1
|
Mas E, Vilagrosa A, Morcillo L, Valladares F, Grossiord C. Mixing oak and pine trees in Mediterranean forests increases aboveground hydraulic dysfunctions. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 39331795 DOI: 10.1111/plb.13716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024]
Abstract
Increasing tree species diversity in Mediterranean forests could reduce drought-induced hydraulic impairments through improved microclimate and reduced competition for water. However, it remains unclear if and how species diversity modulates tree hydraulic functions and how impacts may shift during the growing season. Using unmanaged Mediterranean forest stands composed of one (i.e., monospecific) or four (i.e., multispecific) tree species, we examined the seasonal dynamics of in-situ hydraulic traits (predawn and midday leaf water potential - Ψpd and Ψmd, xylem- and leaf-specific hydraulic conductivity - KS and KL, percentage loss of conductivity - PLC, specific leaf area - SLA, and Huber value - HV) in four co-existing Pinus and Quercus species over two years. We mainly observed adverse impacts of species diversity with lower Ψpd, Ψmd, KS, KL, and higher PLC in multispecific compared to monospecific stands, especially for the two pines. These impacts were observed all along the growing season but were stronger during the driest periods of the summer. Beneficial impacts of diversity were rare and only occured for oaks (Q. faginea) after prolonged and intense water stress. Our findings reveal that mixing oaks and pines could mainly enhance hydraulic impairments for all species during the dry season, suggesting a potential decline in mixed Mediterranean forests under future climate.
Collapse
Affiliation(s)
- E Mas
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| | - A Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, Alicante, Spain
| | - L Morcillo
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, Alicante, Spain
| | - F Valladares
- Depto de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos, Móstoles, Madrid, Spain
| | - C Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| |
Collapse
|
2
|
Tetzlaff EJ, Goulet N, Gorman M, Richardson GR, Enright PM, Henderson SB, Kenny GP. Media-Based Post-Event Impact Analysis of the 2021 Heat Dome in Canada. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241276669. [PMID: 39247720 PMCID: PMC11378224 DOI: 10.1177/11786302241276669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024]
Abstract
The unprecedented 2021 Heat Dome caused wide-ranging and long-lasting impacts in western Canada, including 619 confirmed heat-related deaths in British Columbia, a doubling of emergency medical calls, increased hospitalisations, infrastructure failures and stress on plants and animals. However, such varied socio-economic consequences of extreme heat can be challenging to capture using a single post-event analysis method. Therefore, there is a need to explore alternative approaches and data sources. Using the 2021 Heat Dome as a case study, a post-event analysis using online news media articles (n = 2909) from 5 subscription news databases and a grey literature search was conducted to identify the socio-economic impacts of the extreme heat event in Canada. The articles reported a wide range of effects to the natural environment (n = 1366), social infrastructure and services (n = 1121), human health (n = 1074), critical infrastructure (n = 988) and the private sector (n = 165). The media-based post-event analysis captured various impacts, some of which have not been identified through other data sources and approaches. Overall, we show that media analysis can complement traditional post-event analysis methods and provide additional perspectives to governments and public health and safety officials.
Collapse
Affiliation(s)
- Emily J Tetzlaff
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Heat Division, Climate Change and Health Office, Health Canada, Ottawa, ON, Canada
| | - Nicholas Goulet
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Heat Division, Climate Change and Health Office, Health Canada, Ottawa, ON, Canada
- Behavioural and Metabolic Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Melissa Gorman
- Heat Division, Climate Change and Health Office, Health Canada, Ottawa, ON, Canada
| | | | - Paddy M Enright
- Heat Division, Climate Change and Health Office, Health Canada, Ottawa, ON, Canada
| | - Sarah B Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Torres-Ruiz JM, Cochard H, Delzon S, Boivin T, Burlett R, Cailleret M, Corso D, Delmas CEL, De Caceres M, Diaz-Espejo A, Fernández-Conradi P, Guillemot J, Lamarque LJ, Limousin JM, Mantova M, Mencuccini M, Morin X, Pimont F, De Dios VR, Ruffault J, Trueba S, Martin-StPaul NK. Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. THE NEW PHYTOLOGIST 2024; 241:984-999. [PMID: 38098153 DOI: 10.1111/nph.19463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/05/2023] [Indexed: 01/12/2024]
Abstract
Plant hydraulics is crucial for assessing the plants' capacity to extract and transport water from the soil up to their aerial organs. Along with their capacity to exchange water between plant compartments and regulate evaporation, hydraulic properties determine plant water relations, water status and susceptibility to pathogen attacks. Consequently, any variation in the hydraulic characteristics of plants is likely to significantly impact various mechanisms and processes related to plant growth, survival and production, as well as the risk of biotic attacks and forest fire behaviour. However, the integration of hydraulic traits into disciplines such as plant pathology, entomology, fire ecology or agriculture can be significantly improved. This review examines how plant hydraulics can provide new insights into our understanding of these processes, including modelling processes of vegetation dynamics, illuminating numerous perspectives for assessing the consequences of climate change on forest and agronomic systems, and addressing unanswered questions across multiple areas of knowledge.
Collapse
Affiliation(s)
- José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Sylvain Delzon
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | | - Regis Burlett
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Maxime Cailleret
- INRAE, Aix-Marseille Université, UMR RECOVER, Aix-en-Provence, 13100, France
| | - Déborah Corso
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | - Chloé E L Delmas
- INRAE, Bordeaux Sciences Agro, ISVV, SAVE, F-33140, Villenave d'Ornon, France
| | | | - Antonio Diaz-Espejo
- Instituto de Recursos Naturales y Agrobiología (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41012, Spain
| | | | - Joannes Guillemot
- CIRAD, UMR Eco&Sols, Montpellier, 34394, France
- Eco&Sols, Univ. Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, 34394, France
- Department of Forest Sciences, ESALQ, University of São Paulo, Piracicaba, 05508-060, São Paulo, Brazil
| | - Laurent J Lamarque
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, G9A 5H7, Québec, Canada
| | | | - Marylou Mantova
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Maurizio Mencuccini
- CREAF, Bellaterra (Cerdanyola del Vallès), Catalonia, E08193, Spain
- ICREA, Barcelona, 08010, Spain
| | - Xavier Morin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34394, France
| | | | - Victor Resco De Dios
- Department of Forest and Agricultural Science and Engineering, University of Lleida, Lleida, 25198, Spain
- JRU CTFC-AGROTECNIO-CERCA Center, Lleida, 25198, Spain
| | | | - Santiago Trueba
- University of Bordeaux, INRAE, UMR BIOGECO, Pessac, 33615, France
| | | |
Collapse
|
4
|
Mas E, Cochard H, Deluigi J, Didion-Gency M, Martin-StPaul N, Morcillo L, Valladares F, Vilagrosa A, Grossiord C. Interactions between beech and oak seedlings can modify the effects of hotter droughts and the onset of hydraulic failure. THE NEW PHYTOLOGIST 2024; 241:1021-1034. [PMID: 37897156 DOI: 10.1111/nph.19358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak. Using modeling, we estimated species interaction effects on timing to drought-induced mortality and the underlying mechanisms driving these impacts. We show that mixtures mitigate adverse heat and drought impacts for oak (less negative leaf water potential, higher stomatal conductance, and delayed stomatal closure) but enhance them for beech (lower water potential and stomatal conductance, narrower leaf safety margins, faster tree mortality). Potential underlying mechanisms include oak's larger canopy and higher transpiration, allowing for quicker exhaustion of soil water in mixtures. Our findings highlight that diversity has the potential to alter the effects of extreme events, which would ensure that some species persist even if others remain sensitive. Among the many processes driving diversity effects, differences in canopy size and transpiration associated with the stomatal regulation strategy seem the primary mechanisms driving mortality vulnerability in mixed seedling plantations.
Collapse
Affiliation(s)
- Eugénie Mas
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Janisse Deluigi
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Margaux Didion-Gency
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Nicolas Martin-StPaul
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE, DomaineSaint Paul, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Luna Morcillo
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, 03080, Alicante, Spain
| | - Fernando Valladares
- Depto de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006, Madrid, Spain
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, 03080, Alicante, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Blackman CJ, Billon LM, Cartailler J, Torres-Ruiz JM, Cochard H. Key hydraulic traits control the dynamics of plant dehydration in four contrasting tree species during drought. TREE PHYSIOLOGY 2023; 43:1772-1783. [PMID: 37318310 PMCID: PMC10652334 DOI: 10.1093/treephys/tpad075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Trees are at risk of mortality during extreme drought, yet our understanding of the traits that govern the timing of drought-induced hydraulic failure remains limited. To address this, we tested SurEau, a trait-based soil-plant-atmosphere model designed to predict the dynamics of plant dehydration as represented by the changes in water potential against those observed in potted trees of four contrasting species (Pinus halepensis Mill., Populus nigra L., Quercus ilex L. and Cedrus atlantica (Endl.) Manetti ex Carriére) exposed to drought. SurEau was parameterized with a range of plant hydraulic and allometric traits, soil and climatic variables. We found a close correspondence between the predicted and observed plant water potential (in MPa) dynamics during the early phase drought, leading to stomatal closure, as well as during the latter phase of drought, leading to hydraulic failure in all four species. A global model's sensitivity analysis revealed that, for a common plant size (leaf area) and soil volume, dehydration time from full hydration to stomatal closure (Tclose) was most strongly controlled by the leaf osmotic potential (Pi0) and its influence on stomatal closure, in all four species, while the maximum stomatal conductance (gsmax) also contributed to Tclose in Q. ilex and C. atlantica. Dehydration times from stomatal closure to hydraulic failure (Tcav) was most strongly controlled by Pi0, the branch residual conductance (gres) and Q10a sensitivity of gres in the three evergreen species, while xylem embolism resistance (P50) was most influential in the deciduous species P. nigra. Our findings point to SurEau as a highly useful model for predicting changes in plant water status during drought and suggest that adjustments made in key hydraulic traits are potentially beneficial to delaying the onset of drought-induced hydraulic failure in trees.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Australia
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Lise-Marie Billon
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Julien Cartailler
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand 63100, France
| |
Collapse
|
6
|
Still CJ, Sibley A, DePinte D, Busby PE, Harrington CA, Schulze M, Shaw DR, Woodruff D, Rupp DE, Daly C, Hammond WM, Page GFM. Causes of widespread foliar damage from the June 2021 Pacific Northwest Heat Dome: more heat than drought. TREE PHYSIOLOGY 2023; 43:203-209. [PMID: 36611006 DOI: 10.1093/treephys/tpac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Affiliation(s)
- C J Still
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - A Sibley
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - D DePinte
- US Department of Agriculture, Forest Service, Pacific Northwest Region, State & Private Forestry, Forest Health Protection, Redmond, OR 97756, USA
| | - P E Busby
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - C A Harrington
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Olympia, WA 98512, USA
| | - M Schulze
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331, USA
| | - D R Shaw
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, OR 97331, USA
| | - D Woodruff
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR 97331, USA
| | - D E Rupp
- Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - C Daly
- PRISM Climate Group, Northwest Alliance for Computational Science and Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - W M Hammond
- Agronomy Department, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611, USA
| | - G F M Page
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Locked Bag 104, Bentley Delivery Centre, Bentley, Western Australia 6983, Australia
- CSIRO Land and Water, Private Bag 5, Wembley, Western Australia 6913, Australia
| |
Collapse
|
7
|
Ruffault J, Limousin JM, Pimont F, Dupuy JL, De Càceres M, Cochard H, Mouillot F, Blackman CJ, Torres-Ruiz JM, Parsons RA, Moreno M, Delzon S, Jansen S, Olioso A, Choat B, Martin-StPaul N. Plant hydraulic modelling of leaf and canopy fuel moisture content reveals increasing vulnerability of a Mediterranean forest to wildfires under extreme drought. THE NEW PHYTOLOGIST 2023; 237:1256-1269. [PMID: 36366950 DOI: 10.1111/nph.18614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.
Collapse
Affiliation(s)
| | | | | | | | | | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Florent Mouillot
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34000, Montpellier, France
| | - Chris J Blackman
- School of Biological Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - José M Torres-Ruiz
- Université Clermont-Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Russell A Parsons
- Fire Sciences Laboratory, Rocky Mountain Research Station, USDA Forest Service, Missoula, MT, 59808, USA
| | | | | | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, D-89081, Ulm, Germany
| | | | - Brendan Choat
- Western Sydney University, Penrith, NSW, 2751, Australia
| | | |
Collapse
|
8
|
Avital S, Rog I, Livne-Luzon S, Cahanovitc R, Klein T. Asymmetric belowground carbon transfer in a diverse tree community. Mol Ecol 2022; 31:3481-3495. [PMID: 35451146 PMCID: PMC9325067 DOI: 10.1111/mec.16477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Mycorrhizal fungi can colonize multiple trees of a single or multiple taxa, facilitating bidirectional exchange of carbon between trees. Mycorrhiza-induced carbon transfer was shown in the forest, but it is unknown whether carbon is shared symmetrically among tree species, and if not, which tree species are better donors and which are better recipients. Here we test this question by investigating carbon transfer dynamics among five Mediterranean tree species in a microcosm system, including both ectomycorrhizal (EM) and arbuscular (AM) plants. Trees were planted together in 'community boxes' using natural soil from a mixed forest plot that serves as habitat for all five tree species and their native mycorrhizal fungi. In each box, only the trees of a single species were pulse-labeled with 13 CO2 . We found that carbon transfer was asymmetric, with oak being a better donor, and pistacia and cypress better recipients. Shared mycorrhizal species may have facilitated carbon transfer, but their diversity did not affect the amount, nor timing, of the transfer. Overall, our findings in a microcosm system expose rich, but hidden, belowground interactions in a diverse population of trees and mycorrhizal fungi. The asymmetric carbon exchange among co-habiting tree species could potentially contribute to forest resilience in an uncertain future.
Collapse
Affiliation(s)
- Shifra Avital
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ido Rog
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Stav Livne-Luzon
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Rotem Cahanovitc
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tamir Klein
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|