1
|
Zajączkowska U, Dmitruk D, Sekulska-Nalewajko J, Gocławski J, Dołkin-Lewko A, Łotocka B. The impact of mechanical stress on anatomy, morphology, and gene expression in Urtica dioica L. PLANTA 2024; 260:46. [PMID: 38970646 PMCID: PMC11227470 DOI: 10.1007/s00425-024-04477-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
MAIN CONCLUSION Mechanical stress induces distinct anatomical, molecular, and morphological changes in Urtica dioica, affecting trichome development, gene expression, and leaf morphology under controlled conditions The experiments were performed on common nettle, a widely known plant characterized by high variability of leaf morphology and responsiveness to mechanical touch. A specially constructed experimental device was used to study the impact of mechanical stress on Urtica dioica plants under strictly controlled parameters of the mechanical stimulus (touching) and environment in the growth chamber. The general anatomical structure of the plants that were touched was similar to that of control plants, but the shape of the internodes' cross section was different. Stress-treated plants showed a distinct four-ribbed structure. However, as the internodes progressed, the shape gradually approached a rectangular form. The epidermis of control plants included stinging, glandular and simple setulose trichomes, but plants that were touched had no stinging trichomes, and setulose trichomes accumulated more callose. Cell wall lignification occurred in the older internodes of the control plants compared to stress-treated ones. Gene analysis revealed upregulation of the expression of the UdTCH1 gene in touched plants compared to control plants. Conversely, the expression of UdERF4 and UdTCH4 was downregulated in stressed plants. These data indicate that the nettle's response to mechanical stress reaches the level of regulatory networks of gene expression. Image analysis revealed reduced leaf area, increased asymmetry and altered contours in touched leaves, especially in advanced growth stages, compared to control plants. Our results indicate that mechanical stress triggers various anatomical, molecular, and morphological changes in nettle; however, further interdisciplinary research is needed to better understand the underlying physiological mechanisms.
Collapse
Affiliation(s)
- Urszula Zajączkowska
- Department of Forest Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776, Warsaw, Poland.
| | - Dominika Dmitruk
- Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| | - Joanna Sekulska-Nalewajko
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924, Lodz, Poland
| | - Jarosław Gocławski
- Institute of Applied Computer Science, Lodz University of Technology, Stefanowskiego 18/22, 90-924, Lodz, Poland
| | - Alicja Dołkin-Lewko
- Department of Forest Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-776, Warsaw, Poland
| | - Barbara Łotocka
- Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787, Warsaw, Poland
| |
Collapse
|
2
|
Urbancsok J, Donev EN, Sivan P, van Zalen E, Barbut FR, Derba-Maceluch M, Šimura J, Yassin Z, Gandla ML, Karady M, Ljung K, Winestrand S, Jönsson LJ, Scheepers G, Delhomme N, Street NR, Mellerowicz EJ. Flexure wood formation via growth reprogramming in hybrid aspen involves jasmonates and polyamines and transcriptional changes resembling tension wood development. THE NEW PHYTOLOGIST 2023; 240:2312-2334. [PMID: 37857351 DOI: 10.1111/nph.19307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Stem bending in trees induces flexure wood but its properties and development are poorly understood. Here, we investigated the effects of low-intensity multidirectional stem flexing on growth and wood properties of hybrid aspen, and on its transcriptomic and hormonal responses. Glasshouse-grown trees were either kept stationary or subjected to several daily shakes for 5 wk, after which the transcriptomes and hormones were analyzed in the cambial region and developing wood tissues, and the wood properties were analyzed by physical, chemical and microscopy techniques. Shaking increased primary and secondary growth and altered wood differentiation by stimulating gelatinous-fiber formation, reducing secondary wall thickness, changing matrix polysaccharides and increasing cellulose, G- and H-lignin contents, cell wall porosity and saccharification yields. Wood-forming tissues exhibited elevated jasmonate, polyamine, ethylene and brassinosteroids and reduced abscisic acid and gibberellin signaling. Transcriptional responses resembled those during tension wood formation but not opposite wood formation and revealed several thigmomorphogenesis-related genes as well as novel gene networks including FLA and XTH genes encoding plasma membrane-bound proteins. Low-intensity stem flexing stimulates growth and induces wood having improved biorefinery properties through molecular and hormonal pathways similar to thigmomorphogenesis in herbaceous plants and largely overlapping with the tension wood program of hardwoods.
Collapse
Affiliation(s)
- János Urbancsok
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Evgeniy N Donev
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Pramod Sivan
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Elena van Zalen
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
| | - Félix R Barbut
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Marta Derba-Maceluch
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Zakiya Yassin
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | | | - Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, 78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | | | - Leif J Jönsson
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Gerhard Scheepers
- RISE Research Institutes of Sweden, Drottning Kristinas väg 61, 11428, Stockholm, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden
- SciLifeLab, Umeå University, 90187, Umeå, Sweden
| | - Ewa J Mellerowicz
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden
| |
Collapse
|
3
|
Li P, Yu A, Sun R, Liu A. Function and Evolution of C1-2i Subclass of C2H2-Type Zinc Finger Transcription Factors in POPLAR. Genes (Basel) 2022; 13:genes13101843. [PMID: 36292728 PMCID: PMC9602059 DOI: 10.3390/genes13101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
C2H2 zinc finger (C2H2-ZF) transcription factors participate in various aspects of normal plant growth regulation and stress responses. C1-2i C2H2-ZFs are a special subclass of conserved proteins that contain two ZnF-C2H2 domains. Some C1-2i C2H2-ZFs in Arabidopsis (ZAT) are involved in stress resistance and other functions. However, there is limited information on C1-2i C2H2-ZFs in Populus trichocarpa (PtriZATs). To analyze the function and evolution of C1-2i C2H2-ZFs, eleven PtriZATs were identified in P. trichocarpa, which can be classified into two subgroups. The protein structure, conserved ZnF-C2H2 domains and QALGGH motifs, showed high conservation during the evolution of PtriZATs in P. trichocarpa. The spacing between two ZnF-C2H2 domains, chromosomal locations and cis-elements implied the original proteins and function of PtriZATs. Furthermore, the gene expression of different tissues and stress treatment showed the functional differentiation of PtriZATs subgroups and their stress response function. The analysis of C1-2i C2H2-ZFs in different Populus species and plants implied their evolution and differentiation, especially in terms of stress resistance. Cis-elements and expression pattern analysis of interaction proteins implied the function of PtriZATs through binding with stress-related genes, which are involved in gene regulation by via epigenetic modification through histone regulation, DNA methylation, ubiquitination, etc. Our results for the origin and evolution of PtriZATs will contribute to understanding the functional differentiation of C1-2i C2H2-ZFs in P. trichocarpa. The interaction and expression results will lay a foundation for the further functional investigation of their roles and biological processes in Populus.
Collapse
|
4
|
Tinturier E, Badel É, Leblanc-Fournier N, Julien JL. Stem bending generates electrical response in poplar. PHYSIOLOGIA PLANTARUM 2021; 173:954-960. [PMID: 34237161 DOI: 10.1111/ppl.13494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/16/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Under natural conditions, plants experience external mechanical stresses such as wind and touch that impact their growth. A remarkable feature of this mechanically induced growth response is that it may occur at a distance from the stimulation site, suggesting the existence of a signal propagating through the plant. In this study, we investigated the electrical response of poplar trees to a transient controlled bending stimulation of the stem that mimics the mechanical effect of wind. Stem bending was found to cause an electrical response that we called "gradual" potential, similar in shape to an action potential. However, this signal can be distinguished from the well-known plant action potential by its propagation up to 20 cm along the stem and its strong dumping in velocity and amplitude. Two hypotheses regarding the mode of propagation of the "gradual" potential are discussed.
Collapse
Affiliation(s)
- Erwan Tinturier
- Université Clermont Auvergne, INRAE, UMR 547-PIAF, Aubière, France
| | - Éric Badel
- Université Clermont Auvergne, INRAE, UMR 547-PIAF, Aubière, France
| | | | | |
Collapse
|
5
|
Lopez D, Franchel J, Venisse JS, Drevet JR, Label P, Coutand C, Roeckel-Drevet P. Early transcriptional response to gravistimulation in poplar without phototropic confounding factors. AOB PLANTS 2021; 13:plaa071. [PMID: 33542802 PMCID: PMC7850117 DOI: 10.1093/aobpla/plaa071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/30/2020] [Indexed: 05/30/2023]
Abstract
In response to gravistimulation under anisotropic light, tree stems showing an active cambium produce reaction wood that redirects the axis of the trees. Several studies have described transcriptomic or proteomic models of reaction wood relative to the opposite wood. However, the mechanisms leading to the formation of reaction wood are difficult to decipher because so many environmental factors can induce various signalling pathways leading to this developmental reprogramming. Using an innovative isotropic device where the phototropic response does not interfere with gravistimulation we characterized the early molecular responses occurring in the stem of poplar after gravistimulation in an isotropic environment, and without deformation of the stem. After 30 min tilting at 35° under anisotropic light, we collected the upper and lower xylems from the inclined stems. Controls were collected from vertical stems. We used a microarray approach to identify differentially expressed transcripts. High-throughput real-time PCR allowed a kinetic experiment at 0, 30, 120 and 180 min after tilting at 35°, with candidate genes. We identified 668 differentially expressed transcripts, from which we selected 153 candidates for additional Fluidigm qPCR assessment. Five candidate co-expression gene clusters have been identified after the kinetic monitoring of the expression of candidate genes. Gene ontology analyses indicate that molecular reprogramming of processes such as 'wood cell expansion', 'cell wall reorganization' and 'programmed cell death' occur as early as 30 min after gravistimulation. Of note is that the change in the expression of different genes involves a fine regulation of gibberellin and brassinosteroid pathways as well as flavonoid and phosphoinositide pathways. Our experimental set-up allowed the identification of genes regulated in early gravitropic response without the bias introduced by phototropic and stem bending responses.
Collapse
Affiliation(s)
- David Lopez
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jérôme Franchel
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Jean-Stéphane Venisse
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Joël R Drevet
- Université Clermont Auvergne, GReD INSERM U1103-CNRS UMR 6293, Faculté de Médecine, CRBC (Centre de Recherche Bio-Clinique), Clermont-Ferrand, France
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| | - Catherine Coutand
- INRAE, UR 115 PSH, Centre de recherche PACA, 228, route de l’aérodrome, CS, Avignon Cedex, France
| | - Patricia Roeckel-Drevet
- Université Clermont Auvergne, INRAE, PIAF, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat, TSA, Aubière Cedex, France
| |
Collapse
|
6
|
Liu D, Yang L, Luo M, Wu Q, Liu S, Liu Y. Molecular cloning and characterization of PtrZPT2-1, a ZPT2 family gene encoding a Cys2/His2-type zinc finger protein from trifoliate orange (Poncirus trifoliata (L.) Raf.) that enhances plant tolerance to multiple abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:66-78. [PMID: 28818385 DOI: 10.1016/j.plantsci.2017.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
In plants, most Cys2/His2 (C2H2) zinc finger proteins with two zinc finger domains (ZPT2) are involved in abiotic stress responses. In this study, a ZPT2 family gene PtrZPT2-1 was cloned from trifoliate orange (Poncirus trifoliata (L.) Raf.). PtrZPT2-1 is composed of 245 amino acids, has a putative molecular weight of 25.99kDa and an isoelectric point of 8.41. PtrZPT2-1 contained two C2H2 zinc finger domains, one nuclear localization signal (B-box), one transcription repression domain (DLN-box), and one protein-protein interaction domain (L-box). PtrZPT2-1 was localized to the nucleus. The PtrZPT2-1 expression was strongly induced by cold, drought, salt and ABA stresses. Overexpression of PtrZPT2-1 increased the survival rates, and the ABA, soluble sugar and proline levels but decreased the ion leakage, the malondialdehyde (MDA) content and reduced the H2O2 accumulation in the transgenic tobacco after cold, drought or salt treatments. Furthermore, the expression levels of 15 abiotic stress-related genes were significantly increased in the transgenic tobacco overexpressing PtrZPT2-1 after cold, drought or salt stress treatments. Our results indicated that overexpression of PtrZPT2-1 in the transgenic tobacco could improve the cold, drought and salt resistance of the plants by increasing the levels of osmotic regulatory solutes and decreasing the accumulation of H2O2.
Collapse
Affiliation(s)
- Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Man Luo
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qi Wu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shanbei Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
7
|
Chu Y, Zhang W, Wu B, Huang Q, Zhang B, Su X. Overexpression of the novel Zygophyllum xanthoxylum C2H2-type zinc finger gene ZxZF improves drought tolerance in transgenic Arabidopsis and poplar. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Bonnesoeur V, Constant T, Moulia B, Fournier M. Forest trees filter chronic wind-signals to acclimate to high winds. THE NEW PHYTOLOGIST 2016; 210:850-860. [PMID: 26790391 DOI: 10.1111/nph.13836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
Controlled experiments have shown that trees acclimate thigmomorphogenetically to wind-loads by sensing their deformation (strain). However, the strain regime in nature is exposed to a full spectrum of winds. We hypothesized that trees avoid overreacting by responding only to winds which bring information on local climate and/or wind exposure. Additionally, competition for light dependent on tree social status also likely affects thigmomorphogenesis. We monitored and manipulated quantitatively the strain regimes of 15 pairs of beech (Fagus sylvatica) trees of contrasting social status in an acclimated stand, and quantified the effects of these regimes on the radial growth over a vegetative season. Trees exposed to artificial bending, the intensity of which corresponds to the strongest wind-induced strains, enhanced their secondary growth by at least 80%. Surprisingly, this reaction was even greater - relatively - for suppressed trees than for dominant ones. Acclimated trees did not sense the different types of wind events in the same way. Daily wind speed peaks due to thermal winds were filtered out. Thigmomorphogenesis was therefore driven by intense storms. Thigmomorphogenesis is also likely to be involved in determining social status.
Collapse
Affiliation(s)
- Vivien Bonnesoeur
- UMR 1092 LERFOB, INRA, Champenoux, 54280, France
- UMR 1092 LERFOB, AgroParisTech, Nancy, 54000, France
| | - Thiéry Constant
- UMR 1092 LERFOB, INRA, Champenoux, 54280, France
- UMR 1092 LERFOB, AgroParisTech, Nancy, 54000, France
| | - Bruno Moulia
- UMR 547 PIAF, Clermont Université, Université Blaise Pascal, BP 10448, Clermont-Ferrand, 63000, France
- UMR 547 PIAF, INRA, Clermont-Ferrand, 63100, France
| | - Meriem Fournier
- UMR 1092 LERFOB, INRA, Champenoux, 54280, France
- UMR 1092 LERFOB, AgroParisTech, Nancy, 54000, France
| |
Collapse
|
9
|
Prunier J, Tessier G, Bousquet J, MacKay J. From genotypes to phenotypes: expression levels of genes encompassing adaptive SNPs in black spruce. PLANT CELL REPORTS 2015; 34:2111-2125. [PMID: 26260097 DOI: 10.1007/s00299-015-1855-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
Measuring transcript levels for adaptive genes revealed polymorphisms having cis -effect upon gene expression levels related to phenotype variation in a black spruce natural population. Trees growing in temperate and boreal regions must acclimate to changes in climatic factors such as low winter temperatures to survive to seasonal variations. Common garden studies have shown that genetic variation in quantitative traits helps species to survive and adapt to environmental changes and local conditions. Twenty-four genes carrying SNPs were previously associated with genetic adaptation in black spruce (Picea mariana [Mill.] BSP). The objectives of this study were to investigate the potential role of these genes in regulation of winter acclimation and adaptation by studying their patterns of expression as a function of the physiological stage during the annual growth cycle, tissue type, and their SNP genotypic class. Considerable variability in gene expression was observed between different vegetative tissues or organs, and between physiological stages. The genes were expressed predominantly in tissues that could be linked more directly to winter acclimation and adaptation. The expression levels of several of the genes were significantly related to variation in tree height growth or budset timing and expression level variation related to SNP genotypic classes was observed in four of the genes. An interaction between genotypic classes and physiological stages was also observed for some genes, indicating genotypes with different reaction norms in terms of gene expression.
Collapse
Affiliation(s)
- Julien Prunier
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada.
| | - Guillaume Tessier
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada
| | - Jean Bousquet
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada
| | - John MacKay
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for System and Integrative Biology, Université Laval, 1030 Avenue de la Médecine, Québec, G1V0A6, Canada
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
10
|
Moulia B, Coutand C, Julien JL. Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding. FRONTIERS IN PLANT SCIENCE 2015; 6:52. [PMID: 25755656 PMCID: PMC4337334 DOI: 10.3389/fpls.2015.00052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/20/2015] [Indexed: 05/18/2023]
Abstract
As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pathway. However, some important aspects of mechanosensing are often neglected. (i) What are the mechanical characteristics of different loads and how are loads distributed within different organs? (ii) What is the relevant mechanical stimulus in the cell? Is it stress, strain, or energy? (iii) How do mechanosensing cells signal to meristematic cells? Without answers to these questions we cannot make progress analyzing the mechanobiological effects of plant size, plant shape, tissue distribution and stiffness, or the magnitude of stimuli. This situation is rapidly changing however, as systems mechanobiology is being developed, using specific biomechanical and/or mechanobiological models. These models are instrumental in comparing loads and responses between experiments and make it possible to quantitatively test biological hypotheses describing the mechanotransduction networks. This review is designed for a general plant science audience and aims to help biologists master the models they need for mechanobiological studies. Analysis and modeling is broken down into four steps looking at how the structure bears the load, how the distributed load is sensed, how the mechanical signal is transduced, and then how the plant responds through growth. Throughout, two examples of adaptive responses are used to illustrate this approach: the thigmorphogenetic syndrome of plant shoots bending and the mechanosensitive control of shoot apical meristem (SAM) morphogenesis. Overall this should provide a generic understanding of systems mechanobiology at work.
Collapse
Affiliation(s)
- Bruno Moulia
- NRA, UMR 547 PIAFClermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, UMR 547 PIAFClermont-Ferrand, France
- *Correspondence: Bruno Moulia, UMR, PIAF Integrative Physics and Physiology of Trees, Institut National de la Recherche Agronomique, 5 chemin de Beaulieu, F-63039 Clermont-Ferrand, France e-mail:
| | - Catherine Coutand
- NRA, UMR 547 PIAFClermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, UMR 547 PIAFClermont-Ferrand, France
| | - Jean-Louis Julien
- NRA, UMR 547 PIAFClermont-Ferrand, France
- Clermont Université, Université Blaise Pascal, UMR 547 PIAFClermont-Ferrand, France
| |
Collapse
|
11
|
Leblanc-Fournier N, Martin L, Lenne C, Decourteix M. To respond or not to respond, the recurring question in plant mechanosensitivity. FRONTIERS IN PLANT SCIENCE 2014; 5:401. [PMID: 25177327 PMCID: PMC4132296 DOI: 10.3389/fpls.2014.00401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/28/2014] [Indexed: 05/23/2023]
Abstract
In nature, terrestrial plants experience many kinds of external mechanical stimulation and respond by triggering a network of signaling events to acclimate their growth and development. Some environmental cues, especially wind, recur on time scales varying from seconds to days. Plants thus have to adapt their sensitivity to such stimulations to avoid constitutive activation of stress responses. The study of plant mechanosensing has been attracting more interest in the last two decades, but plant responses to repetitive mechanical stimulation have yet to be described in detail. In this mini review, alongside classic experiments we survey recent descriptions of the kinetics of plant responses to recurrent stimulation. The ability of plants to modulate their responses to recurrent stimulation at the molecular, cellular, or organ scale is also relevant to other abiotic stimuli. It is possible that plants reduce their responsiveness to environmental signals as a function of their recurrence, recovering full sensitivity several days later. Finally, putative mechanisms underlying mechanosensing regulation are discussed.
Collapse
Affiliation(s)
- Nathalie Leblanc-Fournier
- Clermont Université – Université Blaise Pascal, UMR547 PIAF, Clermont-FerrandFrance
- INRA, UMR547 PIAF, Clermont-FerrandFrance
| | - Ludovic Martin
- Laboratoire de Biologie du Développement des Plantes, UMR 7265, Centre National de la Recherche Scientifique/Commissariat à l’Energie Atomique/Aix-Marseille Université, Saint-Paul-lez-DuranceFrance
| | - Catherine Lenne
- Clermont Université – Université Blaise Pascal, UMR547 PIAF, Clermont-FerrandFrance
- INRA, UMR547 PIAF, Clermont-FerrandFrance
| | - Mélanie Decourteix
- Clermont Université – Université Blaise Pascal, UMR547 PIAF, Clermont-FerrandFrance
- INRA, UMR547 PIAF, Clermont-FerrandFrance
| |
Collapse
|
12
|
Martin L, Decourteix M, Badel E, Huguet S, Moulia B, Julien JL, Leblanc-Fournier N. The zinc finger protein PtaZFP2 negatively controls stem growth and gene expression responsiveness to external mechanical loads in poplar. THE NEW PHYTOLOGIST 2014; 203:168-181. [PMID: 24684233 DOI: 10.1111/nph.12781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
Mechanical cues are essential signals regulating plant growth and development. In response to wind, trees develop a thigmomorphogenetic response characterized by a reduction in longitudinal growth, an increase in diameter growth, and changes in mechanical properties. The molecular mechanisms behind these processes are poorly understood. In poplar, PtaZFP2, a C2H2 transcription factor, is rapidly up-regulated after stem bending. To investigate the function of PtaZFP2, we analyzed PtaZFP2-overexpressing poplars (Populus tremula × Populus alba). To unravel the genes downstream PtaZFP2, a transcriptomic analysis was performed. PtaZFP2-overexpressing poplars showed longitudinal and cambial growth reductions together with an increase in the tangent and hardening plastic moduli. The regulation level of mechanoresponsive genes was much weaker after stem bending in PtaZFP2-overexpressing poplars than in wild-type plants, showing that PtaZFP2 negatively modulates plant responsiveness to mechanical stimulation. Microarray analysis revealed a high proportion of down-regulated genes in PtaZFP2-overexpressing poplars. Among these genes, several were also shown to be regulated by mechanical stimulation. Our results confirmed the important role of PtaZFP2 during plant acclimation to mechanical load, in particular through a negative control of plant molecular responsiveness. This desensitization process could modulate the amplitude and duration of the plant response during recurrent stimuli.
Collapse
Affiliation(s)
- Ludovic Martin
- Clermont Université, Université Blaise Pascal, UMR547 PIAF, BP 10448, F-63000, Clermont-Ferrand, France; INRA, UMR547 PIAF, F-63100, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Tixier A, Badel E, Franchel J, Lakhal W, Leblanc-Fournier N, Moulia B, Julien JL. Growth and molecular responses to long-distance stimuli in poplars: bending vs flame wounding. PHYSIOLOGIA PLANTARUM 2014; 150:225-237. [PMID: 24032360 DOI: 10.1111/ppl.12089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/13/2013] [Accepted: 07/01/2013] [Indexed: 06/02/2023]
Abstract
Inter-organ communication is essential for plants to coordinate development and acclimate to mechanical environmental fluctuations. The aim of this study was to investigate long-distance signaling in trees. We compared on young poplars the short-term effects of local flame wounding and of local stem bending for two distal responses: (1) stem primary growth and (2) the expression of mechanoresponsive genes in stem apices. We developed a non-contact measurement method based on the analysis of apex images in order to measure the primary growth of poplars. The results showed a phased stem elongation with alternating nocturnal circumnutation phases and diurnal growth arrest phases in Populus tremula × alba clone INRA 717-1B4. We applied real-time polymerase chain reaction (RT-PCR) amplifications in order to evaluate the PtaZFP2, PtaTCH2, PtaTCH4, PtaACS6 and PtaJAZ5 expressions. The flame wounding inhibited primary growth and triggered remote molecular responses. Flame wounding induced significant changes in stem elongation phases, coupled with inhibition of circumnutation. However, the circadian rhythm of phases remained unaltered and the treated plants were always phased with control plants during the days following the stress. For bent plants, the stimulated region of the stem showed an increased PtaJAZ5 expression, suggesting the jasmonates may be involved in local responses to bending. No significant remote responses to bending were observed.
Collapse
Affiliation(s)
- Aude Tixier
- Clermont Université, Université Blaise-Pascal, UMR547 PIAF, BP 10448, 63000, Clermont-Ferrand, France; INRA, UMR547 PIAF, 63100, Clermont-Ferrand, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Cazzonelli CI, Nisar N, Roberts AC, Murray KD, Borevitz JO, Pogson BJ. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation. FRONTIERS IN PLANT SCIENCE 2014; 5:533. [PMID: 25374573 PMCID: PMC4204441 DOI: 10.3389/fpls.2014.00533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/19/2014] [Indexed: 05/20/2023]
Abstract
Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.
Collapse
Affiliation(s)
- Christopher I. Cazzonelli
- Hawkesbury Institute for the Environment, University of Western SydneyPenrith, NSW, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, The Australian National UniversityCanberra, ACT, Australia
- *Correspondence: Christopher I. Cazzonelli, Environmental Epigenetics Laboratory, Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, Bourke Street, Richmond, NSW 2753, Australia e-mail:
| | - Nazia Nisar
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, The Australian National UniversityCanberra, ACT, Australia
| | - Andrea C. Roberts
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, The Australian National UniversityCanberra, ACT, Australia
| | - Kevin D. Murray
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, The Australian National UniversityCanberra, ACT, Australia
| | - Justin O. Borevitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, The Australian National UniversityCanberra, ACT, Australia
| | - Barry J. Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, College of Medicine, Biology and Environment, The Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|
15
|
Chen F, Zhang S, Zhu G, Korpelainen H, Li C. Populus cathayana
males are less affected than females by excess manganese: Comparative proteomic and physiological analyses. Proteomics 2013; 13:2424-37. [DOI: 10.1002/pmic.201200365] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 04/02/2013] [Accepted: 05/27/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Fugui Chen
- Key Laboratory of Mountain Surface Processes and Ecological Regulation; Chinese Academy of Sciences; Institute of Mountain Hazards and Environment; Chengdu P. R. China
- Institute of Molecular Biology and Biotechnology; College of Life Sciences; Anhui Normal University; Wuhu P. R. China
| | - Sheng Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation; Chinese Academy of Sciences; Institute of Mountain Hazards and Environment; Chengdu P. R. China
| | - Guoping Zhu
- Institute of Molecular Biology and Biotechnology; College of Life Sciences; Anhui Normal University; Wuhu P. R. China
| | | | - Chunyang Li
- Key Laboratory of Mountain Surface Processes and Ecological Regulation; Chinese Academy of Sciences; Institute of Mountain Hazards and Environment; Chengdu P. R. China
| |
Collapse
|
16
|
Hamel LP, Benchabane M, Nicole MC, Major IT, Morency MJ, Pelletier G, Beaudoin N, Sheen J, Séguin A. Stress-responsive mitogen-activated protein kinases interact with the EAR motif of a poplar zinc finger protein and mediate its degradation through the 26S proteasome. PLANT PHYSIOLOGY 2011; 157:1379-93. [PMID: 21873571 PMCID: PMC3252155 DOI: 10.1104/pp.111.178343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/25/2011] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) contribute to the establishment of plant disease resistance by regulating downstream signaling components, including transcription factors. In this study, we identified MAPK-interacting proteins, and among the newly discovered candidates was a Cys-2/His-2-type zinc finger protein named PtiZFP1. This putative transcription factor belongs to a family of transcriptional repressors that rely on an ERF-associated amphiphilic repression (EAR) motif for their repression activity. Amino acids located within this repression motif were also found to be essential for MAPK binding. Close examination of the primary protein sequence revealed a functional bipartite MAPK docking site that partially overlaps with the EAR motif. Transient expression assays in Arabidopsis (Arabidopsis thaliana) protoplasts suggest that MAPKs promote PtiZFP1 degradation through the 26S proteasome. Since features of the MAPK docking site are conserved among other EAR repressors, our study suggests a novel mode of defense mechanism regulation involving stress-responsive MAPKs and EAR repressors.
Collapse
|
17
|
|
18
|
Chen F, Zhang S, Jiang H, Ma W, Korpelainen H, Li C. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings. J Proteome Res 2011; 10:3944-58. [PMID: 21761936 DOI: 10.1021/pr200535r] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Male and female poplar ( Populus cathayana Rehd.) cuttings respond differently to salinity stress. To understand these differences better, comparative morphological, physiological, and proteomics analyses were performed. Treatments with different concentrations of NaCl applied to male and female poplar cuttings for 4 weeks showed that females reacted more negatively at the morphological and physiological levels than did males, visible as shriveled leaves, decreased growth, lowered photosynthetic capacities, and greater Na(+) accumulation. The proteome analysis identified 73 proteins from 82 sexually related salt-responsive spots. They were involved in photosynthesis, protein folding and assembly, synthesis and degradation, carbon, energy and steroid metabolism, plant stress and defense, redox homeostasis, signal transduction, and so forth. The sex-related changes of these proteins were consistent with the different morphological and physiological responses in males and females. In conclusion, the higher salt resistance of male P. cathayana cuttings is related to higher expression and lower degradation of proteins in the photosynthetic apparatus, more effective metabolic mechanism and protective system, and greater capacity of hydrogen peroxide scavenging. This research allows us to further understand the possible different management strategies of cellular activities in male and female Populus when confronted by salt stress.
Collapse
Affiliation(s)
- Fugui Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
19
|
Tirumalaraju SV, Jain M, Gallo M. Differential gene expression in roots of nematode-resistant and -susceptible peanut (Arachis hypogaea) cultivars in response to early stages of peanut root-knot nematode (Meloidogyne arenaria) parasitization. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:481-92. [PMID: 20863592 DOI: 10.1016/j.jplph.2010.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/17/2010] [Accepted: 08/19/2010] [Indexed: 05/10/2023]
Abstract
The peanut root-knot nematode (RKN, Meloidogyne arenaria) can cause significant yield losses in cultivated peanut (Arachis hypogaea). However, molecular events underlying successful RKN infection and host responses in peanut are sparsely understood. Using suppression subtractive hybridization (SSH), cDNA libraries, enriched with differentially expressed ESTs, were constructed from RKN-challenged root tissues in the pre-penetration and early infection stages from near-isogenic nematode-resistant and -susceptible peanut cultivars NemaTAM and Florunner. Following an initial screen of 960 expressed sequence tags (ESTs) for at least three-fold differential expression between the two libraries, 70 ESTs (36 from the NemaTAM-specific library and 34 from the Florunner-specific library) were identified and annotated into seven functional categories (stress responses, metabolism, transcriptional regulation, protein synthesis and/or modification, transport functions, cellular architecture and proteins with unknown functions). Discreet gene tag clusters primarily including pathogenesis related (PR), patatin-like proteins and universal stress related proteins (USPs), as well as those implicated in alleviation of oxidative stress were primarily represented in RKN-infected NemaTAM roots, reflective of a basal level of resistance operative against invading nematodes. However, significant transcriptional reprogramming and upregulation of genes implicated in modification of cellular architecture, adhesion, and proliferation marked an early onset of compatible host-pathogen interactions discernible in Florunner roots.
Collapse
|
20
|
Gourcilleau D, Lenne C, Armenise C, Moulia B, Julien JL, Bronner G, Leblanc-Fournier N. Phylogenetic study of plant Q-type C2H2 zinc finger proteins and expression analysis of poplar genes in response to osmotic, cold and mechanical stresses. DNA Res 2011; 18:77-92. [PMID: 21367962 PMCID: PMC3077037 DOI: 10.1093/dnares/dsr001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plant Q-type C2H2 zinc finger transcription factors play an important role in plant tolerance to various environmental stresses such as drought, cold, osmotic stress, wounding and mechanical loading. To carry out an improved analysis of the specific role of each member of this subfamily in response to mechanical loading in poplar, we identified 16 two-fingered Q-type C2H2-predicted proteins from the poplar Phytozome database and compared their phylogenetic relationships with 152 two-fingered Q-type C2H2 protein sequences belonging to more than 50 species isolated from the NR protein database of NCBI. Phylogenetic analyses of these Q-type C2H2 proteins sequences classified them into two groups G1 and G2, and conserved motif distributions of interest were established. These two groups differed essentially in their signatures at the C-terminus of their two QALGGH DNA-binding domains. Two additional conserved motifs, MALEAL and LVDCHY, were found only in sequences from Group G1 or from Group G2, respectively. Functional significance of these phylogenetic divergences was assessed by studying transcript accumulation of six poplar C2H2 Q-type genes in responses to abiotic stresses; but no group specificity was found in any organ. Further expression analyses focused on PtaZFP1 and PtaZFP2, the two genes strongly induced by mechanical loading in poplars. The results revealed that these two genes were regulated by several signalling molecules including hydrogen peroxide and the phytohormone jasmonate.
Collapse
Affiliation(s)
- Delphine Gourcilleau
- Clermont Universite´, Universite´ Blaise Pascal, UMR 547 Physique et Physiologie Inte´gratives de l’Arbre Fruitier et Forestier, 24 avenue des Landais, BP 10448, 63177 Aubie`re Cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Moulia B, Der Loughian C, Bastien R, Martin O, Rodríguez M, Gourcilleau D, Barbacci A, Badel E, Franchel G, Lenne C, Roeckel-Drevet P, Allain JM, Frachisse JM, de Langre E, Coutand C, Fournier-Leblanc N, Julien JL. Integrative Mechanobiology of Growth and Architectural Development in Changing Mechanical Environments. MECHANICAL INTEGRATION OF PLANT CELLS AND PLANTS 2011. [DOI: 10.1007/978-3-642-19091-9_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Mirabet V, Das P, Boudaoud A, Hamant O. The role of mechanical forces in plant morphogenesis. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:365-85. [PMID: 21332360 DOI: 10.1146/annurev-arplant-042110-103852] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The shape of an organism relies on a complex network of genetic regulations and on the homeostasis and distribution of growth factors. In parallel to the molecular control of growth, shape changes also involve major changes in structure, which by definition depend on the laws of mechanics. Thus, to understand morphogenesis, scientists have turned to interdisciplinary approaches associating biology and physics to investigate the contribution of mechanical forces in morphogenesis, sometimes re-examining theoretical concepts that were laid out by early physiologists. Major advances in the field have notably been possible thanks to the development of computer simulations and live quantitative imaging protocols in recent years. Here, we present the mechanical basis of shape changes in plants, focusing our discussion on undifferentiated tissues. How can growth be translated into a quantified geometrical output? What is the mechanical basis of cell and tissue growth? What is the contribution of mechanical forces in patterning?
Collapse
Affiliation(s)
- Vincent Mirabet
- INRA, CNRS, ENS, Université de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
23
|
Cohen D, Bogeat-Triboulot MB, Tisserant E, Balzergue S, Martin-Magniette ML, Lelandais G, Ningre N, Renou JP, Tamby JP, Le Thiec D, Hummel I. Comparative transcriptomics of drought responses in Populus: a meta-analysis of genome-wide expression profiling in mature leaves and root apices across two genotypes. BMC Genomics 2010; 11:630. [PMID: 21073700 PMCID: PMC3091765 DOI: 10.1186/1471-2164-11-630] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 11/12/2010] [Indexed: 12/18/2022] Open
Abstract
Background Comparative genomics has emerged as a promising means of unravelling the molecular networks underlying complex traits such as drought tolerance. Here we assess the genotype-dependent component of the drought-induced transcriptome response in two poplar genotypes differing in drought tolerance. Drought-induced responses were analysed in leaves and root apices and were compared with available transcriptome data from other Populus species. Results Using a multi-species designed microarray, a genomic DNA-based selection of probesets provided an unambiguous between-genotype comparison. Analyses of functional group enrichment enabled the extraction of processes physiologically relevant to drought response. The drought-driven changes in gene expression occurring in root apices were consistent across treatments and genotypes. For mature leaves, the transcriptome response varied weakly but in accordance with the duration of water deficit. A differential clustering algorithm revealed similar and divergent gene co-expression patterns among the two genotypes. Since moderate stress levels induced similar physiological responses in both genotypes, the genotype-dependent transcriptional responses could be considered as intrinsic divergences in genome functioning. Our meta-analysis detected several candidate genes and processes that are differentially regulated in root and leaf, potentially under developmental control, and preferentially involved in early and long-term responses to drought. Conclusions In poplar, the well-known drought-induced activation of sensing and signalling cascades was specific to the early response in leaves but was found to be general in root apices. Comparing our results to what is known in arabidopsis, we found that transcriptional remodelling included signalling and a response to energy deficit in roots in parallel with transcriptional indices of hampered assimilation in leaves, particularly in the drought-sensitive poplar genotype.
Collapse
Affiliation(s)
- David Cohen
- INRA, Nancy Université, UMR1137 Ecologie et Ecophysiologie Forestières, IFR 110 EFABA, F-54280 Champenoux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. PLANT MOLECULAR BIOLOGY 2010; 74:367-80. [PMID: 20803312 DOI: 10.1007/s11103-010-9680-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 08/12/2010] [Indexed: 05/19/2023]
Abstract
In Arabidopsis thaliana, the salt overly sensitive (SOS) pathway plays an essential role in maintaining ion homeostasis and conferring salt tolerance. Here we identified three SOS components in the woody plant Populus trichocarpa, designated as PtSOS1, PtSOS2 and PtSOS3. These putative SOS genes exhibited an overlapping but distinct expression pattern in poplar plants and the transcript levels of SOS1 and SOS2 were responsive to salinity stress. In poplar mesophyll protoplasts, PtSOS1 was specifically localized in the plasma membrane, whereas PtSOS2 was distributed throughout the cell, and PtSOS3 was predominantly targeted to the plasma membrane. Heterologous expression of PtSOS1, PtSOS2 and PtSOS3 could rescue salt-sensitive phenotypes of the corresponding Arabidopsis sos mutants, demonstrating that the Populus SOS proteins are functional homologues of their Arabidopsis counterpart. In addition, PtSOS3 interacted with, and recruited PtSOS2 to the plasma membrane in yeast and in planta. Reconstitution of poplar SOS pathway in yeast cells revealed that PtSOS2 and PtSOS3 acted coordinately to activate PtSOS1. Moreover, expression of the constitutively activated form of PtSOS2 partially complemented the sos3 mutant but not sos1, suggesting that PtSOS2 functions genetically downstream of SOS3 and upstream of SOS1. These results indicate a strong functional conservation of SOS pathway responsible for salt stress signaling from herbaceous to woody plants.
Collapse
Affiliation(s)
- Ren-Jie Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, 200032, Shanghai, China
| | | | | | | | | | | |
Collapse
|
25
|
Martin L, Leblanc-Fournier N, Julien JL, Moulia B, Coutand C. Acclimation kinetics of physiological and molecular responses of plants to multiple mechanical loadings. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2403-12. [PMID: 20363866 DOI: 10.1093/jxb/erq069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
During their development, plants are subjected to repeated and fluctuating wind loads, an environmental factor predicted to increase in importance by scenarios of global climatic change. Notwithstanding the importance of wind stress on plant growth and development, little is known about plant acclimation to the bending stresses imposed by repeated winds. The time-course of acclimation of young poplars (Populus tremula L.xP. alba L.) to multiple stem bendings is studied here by following diameter growth and the expression of four genes PtaZFP2, PtaTCH2, PtaTCH4, and PtaACS6, previously described to be involved in the mechanical signalling transduction pathway. Young trees were submitted either to one transient bending per day for several days or to two bendings, 1-14 days apart. A diminution of molecular responses to subsequent bending was observed as soon as a second bending was applied. The minimum rest periods between two successive loadings necessary to recover a response similar to that observed after a single bending, were 7 days and 5 days for growth and molecular responses, respectively. Taken together, our results show a desensitization period of a few days after a single transitory bending, indicating a day-scale acclimation of sensitivity to the type of wind conditions plants experience in their specific environment. This work establishes the basic kinetics of acclimation to low bending frequency and these kinetic analyses will serve as the basis of ongoing work to investigate the molecular mechanisms involved. Future research will also concern plant acclimation to higher wind frequencies.
Collapse
Affiliation(s)
- Ludovic Martin
- Clermont Université, Université Blaise Pascal, UMR PIAF, BP 10448, F-63000 Clermont-Ferrand, France
| | | | | | | | | |
Collapse
|