1
|
Kalwan G, Priyadarshini P, Kumar K, Yadava YK, Yadav S, Kohli D, Gill SS, Gaikwad K, Hegde V, Jain PK. Genome wide identification and characterization of the amino acid transporter (AAT) genes regulating seed protein content in chickpea (Cicer arietinum L.). Int J Biol Macromol 2023; 252:126324. [PMID: 37591427 DOI: 10.1016/j.ijbiomac.2023.126324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Amino acid transporters (AATs), besides, being a crucial component for nutrient partitioning system are also vital for growth and development of the plants and stress resilience. In order to understand the role of AAT genes in seed quality proteins, a comprehensive analysis of AAT gene family was carried out in chickpea leading to identification of 109 AAT genes, representing 10 subfamilies with random distribution across the chickpea genome. Several important stress responsive cis-regulatory elements like Myb, ABRE, ERE were detected in the promoter region of these CaAAT genes. Most of the genes belonging to the same sub-families shared the intron-exon distribution pattern owing to their conserved nature. Random distribution of these CaAAT genes was observed on plasma membrane, vacuolar membrane, Endoplasmic reticulum and Golgi membranes, which may be associated to distinct biochemical pathways. In total 92 out 109 CaAAT genes arise as result of duplication, among which segmental duplication was more prominent over tandem duplication. As expected, the phylogenetic tree was divided into 2 major clades, and further sub-divided into different sub-families. Among the 109 CaAAT genes, 25 were found to be interacting with 25 miRNAs, many miRNAs like miR156, miR159 and miR164 were interacting only with single AAT genes. Tissues specific expression pattern of many CaAAT genes was observed like CaAAP7 and CaAVT18 in nodules, CaAAP17, CaAVT5 and CaCAT9 in vegetative tissues while CaCAT10 and CaAAP23 in seed related tissues as per the expression analysis. Mature seed transcriptome data revealed that genotypes having high protein content (ICC 8397, ICC 13461) showed low CaAATs expression as compared to the genotypes having low protein content (FG 212, BG 3054). Amino acid profiling of these genotypes revealed a significant difference in amount of essential and non-essential amino acids, probably due to differential expression of CaAATs. Thus, the present study provides insights into the biological role of AAT genes in chickpea, which will facilitate their functional characterization and role in various developmental stages, stress responses and involvement in nutritional quality enhancement.
Collapse
Affiliation(s)
- Gopal Kalwan
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Parichita Priyadarshini
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh 284003, India
| | - Kuldeep Kumar
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; ICAR - Indian Institute of Pulses Research, Kanpur, Uttar Pradesh 208024, India
| | | | - Sheel Yadav
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India; PG School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Deshika Kohli
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Sarvajeet Singh Gill
- Stress Physiology & Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Kishor Gaikwad
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India
| | - Venkatraman Hegde
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Pradeep Kumar Jain
- ICAR - National Institute for Plant Biotechnology, New Delhi 110012, India.
| |
Collapse
|
2
|
Aroca A, García-Díaz I, García-Calderón M, Gotor C, Márquez AJ, Betti M. Photorespiration: regulation and new insights on the potential role of persulfidation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6023-6039. [PMID: 37486799 PMCID: PMC10575701 DOI: 10.1093/jxb/erad291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Photorespiration has been considered a 'futile' cycle in C3 plants, necessary to detoxify and recycle the metabolites generated by the oxygenating activity of Rubisco. However, several reports indicate that this metabolic route plays a fundamental role in plant metabolism and constitutes a very interesting research topic. Many open questions still remain with regard to photorespiration. One of these questions is how the photorespiratory process is regulated in plants and what factors contribute to this regulation. In this review, we summarize recent advances in the regulation of the photorespiratory pathway with a special focus on the transcriptional and post-translational regulation of photorespiration and the interconnections of this process with nitrogen and sulfur metabolism. Recent findings on sulfide signaling and protein persulfidation are also described.
Collapse
Affiliation(s)
- Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Inmaculada García-Díaz
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis (Universidad de Sevilla, Consejo Superior de Investigaciones Científicas), Américo Vespucio 49, 41092 Sevilla, Spain
| | - Antonio J Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Joffe R, Berthe A, Jolivet Y, Gandin A. The response of mesophyll conductance to ozone-induced oxidative stress is genotype-dependent in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4850-4866. [PMID: 35429268 DOI: 10.1093/jxb/erac154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The CO2 diffusion conductance within the leaf mesophyll (gm) is considered a major limiting factor of photosynthesis. However, the effects of the major secondary air pollutant ozone (O3) on gm have been poorly investigated. Eight genotypes of the economically important tree species Populus × canadensis Moench were exposed to 120 ppb O3 for 21 d. gm showed a genotype-dependent response to O3-induced oxidative stress and was a major limiting factor of net assimilation rate (Anet), ahead of stomatal conductance to CO2 (gsc) and of the maximum carboxylation capacity of the Rubisco enzyme (Vcmax) in half of the tested genotypes. Increased leaf dry mass per area (LMA) and decreased chlorophyll content were linked to the observed gm decrease, but this relationship did not entirely explain the different genotypic gm responses. Moreover, the oxidative stress defence metabolites ascorbate and glutathione were not related to O3 tolerance of gm. However, malondialdehyde probably mitigated the observed gm decrease in some genotypes due to its oxidative stress signalling function. The large variation of gm suggests different regulation mechanisms amongst poplar genotypes under oxidative stress.
Collapse
Affiliation(s)
- Ricardo Joffe
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Audrey Berthe
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Yves Jolivet
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| | - Anthony Gandin
- Université de Lorraine, AgroParisTech, INRAE, SILVA, F-54000 Nancy, France
| |
Collapse
|
4
|
Hussain T, Li J, Feng X, Asrar H, Gul B, Liu X. Salinity induced alterations in photosynthetic and oxidative regulation are ameliorated as a function of salt secretion. JOURNAL OF PLANT RESEARCH 2021; 134:779-796. [PMID: 33768362 DOI: 10.1007/s10265-021-01285-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Ion secretion facilitates recretohalophytes to tolerate saline and drought conditions but its relative contribution to the survival of many species remains poorly understood. Tamarix chinensis has high potential for restoration of saline deteriorated lands. The water management and high salt tolerance of the plant have highlighted the need to determine the strategies that govern these mechanisms. Here we report the selectivity of this halophyte to transport, utilize, and secrete different cations and anions under various NaCl (0, 100, 200 and 400 mM) concentrations. Plant growth, photosynthesis and antioxidant defense responses were also determined to relate them with the function of ion secretion. Results reflected two different sets of strategies adopted by plants to survive low and high salinities. Exposure to highly saline conditions caused reduction in photosynthesis due to stomatal and biochemical limitations. The decreased content of photosynthetic pigments exposed plants to excessive light energy that accelerated production of ROS (i.e., hydrogen peroxide H2O2) and caused damage to cellular membranes. The increased activities of anti-oxidative enzymes (superoxide-dismutase, catalase, ascorbate-peroxidase, and glutathione-reductase) were insufficient to detoxify H2O2. In contrast, plants treated with low salinity did not face stomatal limitations while the photosynthetic pigments increased. As no damage to membranes was detected, the increased content of H2O2 was postulated for its messenger role. The assimilation of essential nutrients was affected due to increased content of toxic ions (Na+ and Cl-) in the growing medium and within the plants. However, the ability to regulate K+ facilitated plants to improve water use efficiency under hyper-osmotic environment. The removal of toxic ions from the photosynthesizing tissues demands high energy, which was evident in the compromised growth of plants. This study offers a window to physiological mechanisms, e.g., potassium retention that ensure salt secretion as a beneficial strategy for prolonged survival of T. chinensis.
Collapse
Affiliation(s)
- Tabassum Hussain
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China.
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| | - Jingsong Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China
| | - Xiaohui Feng
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China
| | - Hina Asrar
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Xiaojing Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, People's Republic of China.
| |
Collapse
|
5
|
Huang X, Soolanayakanahally RY, Guy RD, Shunmugam ASK, Mansfield SD. Differences in growth and physiological and metabolic responses among Canadian native and hybrid willows (Salix spp.) under salinity stress. TREE PHYSIOLOGY 2020; 40:652-666. [PMID: 32083671 DOI: 10.1093/treephys/tpaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Globally, soil salinization is becoming increasingly prevalent, due to local hydrogeologic phenomena, climate change and anthropogenic activities. This has significantly curtailed current world food production and limits future production potential. In the prairie region of North America, sulfate salts, rather than sodium chloride, are often the predominant cause of soil degradation. In order to amend soil quality, revegetate salt-affected sites and recover economic loss associated with soil salinization, the establishment of short-rotation coppice plantations with willows (Salix spp.) has been suggested as a possible solution. To screen for the best candidates for such an application, 20 hybrid and 16 native willow genotypes were treated with three different salt conditions for 3 months. The treatments were designed to reflect the salt composition and concentrations on North American prairies. Under moderate salinity treatment (7 dS m-1), hybrid willows had better growth, as they established quickly while managing salt transport and mineral nutrition balance. However, native willows showed higher potential for long-term survival under severe salinity treatment (14 dS m-1), showing a lower sodium:potassium ratio in roots and better photosynthetic performance. Two native willow genotypes with high osmotic and salinity tolerance indices, specifically LAR-10 and MJW-9, are expected to show superior potential for remediating salt-affected sites. In addition, we observed significantly higher sulfate/sulfur concentrations in both leaf and root tissues in response to the severe salinity treatment, shedding light on the effect of sulfate salinity on sulfate uptake, and potentially sulfur metabolism in plants.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | | | - Robert D Guy
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Arun S K Shunmugam
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, 110 Natimuk Road, Horsham, VIC 3400, Australia
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
6
|
Abadie C, Tcherkez G. Plant sulphur metabolism is stimulated by photorespiration. Commun Biol 2019; 2:379. [PMID: 31633070 PMCID: PMC6795801 DOI: 10.1038/s42003-019-0616-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/08/2022] Open
Abstract
Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photosynthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2, O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition.
Collapse
Affiliation(s)
- Cyril Abadie
- Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
- Present Address: IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, 49071 Angers, Beaucouzé France
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
7
|
Fatma M, Masood A, Per TS, Rasheed F, Khan NA. Interplay between nitric oxide and sulfur assimilation in salt tolerance in plants. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cj.2016.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Gyulai G, Bittsánszky A, Szabó Z, Waters L, Gullner G, Kampfl G, Heltai G, Komíves T. Phytoextraction potential of wild type and 35S-gshI transgenic poplar trees (Populus x Canescens) for environmental pollutants herbicide paraquat, salt sodium, zinc sulfate and nitric oxide in vitro. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2014; 16:379-396. [PMID: 24912238 DOI: 10.1080/15226514.2013.783553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phytoextraction potentials of two transgenic (TR) poplar (Populus x canescens) clones TRggs11 and TRlgl6 were compared with that of wild-type (WT) following exposure to paraquat, zinc sulfate, common salt and nitric oxide (NO), using a leaf-disc system incubated for 21 days on EDTA-containing nutritive WPM media in vitro. Glutathione (GSH) contents of leaf discs of TRlgl6 and TRggs11 showed increments to 296% and 190%, respectively, compared with WT. NO exposure led to a twofold GSH content in TRlgl6, which was coupled with a significantly increased sulfate uptake when exposed to 10(-3) M ZnSO4. The highest mineral contents of Na, Zn, Mn, Cu, and Mo was observed in the TRggs11 clone. Salt-induced activity of catalase enzyme increased in both TR clones significantly compared with WT under NaCl (0.75% and 1.5%) exposure. The in silico sequence analyses of gsh1 genes revealed that P. x canadensis and Salix sachalinensis show the closest sequence similarity to that of P. x canescens, which predicted an active GSH production with high phytoextraction potentials of these species with indication for their use where P. x canescens can not be grown.
Collapse
|
9
|
Zagorchev L, Seal CE, Kranner I, Odjakova M. Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L. Free Radic Res 2012; 46:656-64. [PMID: 22348546 DOI: 10.3109/10715762.2012.667565] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The tripeptide antioxidant γ-L-glutamyl-L-cysteinyl-glycine, or glutathione (GSH), serves a central role in ROS scavenging and oxidative signalling. Here, GSH, glutathione disulphide (GSSG), and other low-molecular-weight (LMW) thiols and their corresponding disulphides were studied in embryogenic suspension cultures of Dactylis glomerata L. subjected to moderate (0.085 M NaCl) or severe (0.17 M NaCl) salt stress. Total glutathione (GSH + GSSG) concentrations and redox state were associated with growth and development in control cultures and in moderately salt-stressed cultures and were affected by severe salt stress. The redox state of the cystine (CySS)/2 cysteine (Cys) redox couple was also affected by developmental stage and salt stress. The glutathione half-cell reduction potential (E(GSSG/2 GSH)) increased with the duration of culturing and peaked when somatic embryos were formed, as did the half-cell reduction potential of the CySS/2 Cys redox couple (E(CySS/2 Cys)). The most noticeable relationship between cellular redox state and developmental state was found when all LMW thiols and disulphides present were mathematically combined into a 'thiol-disulphide redox environment' (E(thiol-disulphide)), whereby reducing conditions accompanied proliferation, resulting in the formation of pro-embryogenic masses (PEMs), and oxidizing conditions accompanied differentiation, resulting in the formation of somatic embryos. The comparatively high contribution of E(CySS/2 Cys) to E(thiol-disulphide) in cultures exposed to severe salt stress suggests that Cys and CySS may be important intracellular redox regulators with a potential role in stress signalling.
Collapse
|
10
|
Rennenberg H, Schmidt S. Perennial lifestyle--an adaptation to nutrient limitation? TREE PHYSIOLOGY 2010; 30:1047-9. [PMID: 20696885 DOI: 10.1093/treephys/tpq076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|