1
|
Zerouki C, Mofikoya O, Badar T, Mäkinen M, Turunen O, Jänis J. Metabolomic and Genomic Analysis of Bioactive Compounds of Phacidium infestans Karsten DSM 5139 Cultivated on Pinus sylvestris Needles. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70084. [PMID: 40491007 DOI: 10.1111/1758-2229.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 06/11/2025]
Abstract
This study investigates how Phacidium infestans acquires nutrients on Pinus sylvestris needles, which possess antimicrobial properties. P. infestans was evaluated for its growth and enzyme production on various substrates, alongside genomic and metabolomic analysis. Direct-infusion high-resolution mass spectrometry (DI-HRMS) was performed on methanol extracts obtained from P. infestans cultivated on needles and malt extract media. DI-HRMS analysis identified 21 compounds from the malt extract and 112 from the needle samples. The resin components increased in the needle samples post-cultivation, suggesting terpenoid release from resin ducts due to fungal degradation of plant cell walls. P. infestans fully consumed sugars and antifungal compounds, including taxiresinol and salicylic acid, with control-to-sample ratios (CTR/SA) of 289.76 and 47.24, respectively. Moreover, lariciresinol and pinoresinol were reduced to undetectable levels. The genomic analysis identified 421 secreted proteins, including 128 carbohydrate-active enzymes, 3 cutinases, and 49 lipases that aid host penetration and wax degradation. Several multi-drug efflux pumps and two acyclic terpene utilisation proteins were identified as well. These proteins support the cellular integrity of P. infestans by expelling toxic compounds. Our findings provide valuable insights into the metabolic strategies of P. infestans for nutrient assimilation on pine needles.
Collapse
Affiliation(s)
- Chahira Zerouki
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Omolara Mofikoya
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Joensuu, Finland
| | - Taskeen Badar
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Marko Mäkinen
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Joensuu, Finland
| | - Ossi Turunen
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Janne Jänis
- Department of Chemistry and Sustainable Technology, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
2
|
Soderberg DN, Bentz BJ, Runyon JB, Hood SM, Mock KE. Chemical defense strategies, induction timing, growth, and trade‐offs in
Pinus aristata
and
Pinus flexilis. Ecosphere 2022. [DOI: 10.1002/ecs2.4183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| | - Barbara J. Bentz
- USDA Forest Service, Rocky Mountain Research Station Logan Utah USA
| | - Justin B. Runyon
- USDA Forest Service, Rocky Mountain Research Station Bozeman Montana USA
| | - Sharon M. Hood
- USDA Forest Service, Rocky Mountain Research Station Missoula Montana USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University Logan Utah USA
- Ecology Center Utah State University Logan Utah USA
| |
Collapse
|
3
|
Romanenko EP, Domrachev D, Tkachev AV. Variations in Essential oils from South Siberian conifers of the Pinaceae family: new data towards identification and quality control. Chem Biodivers 2021; 19:e202100755. [PMID: 34918866 DOI: 10.1002/cbdv.202100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022]
Abstract
Conifer essential oils have been used for centuries in traditional medicine, and nowadays they are of special interest for official medicine, aromatherapy and perfumery. In the present work, comprehensive information is given on the composition of essential oils prepared from the twigs of the conifer trees of the pine family ( Pinaceae ): Abies sibirica Ledeb., Larix sibirica Ledeb., Picea obovata Ledeb., Pinus sibirica Du Tour, Pinus sylvestris L. A total of 50 samples of essential oils have been studied. The samples were prepared during vegetation stage in the time period 1998-2012 from the growing wild trees in the South part of the Western Siberia (Russian Federation) and neighboring territories of Republic of Kazakhstan within the area with geographical coordinates LAT 49.180012-57.908583 and LON 83.213217-91.258717 at elevation of 82-2070 m above sea level. All the essential oil samples were obtained from freshly collected plant raw material by steam distillation at atmospheric pressure in stainless steel apparatus, which had been specially designed for field research. All the chromatographic profiles were prepared from authentic samples whose voucher specimens are deposited at the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences (NS). The following information for each sample is provided: (1) date and location of the plant raw material collecting, indicating administrative areas and the exact geographic coordinates; (2) yield of essential oil, (3) chemical composition of the essential oil sample based on GC-MS experiments using full mass-spectra (EI, 70 eV) and linear retention indices of the components, (4) results of GC-FID quantification based on internal standards and response factors, (5) enantiomeric composition of the main components based on GC×GC experiments using the 2nd column with cyclodextrine-based chiral selector, (6) GC profile of the high-boiling fractions indicating the characteristic sesquiterpenoids. Therefore, this study provides reliable information about the variability and true composition of the Siberian conifer oils, and the experimental data given can serve as reference chromatographic profiles of volatile substances to solve the problems of quality, authenticity and safety.
Collapse
Affiliation(s)
- Elena P Romanenko
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Terpenoids Laboratory, 9 Academician Lavrentiev Ave., 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Dmitry Domrachev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Terpenoids Laboratory, 9 Academician Lavrentiev Ave., 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Alexey V Tkachev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Terpenoids Laboratory, 9 Academician Lavrentjev Ave., 630090, Novosibirsk, RUSSIAN FEDERATION
| |
Collapse
|
4
|
Kreuzwieser J, Meischner M, Grün M, Yáñez-Serrano AM, Fasbender L, Werner C. Drought affects carbon partitioning into volatile organic compound biosynthesis in Scots pine needles. THE NEW PHYTOLOGIST 2021; 232:1930-1943. [PMID: 34523149 DOI: 10.1111/nph.17736] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The effect of drought on the interplay of processes controlling carbon partitioning into plant primary and secondary metabolisms, such as respiratory CO2 release and volatile organic compound (VOC) biosynthesis, is not fully understood. To elucidate the effect of drought on the fate of cellular C sources into VOCs vs CO2 , we conducted tracer experiments with 13 CO2 and position-specific 13 C-labelled pyruvate, a key metabolite between primary and secondary metabolisms, in Scots pine seedlings. We determined the stable carbon isotope composition of leaf exchanged CO2 and VOC. Drought reduced the emission of the sesquiterpenes α-farnesene and β-farnesene but did not affect 13 C-incorporation from 13 C-pyruvate. The labelling patterns suggest that farnesene biosynthesis partially depends on isopentenyl diphosphate crosstalk between chloroplasts and cytosol, and that drought inhibits this process. Contrary to sesquiterpenes, drought did not affect emission of isoprene, monoterpenes and some oxygenated compounds. During the day, pyruvate was used in the TCA cycle to a minor degree but was mainly consumed in pathways of secondary metabolism. Drought partly inhibited such pathways, while allocation into the TCA cycle increased. Drought caused a re-direction of pyruvate consuming pathways, which contributed to maintenance of isoprene and monoterpene production despite strongly inhibited photosynthesis. This underlines the importance of these volatiles for stress tolerance.
Collapse
Affiliation(s)
- Jürgen Kreuzwieser
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Mirjam Meischner
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Michel Grün
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Ana Maria Yáñez-Serrano
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, 08034, Spain
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès, 08193, Spain
- Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola del Vallès, 08193, Spain
| | - Lukas Fasbender
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| | - Christiane Werner
- Chair of Ecosystem Physiology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79110, Germany
| |
Collapse
|
5
|
Niinemets Ü, Gershenzon J. Vulnerability and responses to bark beetle and associated fungal symbiont attacks in conifers. TREE PHYSIOLOGY 2021; 41:1103-1108. [PMID: 33949675 DOI: 10.1093/treephys/tpab064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Ülo Niinemets
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
6
|
Ganteaume A, Romero B, Fernandez C, Ormeño E, Lecareux C. Volatile and semi-volatile terpenes impact leaf flammability: differences according to the level of terpene identification. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00349-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Casado-Carmona FA, Lasarte-Aragonés G, Kabir A, Furton KG, Lucena R, Cárdenas S. Fan-based device for integrated air sampling and microextraction. Talanta 2021; 230:122290. [PMID: 33934762 DOI: 10.1016/j.talanta.2021.122290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this article, a new air sampler based on a conventional computer fan is presented and evaluated. The fan has a double role as it acts as the air pumping system and supports the sorptive phases, which are located on its blades. The compact design and the reduced energy consumption (it can operate with a standard cell phone charger) confers high portability to the device. Also, a simple alternative integrated into the fan is proposed for using an internal standard during the sampling, thus increasing the precision of the measurements. In this first communication, sol-gel Carbowax 20 M coated fabric phases are used as sorptive membranes thanks to their planar geometry, mechanical and thermal stability, and their versatility covering different interaction chemistries. After sampling, the fabric phases are placed in a headspace vial, which is finally analyzed by gas chromatography-mass spectrometry. The sampler has been characterized for the extraction of selected volatile organic compounds (chloroform, benzaldehyde, toluene, and cyclohexane) from air and its versatility has also been evaluated by the identification of semi-volatile compounds in working place (toluene and xylene in laboratory residue storage room) and biogenic volatile compounds in natural samples (terpenes in fresh pine needles and orange peel samples).
Collapse
Affiliation(s)
- Francisco A Casado-Carmona
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Guillermo Lasarte-Aragonés
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Kenneth G Furton
- Department of Chemistry and Biochemistry, International Forensic Research Institute, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - Rafael Lucena
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| | - Soledad Cárdenas
- Departamento de Química Analítica, Instituto Universitario de Investigación en Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
| |
Collapse
|
8
|
Chemical similarity between introduced and native populations of Scots pine can facilitate transcontinental expansion of mountain pine beetle in North America. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Kännaste A, Laanisto L, Pazouki L, Copolovici L, Suhorutšenko M, Azeem M, Toom L, Borg-Karlson AK, Niinemets Ü. Diterpenoid fingerprints in pine foliage across an environmental and chemotypic matrix: Isoabienol content is a key trait differentiating chemotypes. PHYTOCHEMISTRY 2018; 147:80-88. [PMID: 29304384 PMCID: PMC6020065 DOI: 10.1016/j.phytochem.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Diterpenoids constitute an important part of oleoresin in conifer needles, but the environmental and genetic controls on diterpenoid composition are poorly known. We studied the presence of diterpenoids in four pine populations spanning an extensive range of nitrogen (N) availability. In most samples, isoabienol was the main diterpenoid. Additionally, low contents of (Z)-biformene, abietadiene isomers, manoyl oxide isomers, labda-7,13,14-triene and labda-7,14-dien-13-ol were quantified in pine needles. According to the occurrence and content of diterpenoids it was possible to distinguish 'non diterpenoid pines', 'high isoabienol pines', 'manoyl oxide - isoabienol pines' and 'other diterpenoid pines'. 'Non diterpenoid pines', 'high isoabienol pines' and 'other diterpenoid pines' were characteristic to the dry forest, yet the majority of pines (>80%) of the bog Laeva represented 'high isoabienol pines'. 'Manoyl oxide - isoabienol pines' were present only in the wet sites. Additionally, orthogonal partial least-squares analysis showed, that in the bogs foliar nitrogen content per dry mass (NM) correlated to diterpenoids. Significant correlations existed between abietadienes, isoabienol and foliar NM in 'manoyl oxide - isoabienol pines', and chemotypic variation was also associated by population genetic distance estimated by nuclear microsatellite markers. Previously, the presence of low and high Δ-3-carene pines has been demonstrated, but the results of the current study indicate that also diterpenoids form an independent axis of chemotypic differentiation. Further studies are needed to understand whether the enhanced abundance of diterpenoids in wetter sites reflects a phenotypic or genotypic response.
Collapse
Affiliation(s)
- Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA.
| | - Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Institute of Technical and Natural Sciences Research-Development of "Aurel Vlaicu" University, 2 Elena Dragoi St., Arad 310330, Romania.
| | - Marina Suhorutšenko
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia.
| | - Muhammad Azeem
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan; Ecological Chemistry Group, Department of Chemistry, KTH, Royal Institute of Technology, 100 44 Stockholm, Sweden.
| | - Lauri Toom
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | - Anna-Karin Borg-Karlson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Ecological Chemistry Group, Department of Chemistry, KTH, Royal Institute of Technology, 100 44 Stockholm, Sweden; Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
10
|
Kanagendran A, Pazouki L, Li S, Liu B, Kännaste A, Niinemets Ü. Ozone-triggered surface uptake and stress volatile emissions in Nicotiana tabacum 'Wisconsin'. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:681-697. [PMID: 29301045 PMCID: PMC5853501 DOI: 10.1093/jxb/erx431] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/17/2017] [Indexed: 05/04/2023]
Abstract
Ozone is a strong oxidant and a key stress elicitor. The immediate and longer term impacts of ozone are poorly understood in species with emission of both de novo synthesized and stored volatiles, such a tobacco (Nicotiana tabacum), which has terpene-containing glandular trichomes on the leaf surface. In this study, we exposed N. tabacum 'Wisconsin' leaves to acute ozone doses of 0 (control), 400, 600, 800, and 1000 ppb for 30 min and studied the effects of ozone exposure on ozone uptake, gas-exchange characteristics, and emissions of lipoxygenase pathway volatiles, monoterpenes, and sesquiterpenes. Foliage emissions of lipoxygenase pathway volatiles were quantitatively related to the severity of ozone exposure, but the stress dose vs. emission relationship was weaker for terpenoids. Analysis of leaf terpene content and composition indicated that several monoterpenes and sesquiterpenes were not stored in leaves and were synthesized de novo upon ozone exposure. The highest degree of elicitation for each compound was observed immediately after ozone treatment and it declined considerably during recovery. Leaf ozone uptake was dominated by non-stomatal deposition, and the emissions of total lipoxygenase pathway volatiles and mono- and sesquiterpenes were positively correlated with non-stomatal ozone deposition. Overall, this study demonstrates remarkably high ozone resistance of the studied tobacco cultivar and indicates that ozone's effects on volatile emissions primarily reflect modifications in the release of stored volatiles and reaction of ozone with the leaf surface structure.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Bin Liu
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Astrid Kännaste
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
11
|
Jiang Y, Veromann-Jürgenson LL, Ye J, Niinemets Ü. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics. PLANT, CELL & ENVIRONMENT 2018; 41:160-175. [PMID: 28776716 PMCID: PMC6047732 DOI: 10.1111/pce.13050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 05/18/2023]
Abstract
Oak trees (Quercus) are hosts of diverse gall-inducing parasites, but the effects of gall formation on the physiology and biochemistry on host oak leaves is poorly understood. The influence of infection by four species from two widespread gall wasp genera, Neuroterus (N. anthracinus and N. albipes) and Cynips (C. divisa and C. quercusfolii), on foliage morphology, chemistry, photosynthetic characteristics, constitutive isoprene, and induced volatile emissions in Q. robur was investigated. Leaf dry mass per unit area (MA ), net assimilation rate per area (AA ), stomatal conductance (gs ), and constitutive isoprene emissions decreased with the severity of infection by all gall wasp species. The reduction in AA was mainly determined by reduced MA and to a lower extent by lower content of leaf nitrogen and phosphorus in gall-infected leaves. The emissions of lipoxygenase pathway volatiles increased strongly with increasing infection severity for all 4 species with the strongest emissions in major vein associated species, N. anthracinus. Monoterpene and sesquiterpene emissions were strongly elicited in N. albipes and Cynips species, but not in N. anthracinus. These results provide valuable information for diagnosing oak infections using ambient air volatile fingerprints and for predicting the impacts of infections on photosynthetic productivity and whole tree performance.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- College of Art, Changzhou University, Gehu 1, Changzhou, 213164, Jiangsu, China
| | - Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
- Corresponding author:
| |
Collapse
|
12
|
Lundborg L, Nordlander G, Björklund N, Nordenhem H, Borg-Karlson AK. Methyl Jasmonate-Induced Monoterpenes in Scots Pine and Norway Spruce Tissues Affect Pine Weevil Orientation. J Chem Ecol 2016; 42:1237-1246. [PMID: 27896555 PMCID: PMC5148791 DOI: 10.1007/s10886-016-0790-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 06/03/2016] [Accepted: 10/25/2016] [Indexed: 12/15/2022]
Abstract
In large parts of Europe, insecticide-free measures for protecting conifer plants are desired to suppress damage by the pine weevil Hylobius abietis (L.). Treatment with methyl jasmonate (MeJA), a chemical elicitor already used in crop production, may enhance expression of chemical defenses in seedlings in conifer regenerations. However, in a previous experiment, MeJA treatment resulted in substantially better field protection for Scots pine (Pinus sylvestris L.) than for Norway spruce (Picea abies (L.) Karst.). Hypothesizing that the variations may be at least due partly to volatiles released by MeJA-treated seedlings and their effects on pine weevil orientation, we examined tissue extracts of seedlings (from the same batches as previously used) by two-dimensional GC-MS. We found that the MeJA treatment increased contents of the monoterpene (−)-β-pinene in phloem (the weevil’s main target tissue) of both tree species, however, the (−)-β-pinene/(−)-α-pinene ratio increased more in the phloem of P. sylvestris. We also tested the attractiveness of individual monoterpenes found in conifer tissues (needles and phloem) for pine weevils using an arena with traps baited with single-substance dispensers and pine twigs. Trap catches were reduced when the pine material was combined with a dispenser releasing (−)-β-pinene, (+)-3-carene, (−)-bornyl acetate or 1,8-cineole. However, (−)-α-pinene did not have this effect. Thus, the greater field protection of MeJA-treated P. sylvestris seedlings may be due to the selective induction of increases in contents of the deterrent (−)-β-pinene, in contrast to strong increases in both non-deterrent (−)-α-pinene and the deterrent (−)-β-pinene in P. abies seedlings.
Collapse
Affiliation(s)
- Lina Lundborg
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, School of Chemical Science and Engineering, SE-100 44, Stockholm, Sweden.
| | - Göran Nordlander
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07, Uppsala, Sweden
| | - Niklas Björklund
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07, Uppsala, Sweden
| | - Henrik Nordenhem
- Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07, Uppsala, Sweden
| | - Anna-Karin Borg-Karlson
- Department of Chemistry, Organic Chemistry, KTH Royal Institute of Technology, School of Chemical Science and Engineering, SE-100 44, Stockholm, Sweden.,Institute of Technology, Division of Organic Chemistry, Tartu University, 50411, Tartu, Estonia
| |
Collapse
|
13
|
Lüpke M, Leuchner M, Steinbrecher R, Menzel A. Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances. TREE PHYSIOLOGY 2016; 36:1382-1399. [PMID: 27591438 PMCID: PMC5225987 DOI: 10.1093/treephys/tpw066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/24/2016] [Indexed: 05/13/2023]
Abstract
Scots pine (Pinus sylvestris L.) provenances cover broad ecological amplitudes. In a greenhouse study, we investigated the impact of drought stress and rewetting on gas exchange for three provenances (Italy: Emilia Romagna; Spain: Alto Ebro; Germany: East-German lowlands) of 2-year old Scots pine seedlings. CO2, water vapour and isoprenoid exchange of stressed and control trees were quantified with a four-chamber dynamic-enclosure system in the controlled environment of a climate chamber. The three provenances showed distinct isoprenoid emission patterns and were classified into a non-Δ3-carene, with either high α-/β-pinene or β-myrcene fraction, and a Δ3-carene dominated type. Isoprenoid emission rates, net-photosynthesis and transpiration were reduced during summer drought stress and significantly recovered after rewetting. A seasonal increase of isoprenoid emission rates towards autumn was observed for all control groups. Compared with the German provenance, the Spanish and Italian provenances revealed higher isoprenoid emission rates and more plastic responses to drought stress and seasonal development, which points to a local adaptation to climate. As a result of drought, net carbon uptake and transpiration of trees was reduced, but recovered after rewetting. We conclude from our study that Scots pine isoprenoid emission is more variable than expected and sensitive to drought periods, likely impacting regional air chemistry. Thus, a provenance-specific emission assessment accounting for reduced emission during prolonged (summer) drought is recommend for setting up biogenic volatile organic compound emission inventories used in air quality models.
Collapse
Affiliation(s)
- M Lüpke
- Ecoclimatology, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - M Leuchner
- Ecoclimatology, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
- Springer Science+Business Media B.V. , Van Godewijckstraat 30, 3311 GX Dordrecht, The Netherlands
| | - R Steinbrecher
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research Atmospheric Environmental Research (IMK-IFU) , Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | - A Menzel
- Ecoclimatology, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Institute for Advanced Study, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
| |
Collapse
|
14
|
Blande JD, Holopainen JK, Niinemets Ü. Plant volatiles in polluted atmospheres: stress responses and signal degradation. PLANT, CELL & ENVIRONMENT 2014; 37:1892-904. [PMID: 24738697 PMCID: PMC4289706 DOI: 10.1111/pce.12352] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/05/2014] [Indexed: 05/18/2023]
Abstract
Plants emit a plethora of volatile organic compounds, which provide detailed information on the physiological condition of emitters. Volatiles induced by herbivore feeding are among the best studied plant responses to stress and may constitute an informative message to the surrounding community and further function in plant defence processes. However, under natural conditions, plants are potentially exposed to multiple concurrent stresses with complex effects on the volatile emissions. Atmospheric pollutants are an important facet of the abiotic environment and can impinge on a plant's volatile-mediated defences in multiple ways at multiple temporal scales. They can exert changes in volatile emissions through oxidative stress, as is the case with ozone pollution. The pollutants, in particular, ozone, nitrogen oxides and hydroxyl radicals, also react with volatiles in the atmosphere. These reactions result in volatile breakdown products, which may themselves be perceived by community members as informative signals. In this review, we demonstrate the complex interplay among stresses, emitted signals, and modification in signal strength and composition by the atmosphere, collectively determining the responses of the biotic community to elicited signals.
Collapse
Affiliation(s)
- James D. Blande
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Ülo Niinemets
- Department of Plant Physiology, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
15
|
Niinemets Ü, Kännaste A, Copolovici L. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. FRONTIERS IN PLANT SCIENCE 2013; 4:262. [PMID: 23888161 PMCID: PMC3719043 DOI: 10.3389/fpls.2013.00262] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/27/2013] [Indexed: 05/18/2023]
Abstract
Plants have to cope with a plethora of biotic stresses such as herbivory and pathogen attacks throughout their life cycle. The biotic stresses typically trigger rapid emissions of volatile products of lipoxygenase (LOX) pathway (LOX products: various C6 aldehydes, alcohols, and derivatives, also called green leaf volatiles) associated with oxidative burst. Further a variety of defense pathways is activated, leading to induction of synthesis and emission of a complex blend of volatiles, often including methyl salicylate, indole, mono-, homo-, and sesquiterpenes. The airborne volatiles are involved in systemic responses leading to elicitation of emissions from non-damaged plant parts. For several abiotic stresses, it has been demonstrated that volatile emissions are quantitatively related to the stress dose. The biotic impacts under natural conditions vary in severity from mild to severe, but it is unclear whether volatile emissions also scale with the severity of biotic stresses in a dose-dependent manner. Furthermore, biotic impacts are typically recurrent, but it is poorly understood how direct stress-triggered and systemic emission responses are silenced during periods intervening sequential stress events. Here we review the information on induced emissions elicited in response to biotic attacks, and argue that biotic stress severity vs. emission rate relationships should follow principally the same dose-response relationships as previously demonstrated for different abiotic stresses. Analysis of several case studies investigating the elicitation of emissions in response to chewing herbivores, aphids, rust fungi, powdery mildew, and Botrytis, suggests that induced emissions do respond to stress severity in dose-dependent manner. Bi-phasic emission kinetics of several induced volatiles have been demonstrated in these experiments, suggesting that next to immediate stress-triggered emissions, biotic stress elicited emissions typically have a secondary induction response, possibly reflecting a systemic response. The dose-response relationships can also vary in dependence on plant genotype, herbivore feeding behavior, and plant pre-stress physiological status. Overall, the evidence suggests that there are quantitative relationships between the biotic stress severity and induced volatile emissions. These relationships constitute an encouraging platform to develop quantitative plant stress response models.
Collapse
Affiliation(s)
| | | | - Lucian Copolovici
- Estonian University of Life SciencesTartu, Estonia
- Institute of Technical and Natural Sciences Research-Development, Aurel Vlaicu UniversityArad, Romania
| |
Collapse
|