the colorimetric analyses, were also assessed, but significant variations were not found among treatments. In general, Zn biofortification increased with ZnO and ZnSO4, without significantly affecting the physicochemical characteristics of grapes.
Collapse
Affiliation(s)
- Diana Daccak
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando C. Lidon
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Inês Carmo Luís
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Coelho Marques
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Rita F. Coelho
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Cláudia Campos Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Caleiro
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José C. Ramalho
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - António E. Leitão
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria José Silva
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana Paula Rodrigues
- PlantStress & Biodiversity Laboratory, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. República, 2784-505, Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Mauro Guerra
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Roberta G. Leitão
- LIBPhys, Physics Department, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Paula Scotti Campos
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P. Pais
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - José N. Semedo
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Nuno Alvarenga
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Elsa M. Gonçalves
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Maria Manuela Silva
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Escola Superior de Educação Almeida Garrett (ESEAG-COFAC), Avenida do Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Paulo Legoinha
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Carlos Galhano
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José Carlos Kullberg
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Brito
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela Simões
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Maria Fernanda Pessoa
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Fernando H. Reboredo
- Earth Sciences Department, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- GeoBiotec Research Center, Faculdade de Ciências e Tecnologia, Campus da Caparica, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
19
|
Zhu H, Wu Y, Zheng Y. Effects of heat shock on photosynthesis-related characteristics and lipid profile of Cycas multipinnata and C. panzhihuaensis. BMC PLANT BIOLOGY 2022; 22:442. [PMID: 36109687 PMCID: PMC9476270 DOI: 10.1186/s12870-022-03825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cycas multipinnata and C. panzhihuaensis are two attractive ornamental tree species. With the global climate change, the temperature in the natural habitats of both the species shows a marked rising trend. However, how the two species respond to extreme high temperatures are not clear. Chlorophyll fluorescence parameters, chlorophyll content, chloroplast ultrastructure and lipid metabolism in the two species were determined following plant exposure to heat stress. RESULTS The results demonstrated that the photosynthetic efficiency decreased significantly in both the species following heat shock and recovery, but to a greater extent in C. panzhihuaensis. Compared to the control, chlorophyll content of C. multipinnata did not change significantly following heat stress and recovery. However, chlorophyll content of C. panzhihuaensis increased significantly after 1 d of recovery in comparison with the control. Chloroplast ultrastructures of C. panzhihuaensis were more severely affected by heat shock than C. multipinnata. C. multipinnata and C. panzhihuaensis followed a similar change trend in the amounts of most of the lipid categories after heat stress. However, only the amounts of lysophospholipids and fatty acyls differed significantly between the two species following heat treatment. Additionally, the unsaturation levels of the major lipid classes in C. multipinnata were significantly lower than or equal to those in C. panzhihuaensis. CONCLUSIONS C. multipinnata was less affected by extremely high temperatures than C. panzhihuaensis. The differential stability of chlorophyll and chloroplast ultrastructure and the differential adjustment of lipid metabolism might contribute to the different responses to heat shock between the two species.
Collapse
Affiliation(s)
- Huan Zhu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yangyang Wu
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China
| | - Yanling Zheng
- Key Laboratory of State Forestry and Grassland Administration for Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650233, Yunnan, China.
| |
Collapse
|
20
|
Marques I, Rodrigues AP, Gouveia D, Lidon FC, Martins S, Semedo MC, Gaillard JC, Pais IP, Semedo JN, Scotti-Campos P, Reboredo FH, Partelli FL, DaMatta FM, Armengaud J, Ribeiro-Barros AI, Ramalho JC. High-resolution shotgun proteomics reveals that increased air [CO 2] amplifies the acclimation response of coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153788. [PMID: 35944291 DOI: 10.1016/j.jplph.2022.153788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
As drought threatens crop productivity it is crucial to characterize the defense mechanisms against water deficit and unveil their interaction with the expected rise in the air [CO2]. For that, plants of Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu grown under 380 (aCO2) or 700 μL L-1 (eCO2) were exposed to moderate (MWD) and severe (SWD) water deficits. Responses were characterized through the activity and/or abundance of a selected set of proteins associated with antioxidative (e.g., Violaxanthin de-epoxidase, Superoxide dismutase, Ascorbate peroxidases, Monodehydroascorbate reductase), energy/sugar (e.g., Ferredoxin-NADP reductase, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase, mannose-6-phosphate isomerase, Enolase), and lipid (Lineolate 13S-lipoxygenase) processes, as well as with other antioxidative (ascorbate) and protective (HSP70) molecules. MWD caused small changes in both genotypes regardless of [CO2] level while under the single imposition to SWD, only Icatu showed a global reinforcement of most studied proteins supporting its tolerance to drought. eCO2 alone did not promote remarkable changes but strengthened a robust multi-response under SWD, even supporting the reversion of impacts already observed by CL153 at aCO2. In the context of climate changes where water constraints and [CO2] levels are expected to increase, these results highlight why eCO2 might have an important role in improving drought tolerance in Coffea species.
Collapse
Affiliation(s)
- Isabel Marques
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Ana P Rodrigues
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Duarte Gouveia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Fernando C Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Sónia Martins
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - Magda C Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - Jean-Charles Gaillard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Isabel P Pais
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - José N Semedo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - Paula Scotti-Campos
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal; Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505, Oeiras, Portugal.
| | - Fernando H Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil.
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), 36570-000, Viçosa, MG, Brazil.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-F-30200, Bagnols-sur-Cèze, France.
| | - Ana I Ribeiro-Barros
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| | - José C Ramalho
- PlantStress & Biodiversity Lab., Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505 Oeiras, and Tapada da Ajuda, 1349-017, Lisboa, Portugal; Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro 1, 1959-007, Lisboa, Portugal.
| |
Collapse
|
21
|
Lobo AKM, Catarino ICA, Silva EA, Centeno DC, Domingues DS. Physiological and Molecular Responses of Woody Plants Exposed to Future Atmospheric CO2 Levels under Abiotic Stresses. PLANTS 2022; 11:plants11141880. [PMID: 35890514 PMCID: PMC9322912 DOI: 10.3390/plants11141880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
Abstract
Climate change is mainly driven by the accumulation of carbon dioxide (CO2) in the atmosphere in the last century. Plant growth is constantly challenged by environmental fluctuations including heat waves, severe drought and salinity, along with ozone accumulation in the atmosphere. Food security is at risk in an increasing world population, and it is necessary to face the current and the expected effects of global warming. The effects of the predicted environment scenario of elevated CO2 concentration (e[CO2]) and more severe abiotic stresses have been scarcely investigated in woody plants, and an integrated view involving physiological, biochemical and molecular data is missing. This review highlights the effects of elevated CO2 in the metabolism of woody plants and the main findings of its interaction with abiotic stresses, including a molecular point of view, aiming to improve the understanding of how woody plants will face the predicted environmental conditions. Overall, e[CO2] stimulates photosynthesis and growth and attenuates mild to moderate abiotic stress in woody plants if root growth and nutrients are not limited. Moreover, e[CO2] does not induce acclimation in most tree species. Some high-throughput analyses involving omics techniques were conducted to better understand how these processes are regulated. Finally, knowledge gaps in the understanding of how the predicted climate condition will affect woody plant metabolism were identified, with the aim of improving the growth and production of this plant species.
Collapse
Affiliation(s)
- Ana Karla M. Lobo
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| | - Ingrid C. A. Catarino
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
| | - Emerson A. Silva
- Institute of Environmental Research, São Paulo 04301-002, Brazil;
| | - Danilo C. Centeno
- Centre for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo 09606-045, Brazil;
| | - Douglas S. Domingues
- Department of Biodiversity, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro 13506-900, Brazil;
- Correspondence: (A.K.M.L.); (D.S.D.)
| |
Collapse
|
22
|
Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, Turreira-García N, Rigal C, Vaast P, Ramalho JC, Marraccini P, Ræbild A. Shaded-Coffee: A Nature-Based Strategy for Coffee Production Under Climate Change? A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.877476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Coffee is deemed to be a high-risk crop in light of upcoming climate changes. Agroforestry practices have been proposed as a nature-based strategy for coffee farmers to mitigate and adapt to future climates. However, with agroforestry systems comes shade, a highly contentious factor for coffee production in terms of potential yield reduction, as well as additional management needs and interactions between shade trees and pest and disease. In this review, we summarize recent research relating to the effects of shade on (i) farmers' use and perceptions, (ii) the coffee microenvironment, (iii) pest and disease incidence, (iv) carbon assimilation and phenology of coffee plants, (v) coffee quality attributes (evaluated by coffee bean size, biochemical compounds, and cup quality tests), (vi) breeding of new Arabica coffee F1 hybrids and Robusta clones for future agroforestry systems, and (vii) coffee production under climate change. Through this work, we begin to decipher whether shaded systems are a feasible strategy to improve the coffee crop sustainability in anticipation of challenging climate conditions. Further research is proposed for developing new coffee varieties adapted to agroforestry systems (exhibiting traits suitable for climate stressors), refining extension tools by selecting locally-adapted shade trees species and developing policy and economic incentives enabling the adoption of sustainable agroforestry practices.
Collapse
|
23
|
Nunes C, Moreira R, Pais I, Semedo J, Simões F, Veloso MM, Scotti-Campos P. Cowpea Physiological Responses to Terminal Drought-Comparison between Four Landraces and a Commercial Variety. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050593. [PMID: 35270063 PMCID: PMC8912480 DOI: 10.3390/plants11050593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 05/23/2023]
Abstract
Cowpea (Vigna unguiculata) is a robust legume; nevertheless, yield is always affected by drought, especially when it occurs during reproductive growth and seed filling. Considered a key crop in the effort to attain food security, and a suitable crop for a scenario of climate change, modern disregard for cowpea landraces is particularly detrimental as it causes genetic variability loss, compromising breeding efforts. To contribute to the evaluation of the cowpea germplasm, four Portuguese landraces (L1, L2, L3, L4) were compared with a commercial variety (CV) to evaluate their physiological responses to terminal drought and their inter-variation on productivity, under semi-controlled conditions. Despite no differences in relative water content (RWC) between the CV and the landraces under water deficit (WD), differences in leaf water potential (Ψ) defined the CV as having an isohydric control of stomata in contrast with anisohydric control for landraces. There was an identical decrease in the photosynthetic rate for all plants under stress, caused by both stomatal and non-stomatal limitations, namely, damages at the level of photosystem II as indicated by fluorescence measurements. Instantaneous water use efficiency (iWUE) was improved with stress in L1 and L3. Maintenance of higher relative chlorophyll content for longer periods in the CV revealed a stay-green phenotype. The slim differences observed in terms of stomatal control, iWUE and progression of senescence between the CV and the landraces under WD led to quite important differences in terms of productivity, as inferred from improved yield (number of pods and number of grains per plant). This is a clear result of pragmatic on-farm selection. On one hand it shows that small differences in stomatal responses or water saving strategies under WD may lead to desirable outcomes and should therefore be considered during breeding. On the other hand, it suggests that other traits could be explored in view of drought adaptation. These results highlight the need to preserve and characterize as many genetic pools as possible within a species.
Collapse
Affiliation(s)
- Cátia Nunes
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Rita Moreira
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Isabel Pais
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| | - José Semedo
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| | - Fernanda Simões
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Maria Manuela Veloso
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
| | - Paula Scotti-Campos
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, Instituto Público, Av. República, 2784-505 Oeiras, Portugal; (R.M.); (I.P.); (J.S.); (F.S.); (M.M.V.); (P.S.-C.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516 Almada, Portugal
| |
Collapse
|
24
|
Amaral DT, Bombonato JR, da Silva Andrade SC, Moraes EM, Franco FF. The genome of a thorny species: comparative genomic analysis among South and North American Cactaceae. PLANTA 2021; 254:44. [PMID: 34357508 DOI: 10.1007/s00425-021-03690-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The first South American cactus nuclear genome assembly associated with comparative genomic analyses provides insights into nuclear and plastid genomic features, such as size, transposable elements, and metabolic processes related to cactus development. Here, we assembled the partial genome, plastome, and transcriptome of Cereus fernambucensis (Cereeae, Cactaceae), a representative species of the South American core Cactoideae. We accessed other genomes and transcriptomes available for cactus species to compare the heterozygosity level, genome size, transposable elements, orthologous genes, and plastome structure. These estimates were obtained from the literature or using the same pipeline adopted for C. fermabucensis. In addition to the C. fernambucensis plastome, we also performed de novo plastome assembly of Pachycereus pringlei, Stenocereus thurberi, and Pereskia humboldtii based on the sequences available in public databases. We estimated a genome size of ~ 1.58 Gb for C. fernambucensis, the largest genome among the compared species. The genome heterozygosity was 0.88% in C. fernambucensis but ranged from 0.36 (Carnegiea gigantea) to 17.4% (Lophocereus schottii) in the other taxa. The genome lengths of the studied cacti are constituted by a high amount of transposable elements, ranging from ~ 57 to ~ 67%. Putative satellite DNAs are present in all species, excepting C. gigantea. The plastome of C. fernambucensis was ~ 104 kb, showing events of translocation, inversion, and gene loss. We observed a low number of shared unique orthologs, which may suggest gene duplication events and the simultaneous expression of paralogous genes. We recovered 37 genes that have undergone positive selection along the Cereus branch that are associated with different metabolic processes, such as improving photosynthesis during drought stress and nutrient absorption, which may be related to the adaptation to xeric areas of the Neotropics.
Collapse
Affiliation(s)
- Danilo Trabuco Amaral
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil
- Graduate Program in Comparative Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Juliana Rodrigues Bombonato
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil
- Graduate Program in Comparative Biology, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Sónia Cristina da Silva Andrade
- Department of Genetics and Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Evandro Marsola Moraes
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil
| | - Fernando Faria Franco
- Department of Biology, Center for Human and Biological Sciences, Universidade Federal de São Carlos (UFSCar), Rodovia João Leme dos Santos, Km 110, SP264, Sorocaba, 18052-780, Brazil.
| |
Collapse
|
25
|
Catarino ICA, Monteiro GB, Ferreira MJP, Torres LMB, Domingues DS, Centeno DC, Lobo AKM, Silva EA. Elevated [CO2] Mitigates Drought Effects and Increases Leaf 5-O-Caffeoylquinic Acid and Caffeine Concentrations During the Early Growth of Coffea Arabica Plants. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.676207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Increasing atmospheric [CO2] is thought to contribute to changes in precipitation patterns, increasing heatwaves and severe drought scenarios. However, how the combination of elevated [CO2] and progressive drought affect plant metabolism is poorly understood. Aiming to investigate the effects of this environmental condition on photosynthesis and specialized metabolites in leaves of Coffea arabica during the early growth, plants fertilized with ambient (a[CO2]-400 ppm) and elevated (e[CO2]-800 ppm) [CO2] were exposed to well-watered (WW) or water-deficit (WD) regimes for 40 days. Over the 40-day-water-withdrawal, soil moisture, and leaf water potential decreased compared to WW-condition. Elevated [CO2] stimulates CO2 assimilation (A) and intrinsic water use efficiency (iWUE) even under WD. Drought condition slightly changed stomatal conductance, transpiration rate and maximum quantum efficiency of photosystem II (PSII) regardless of [CO2] compared to WW-plants. Total soluble amino acid concentration did not change significantly, while total phenolic compounds concentration decreased under e[CO2] regardless of water regimes. The combination of e[CO2]+WD increased the 5-O-caffeoylquinic acid (5-CQA) and caffeine amounts by 40-day when compared to a[CO2]+WD plants. Altogether, these results suggest that e[CO2] buffers mild-drought stress in young C. arabica by increasing A, iWUE and stimulating changes in the leaf contents of 5-CQA and caffeine.
Collapse
|
26
|
Rodrigues AM, Jorge T, Osorio S, Pott DM, Lidon FC, DaMatta FM, Marques I, Ribeiro-Barros AI, Ramalho JC, António C. Primary Metabolite Profile Changes in Coffea spp. Promoted by Single and Combined Exposure to Drought and Elevated CO 2 Concentration. Metabolites 2021; 11:metabo11070427. [PMID: 34209624 PMCID: PMC8303404 DOI: 10.3390/metabo11070427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Climate change scenarios pose major threats to many crops worldwide, including coffee. We explored the primary metabolite responses in two Coffea genotypes, C. canephora cv. Conilon Clone 153 and C. arabica cv. Icatu, grown at normal (aCO2) or elevated (eCO2) CO2 concentrations of 380 or 700 ppm, respectively, under well-watered (WW), moderate (MWD), or severe (SWD) water deficit conditions, in order to assess coffee responses to drought and how eCO2 can influence such responses. Primary metabolites were analyzed with a gas chromatography time-of-flight mass spectrometry metabolomics platform (GC-TOF-MS). A total of 48 primary metabolites were identified in both genotypes (23 amino acids and derivatives, 10 organic acids, 11 sugars, and 4 other metabolites), with differences recorded in both genotypes. Increased metabolite levels were observed in CL153 plants under single and combined conditions of aCO2 and drought (MWD and SWD), as opposed to the observed decreased levels under eCO2 in both drought conditions. In contrast, Icatu showed minor differences under MWD, and increased levels (especially amino acids) only under SWD at both CO2 concentration conditions, although with a tendency towards greater increases under eCO2. Altogether, CL153 demonstrated large impact under MWD, and seemed not to benefit from eCO2 in either MWD and SWD, in contrast with Icatu.
Collapse
Affiliation(s)
- Ana M. Rodrigues
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
| | - Tiago Jorge
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; (S.O.); (D.M.P.)
| | - Delphine M. Pott
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga—Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), 29071 Málaga, Spain; (S.O.); (D.M.P.)
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-090, Brazil;
| | - Isabel Marques
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana I. Ribeiro-Barros
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| | - José C. Ramalho
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Plant Stress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Instituto Superior Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| | - Carla António
- Plant Metabolomics Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; (A.M.R.); (T.J.)
- Correspondence: (A.I.R.-B.); (J.C.R.); (C.A.)
| |
Collapse
|
27
|
A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO 2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. Int J Mol Sci 2021; 22:ijms22063125. [PMID: 33803866 PMCID: PMC8003141 DOI: 10.3390/ijms22063125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.
Collapse
|
28
|
Marques I, Fernandes I, David PH, Paulo OS, Goulao LF, Fortunato AS, Lidon FC, DaMatta FM, Ramalho JC, Ribeiro-Barros AI. Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO 2]. Int J Mol Sci 2020; 21:ijms21239211. [PMID: 33287164 PMCID: PMC7730880 DOI: 10.3390/ijms21239211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Isabel Fernandes
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Pedro H.C. David
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (P.H.D.); (O.S.P.)
| | - Luis F. Goulao
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Tapada da Ajuda, 1349-017 Lisboa, Portugal;
| | - Ana S. Fortunato
- GREEN-IT—Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa (UNL), Av. da República, 2780-157 Oeiras, Portugal;
| | - Fernando C. Lidon
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900 (MG), Brazil;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress & Biodiversity), Forest Research Centre (CEF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 2784-505 Oeiras and Tapada da Ajuda, 1349-017 Lisboa, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal;
- Correspondence: (I.M.); (J.C.R.); (A.I.R.-B.)
| |
Collapse
|