1
|
Wang X, Lu D, Schönbeck L, Han Y, Bai S, Yu D, Han Q, Wang QW. Contrasting effects of prolonged drought and nitrogen addition on growth and non-structural carbohydrate dynamics in coexisting Pinus koraiensis and Fraxinus mandshurica saplings. FORESTRY RESEARCH 2025; 5:e003. [PMID: 40028427 PMCID: PMC11870304 DOI: 10.48130/forres-0025-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/15/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025]
Abstract
Global change drivers, including drought and nitrogen (N) deposition, exert a wide-ranging influence on tree growth and fitness. However, our current understanding of their combined effects is still limited. Non-structural carbohydrate (NSC) storage is an important physiological trait for tree acclimation to drought. It acts as an important mobile carbon reserve to support tree function when carbon fixation or transport are reduced under drought. It is crucial to investigate how tree species with different NSC storage characteristics (e.g., storage level, partitioning) respond to drought events, and how N alters these patterns. We investigated the combined effects of drought (80% reduction in precipitation) and N addition (0, 30, and 120 kg/ha/year) on the growth and NSC storage of Pinus koraiensis and Fraxinus mandshurica (dominant species in the forests of Northeast China) saplings over two consecutive growing seasons. The results indicated that P. koraiensis exhibited high tolerance to drought, with growth unaffected by drought alone until the mid-growing season in the second year. However, N addition reversed its drought acclimation by impairing root development and exacerbating carbon shortage. In contrast, F. mandshurica was sensitive to drought, it had significantly reduced growth at harvest despite a large amount of NSC accumulation. The present study highlights the contrasting effects of N deposition on drought adaptation in coexisting conifer and temperate broadleaf species, the conifer showing a higher risk of carbon deficiency with increasing N deposition (i.e., a stronger reversal effect of N addition), whereas an earlier cessation of growth under drought defines a larger carbon safety margin for broadleaved species. These results have important implications for the development of adaptive forest management strategies such as to enhance the protection of conifers in the context of global change.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Deliang Lu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Leonie Schönbeck
- Southern Swedish Forest Research Centre, Swedish University for Agricultural Sciences, Lomma 23422, Sweden
| | - Yini Han
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Shangbin Bai
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China
| | - Dapao Yu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Western Slope of Changbai Mountain National Field Research Observation Station of Forest Ecosystem, Baishan 134506, China
| | - Qingmin Han
- Forestry and Forest Products Research Institute (FFPRI), Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Qing-Wei Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Western Slope of Changbai Mountain National Field Research Observation Station of Forest Ecosystem, Baishan 134506, China
| |
Collapse
|
2
|
Du L, Tang L, Zheng X, Li Y. A global analysis of plant nutrient limitation affected by atmospheric nitrogen and phosphorous deposition. FRONTIERS IN PLANT SCIENCE 2024; 15:1473493. [PMID: 39748818 PMCID: PMC11693671 DOI: 10.3389/fpls.2024.1473493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
Uncovering the response of plant functional types (PFTs) to nutrient limitation caused by atmospheric deposition is critical for assessing the health of terrestrial ecosystems under climate change conditions. However, it remains unclear how atmospheric deposition and underlying ecological factors affect PFTs globally. To address this, we compiled a global dataset of four PFTs, i.e., herb, evergreen broad-leaf (EB), deciduous broad-leaf (DB), and conifer (CO), and utilized both linear mixed-effects models and structural equation models to describe the thresholds of their net primary productivity (NPP), and tested the relationships between their NPP and potential environmental drivers based on the N/P threshold hypothesis. We found that atmospheric N and P deposition non-linearly affected NPP and the effects were most pronounced for the EB, DB, and CO categories, with tipping points in the ranges of 8.32-9.33 kg N·ha-1·yr-1 and 0.20-0.30 kg P·ha-1·yr-1, respectively. Atmospheric N and P deposition negatively affected the NPP of approximately 53.68% and 43.88% of terrestrial ecosystem plants, respectively, suggesting increased P limitation and N saturation in most terrestrial ecosystems worldwide. We further determined that the N/P threshold hypothesis is applicable in assessing the effects of atmospheric N and P deposition on the growth of woody plants (EB, DB, and CO) through nutrient limitation. The results of this study will contribute to more effective landscape management in changing environments.
Collapse
Affiliation(s)
- Lan Du
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xinjun Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Xiao Y, Yang D, Zhang SB, Mo YX, Dong YY, Wang KF, He LY, Dong B, Dossa GGO, Zhang JL. Nitrogen-fixing and non-nitrogen-fixing legume plants differ in leaf nutrient concentrations and relationships between photosynthetic and hydraulic traits. TREE PHYSIOLOGY 2024; 44:tpae048. [PMID: 38691446 DOI: 10.1093/treephys/tpae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/03/2024]
Abstract
Legumes account for a significant proportion of plants in the terrestrial ecosystems. Nitrogen (N)-fixing capability of certain legumes is a pivotal trait that contributes to their ecological dominance. Yet, the functional traits and trait relationships between N-fixer and non-N-fixer legumes are poorly understood. Here, we investigated 27 functional traits associated with morphology, nutrients, hydraulic conductance and photosynthesis in 42 woody legumes (19 N-fixers and 23 non-N-fixers) in a common garden. Our results showed that N-fixers had higher specific leaf area, photosynthetic phosphorus (P)-use efficiency, leaf N, and iron concentrations on both area and mass basis, N/P ratio, and carbon (C) to P ratio, but lower wood density, area-based maximum photosynthetic rate (Aa), photosynthetic N-use efficiency, leaf mass- and area-based P and molybdenum and area-based boron concentrations, and C/N ratio, compared with non-N-fixers. The mass-based maximum photosynthetic rate (Am), stomatal conductance (gs), intrinsic water-use efficiency (WUEi), mass- and area-based leaf potassium and mass-based boron concentrations, leaf hydraulic conductance (Kleaf), and whole-shoot hydraulic conductance (Kshoot) showed no difference between N-fixers and non-N-fixers. Significant positive associations between all hydraulic and photosynthetic trait pairs were found in N-fixers, but only one pair (Kshoot-Aa) in non-N-fixers, suggesting that hydraulic conductance plays a more important role in mediating photosynthetic capacity in N-fixers compared with non-N-fixers. Higher mass-based leaf N was linked to lower time-integrated gs and higher WUEi among non-N-fixer legumes or all legumes pooled after phylogeny was considered. Moreover, mass-based P concentration was positively related to Am and gs in N-fixers, but not in non-N-fixers, indicating that the photosynthetic capacity and stomatal conductance in N-fixers were more dependent on leaf P status than in non-N-fixers. These findings expand our understanding of the trait-based ecology within and across N-fixer and non-N-fixer legumes in tropics.
Collapse
Affiliation(s)
- Yan Xiao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex RH17 6TN, UK
| | - Da Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Shu-Bin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Yi-Yi Dong
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA
| | - Ke-Fei Wang
- School of Biological and Chemical Sciences, Puer University, Puer, Yunnan 665000, China
| | - Ling-Yun He
- College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bing Dong
- School of Biology, University of St Andrews, Dyers Brae, St Andrews KY16 9TH, UK
| | - Gbadamassi G O Dossa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| |
Collapse
|
4
|
Wu T, Song Y, Tissue D, Su W, Luo H, Li X, Yang S, Liu X, Yan J, Huang J, Liu J. Photosynthetic and biochemical responses of four subtropical tree seedlings to reduced dry season and increased wet season precipitation and variable N deposition. TREE PHYSIOLOGY 2024; 44:tpad114. [PMID: 37756634 DOI: 10.1093/treephys/tpad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Interspecific variations in phenotypic plasticity of trees that are affected by climate change may alter the ecosystem function of forests. Seedlings of four common tree species (Castanopsis fissa, Michelia macclurei, Dalbergia odorifera and Ormosia pinnata) in subtropical plantations of southern China were grown in the field under rainout shelters and subjected to changing precipitation (48 L of water every 4 days in the dry season, 83 L of water every 1 day in the wet season; 4 g m-2 year-1 of nitrogen (N)), low N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 8 g m-2 year-1 N), high N deposition (48 L of water every 2 days in the dry season, 71 L of water every 1 day in the wet season; 10 g m-2 year-1 N) and their interactive effects. We found that the changes in seasonal precipitation reduced the light-saturated photosynthetic rate (Asat) for C. fissa due to declining area-based foliar N concentrations (Na). However, we also found that the interactive effects of changing precipitation and N deposition enhanced Asat for C. fissa by increasing foliar Na concentrations, suggesting that N deposition could alleviate N limitations associated with changing precipitation. Altered precipitation and high N deposition reduced Asat for D. odorifera by decreasing the maximum electron transport rate for RuBP regeneration (Jmax) and maximum rate of carboxylation of Rubisco (Vcmax). Ormosia pinnata under high N deposition exhibited increasing Asat due to higher stomatal conductance and Vcmax. The growth of D. odorifera might be inhibited by changes in seasonal precipitation and N deposition, while O. pinnata may benefit from increasing N deposition in future climates. Our study provides an important insight into the selection of tree species with high capacity to tolerate changing precipitation and N deposition in subtropical plantations.
Collapse
Affiliation(s)
- Ting Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yuting Song
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - David Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Wei Su
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hanyu Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shimin Yang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xujun Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juan Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
5
|
Yan T, Wang L, Wang P, Zhong T. Stability in the leaf functional traits of understory herbaceous species after 12-yr of nitrogen addition in temperate larch plantations. FRONTIERS IN PLANT SCIENCE 2023; 14:1282884. [PMID: 38116147 PMCID: PMC10728480 DOI: 10.3389/fpls.2023.1282884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Leaf functional traits play critical roles in plant functioning. Although the functional traits of overstory trees have been extensively studied, minimal research has been conducted regarding understory species, despite the understory layer is an important component of temperate forests. Such insufficiency limit the broader understanding of processes and functions in forest ecosystems, particularly when under the increasing atmospheric nitrogen (N) deposition. Here, we investigated the responses of 18 leaf functional traits in six understory herbaceous species within young and mature stands (three species per stand) in larch (Larix principis-rupprechtii) plantations that subjected to 12 years of anthropogenic N addition. We found that N addition did not significantly impact the photosynthetic traits of understory herbaceous species in either stand; it only led to increased chlorophyll content in Geum aleppicum Jacq. Similarly, with the exception of decreases in the predawn leaf water potential of Sanguisorba officinalis L., N addition did not significantly affect leaf hydraulic traits. With the exception of changes to adaxial epidermis thickness in Potentilla chinensis Ser. (decreased) and G. aleppicum (increased), N addition had negligible effects on leaf anatomical traits and specific leaf area, however, interspecific variations in the plasticity of leaf anatomical traits were observed. Stable responses to N addition were also observed for nonstructural carbohydrates (NSC) and their components (soluble sugars and starch), with the exception of Polygonum divaricatum L., which exhibited increases in NSC. Overall, our results suggest that the functional traits of understory herbaceous species exhibit stability under conditions of long-term N enrichment in temperate plantations.
Collapse
Affiliation(s)
- Tao Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, China
| | - Liying Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Peilin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tianyu Zhong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Feng H, Guo J, Peng C, Kneeshaw D, Roberge G, Pan C, Ma X, Zhou D, Wang W. Nitrogen addition promotes terrestrial plants to allocate more biomass to aboveground organs: A global meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:3970-3989. [PMID: 37078965 DOI: 10.1111/gcb.16731] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m-2 year-1 ) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%-32.1%) and 14.7% (11.6%-17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.
Collapse
Affiliation(s)
- Huili Feng
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants/Hainan Biological Key Laboratory for Germplasm Resources of Tropical Special Ornamental Plants, College of Forestry, Hainan University, Haikou, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jiahuan Guo
- Key Laboratory of Ministry of Education for Genetics and Germplasm Innovation of Tropical Special Trees and Ornamental Plants/Hainan Biological Key Laboratory for Germplasm Resources of Tropical Special Ornamental Plants, College of Forestry, Hainan University, Haikou, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Changhui Peng
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada
- College of Geographic Science, Hunan Normal University, Changsha, China
| | - Daniel Kneeshaw
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - Gabrielle Roberge
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada
| | - Chang Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Xuehong Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Dan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Férriz M, Martin-Benito D, Fernández-de-Simón MB, Conde M, García-Cervigón AI, Aranda I, Gea-Izquierdo G. Functional phenotypic plasticity mediated by water stress and [CO2] explains differences in drought tolerance of two phylogenetically close conifers. TREE PHYSIOLOGY 2023; 43:909-924. [PMID: 36809504 PMCID: PMC10255776 DOI: 10.1093/treephys/tpad021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/15/2023] [Indexed: 06/11/2023]
Abstract
Forests are threatened globally by increased recurrence and intensity of hot droughts. Functionally close coexisting species may exhibit differences in drought vulnerability large enough to cause niche differentiation and affect forest dynamics. The effect of rising atmospheric [CO2], which could partly alleviate the negative effects of drought, may also differ between species. We analysed functional plasticity in seedlings of two taxonomically close pine species (Pinus pinaster Ait., Pinus pinea L.) under different [CO2] and water stress levels. The multidimensional functional trait variability was more influenced by water stress (preferentially xylem traits) and [CO2] (mostly leaf traits) than by differences between species. However, we observed differences between species in the strategies followed to coordinate their hydraulic and structural traits under stress. Leaf 13C discrimination decreased with water stress and increased under elevated [CO2]. Under water stress both species increased their sapwood area to leaf area ratios, tracheid density and xylem cavitation, whereas they reduced tracheid lumen area and xylem conductivity. Pinus pinea was more anisohydric than P. pinaster. Pinus pinaster produced larger conduits under well-watered conditions than P. pinea. Pinus pinea was more tolerant to water stress and more resistant to xylem cavitation under low water potentials. The higher xylem plasticity in P. pinea, particularly in tracheid lumen area, expressed a higher capacity of acclimation to water stress than P. pinaster. In contrast, P. pinaster coped with water stress comparatively more by increasing plasticity of leaf hydraulic traits. Despite the small differences observed in the functional response to water stress and drought tolerance between species, these interspecific differences agreed with ongoing substitution of P. pinaster by P. pinea in forests where both species co-occur. Increased [CO2] had little effect on the species-specific relative performance. Thus, a competitive advantage under moderate water stress of P. pinea compared with P. pinaster is expected to continue in the future.
Collapse
Affiliation(s)
- M Férriz
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - D Martin-Benito
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | | | - M Conde
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - A I García-Cervigón
- Department of Biology and Geology, Physics and Inorganic Chemistry Rey Juan Carlos University, c/Tulipán s/n, 28933 Móstoles, Spain
| | - I Aranda
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| | - G Gea-Izquierdo
- ICIFOR-INIA, CSIC. Ctra La Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
8
|
Gong XW, Hao GY. The synergistic effect of hydraulic and thermal impairments accounts for the severe crown damage in Fraxinus mandshurica seedlings following the combined drought-heatwave stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159017. [PMID: 36167124 DOI: 10.1016/j.scitotenv.2022.159017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Drought combined with extreme heatwaves has been increasingly identified as the important trigger of worldwide tree mortality in the context of climate change; nonetheless, our understanding of the potential hydraulic and thermal impairments of hot droughts to trees and the subsequent post-recovery process remains limited. To investigate the response of tree water and carbon relations to drought, heatwave, and combined drought-heatwave stresses, three-year-old potted seedlings of Fraxinus mandshurica Rupr., a dominant tree species in temperate forests of northeast China, were grown under well-watered and drought-stressed conditions and exposed to a rapid, acute heatwave treatment. During the heatwave treatment with a maximum temperature exceeding 40 °C for two days, the leaf temperature of drought-stressed seedlings was, on average, 5 °C higher than that of well-watered counterparts due to less effective evaporative cooling, indicating that soil water availability influenced leaf thermoregulatory capacity during hot extremes. Consistently, more pronounced crown damage, as shown by 13 % irreversible leaf scorch, was found in seedlings under the drought-heatwave treatment relative to sole heatwave treatment, alongside the more severe stem xylem embolism and leaf electrolyte leakage. While the heatwave treatment accelerated the depletion of non-structural carbohydrates in drought-stressed seedlings, the increase of branch soluble sugar concentration in response to heatwave might be related to the requirement for maintaining hydraulic functioning via osmoregulation under high dehydration risk. The coordination between leaf stomatal conductance and total non-structural carbohydrate content during the post-heatwave recovery phase implied that plant-water relations and carbon physiology were closely coupled in coping with hot droughts. This study highlights that, under scenarios of aggravating drought co-occurring with heatwaves, tree seedlings could face a high risk of crown decline in relation to the synergistically increased hydraulic and thermal impairments.
Collapse
Affiliation(s)
- Xue-Wei Gong
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Liaoning Province, Shenyang 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China.
| |
Collapse
|
9
|
Zhang X, Liu H, Luo X, Xiao M, Xiang P, Chen M, Zhang X, Zhang L, Ye Q, Wen D. Contrasting responses in growth, photosynthesis and hydraulics of two subtropical tree species to cadmium contamination as affected by elevated CO 2 and nitrogen addition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155858. [PMID: 35561921 DOI: 10.1016/j.scitotenv.2022.155858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Plant growth, photosynthesis, and hydraulics are affected by heavy metals but also by elevated atmospheric CO2 concentration (e[CO2]) and nitrogen (N) deposition. However, few studies have investigated the response of woody species to the combined effects of these three factors. We conducted an open-top chamber experiment with two common subtropical trees (Acacia auriculiformis and Syzygium hainanense) to explore the effects of cadmium (Cd)-contamination, e[CO2], and N addition on plant eco-physiological traits. We found that the growth of A. auriculiformis was insensitive to the treatments, indicating that it is a Cd-tolerant and useful afforestation species. For S. hainanense, in contrast, e[CO2] and/or N addition offset the detrimental effects of Cd addition by greatly increasing plant biomass and reducing the leaf Cd concentration. We then found that e[CO2] and/or N addition offset the detrimental Cd effects on S. hainanense biomass by increasing its photosynthetic rate, its N concentration, and the efficiency of its stem water transport network. These offsetting effects of e[CO2] and/or N addition, however, came at the expense of reduced xylem hydraulic safety resulting from wider vessels, thinner vessel walls, and therefore weaker vessel reinforcement. Our study suggests that, given future increases in global CO2 concentration and N deposition, the growth of Cd-tolerant tree species (like A. auriculiformis) will be probably stable while the growth of Cd-sensitive tree species (like S. hainanense) might be enhanced despite reduced hydraulic safety. This also suggests that both species will be useful for afforestation of Cd-contaminated soils given future global change scenarios.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xianzhen Luo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Meijuan Xiao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xiang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghao Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqian Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Dazhi Wen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Beikircher B, Sack L, Ganthaler A, Losso A, Mayr S. Hydraulic-stomatal coordination in tree seedlings: tight correlation across environments and ontogeny in Acer pseudoplatanus. THE NEW PHYTOLOGIST 2021; 232:1297-1310. [PMID: 34176137 DOI: 10.1111/nph.17585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Hydraulic conductance is recognized as a major determinant of gas exchange and productivity. However, whether this also applies to seedlings, a critically important stage for vegetation regeneration, has been largely unknown. We analyzed the hydraulic and stomatal conductance of leaves and shoots for 6-wk-old Acer pseudoplatanus seedlings emerging in different lowland and treeline habitats and under glasshouse conditions, respectively, as well as on 9-, 15- and 18-wk-old plants, and related findings to leaf and xylem anatomical traits. Treeline seedlings had higher leaf area-specific shoot hydraulic conductance (Kshoot-L ), and stomatal conductance (gs ), associated with wider xylem conduits, lower leaf area and higher stomatal density than lowland and glasshouse-grown plants. Across the first 18 wk of development, seedlings increased four-fold in absolute shoot hydraulic conductance (Kshoot ) and declined by half in Kshoot-L , with correlated shifts in xylem and leaf anatomy. Distal leaves had higher leaf hydraulic conductance (Kleaf ) and gs compared to basal leaves. Seedlings show strong variation across growth environments and ontogenetic shifts in hydraulic and anatomical parameters. Across growth sites, ontogenetic stages and leaf orders, gs was tightly correlated with Kshoot-L and Kleaf , balancing hydraulic supply with demand for the earliest stages of seedling establishment.
Collapse
Affiliation(s)
- Barbara Beikircher
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California (UCLA), 621 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Andrea Ganthaler
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| | - Adriano Losso
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Stefan Mayr
- Department of Botany, University of Innsbruck, Sternwartestr. 15, Innsbruck, 6020, Austria
| |
Collapse
|
11
|
Li Y, Wang Z, Liu H, Zhang C, Fu S, Fang X. Responses in Growth and Anatomical Traits of Two Subtropical Tree Species to Nitrogen Addition, Drought, and Their Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:709510. [PMID: 34408764 PMCID: PMC8365520 DOI: 10.3389/fpls.2021.709510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition and drought are two major stressors that influence tree growth and propagation. However, few studies have investigated their interactions. In this study, saplings of the two co-occurring species Ormosia pinnata (leguminous) and Schima superba (non-leguminous) were cultivated under two N addition rates (0 and 80 kg N ha-1 year-1) with well-watered (WW, 80% of field capacity), moderate drought (MD, 60% of field capacity), and severe drought conditions (SD, 40% of field capacity). We examined their growth, as well as multiple anatomical and non-structural carbohydrate (NSC) responses, after 2 years. Results revealed that N addition significantly promoted the growth of MD-stressed S. superba, whereas no significant effect was detected in O. pinnata. Decreased leaf water potential (both Ψmd and Ψpd) was also observed with N addition for both species under MD, but not under SD. Furthermore, the application of N positively impacted drought adaptive responses in the stem xylem of S. superba, showing decreased stem xylem vessel diameter (D H), theoretical hydraulic conductivity (K th), and increased vessel frequency (VF) upon drought under N addition; such impacts were not observed in O. pinnata. Regarding leaf anatomy, N addition also caused drought-stressed S. superba to generate leaves with a lower density of veins (VD) and stomata (SD), which potentially contributed to an enhanced acclimation to drought. However, the same factors led to a decrease in the palisade mesophyll thickness (PMT) of SD-stressed O. pinnata. Moreover, N addition increased the xylem soluble sugar and starch of MD-stressed O. pinnata, and decreased the xylem soluble sugar under SD for both species. The results suggest that N addition does not consistently modify tree growth and anatomical traits under variable water availability. S. superba appeared to have a greater capacity to be more adaptable under the future interactive effects of N addition and drought due to major modifications in its anatomical traits.
Collapse
Affiliation(s)
- Yiyong Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- Hefei Urban Ecosystem Research Station, National Forestry and Grassland Administration, Hefei, China
| | - Zhaocheng Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Huihui Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Cheng Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Songling Fu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xiong Fang
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, China
- College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Zhang T, Liang X, Ye Q, BassiriRad H, Liu H, He P, Wu G, Lu X, Mo J, Cai X, Rao X, Yan J, Fu S. Leaf hydraulic acclimation to nitrogen addition of two dominant tree species in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145415. [PMID: 33736159 DOI: 10.1016/j.scitotenv.2021.145415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Plant hydraulic traits have been shown to be sensitive to changes in nitrogen (N) availability in short-term studies largely using seedlings or saplings. The extent and the magnitude of N-sensitivity of the field grown mature trees in long-term experiments, however, are relatively unknown. Here, we investigated responses of leaf water relations and morphological and anatomical traits of two dominant tree species (Castanopsis chinensis and Schima superba) to a six-year canopy N addition in a subtropical forest. We found that N addition increased leaf hydraulic conductivity in both species along with higher transpiration rate and less negative water potential at 50% loss of leaf hydraulic conductivity and at leaf turgor loss point. Examination of leaf morphological and anatomical traits revealed that increased leaf hydraulic efficiency was at least in part due to increased vessel diameter which also compromised the hydraulic safety under increased water stress. Moreover, reduced vessel reinforcement and increased thickness shrinkage index further interpreted the increases in leaf hydraulic vulnerability under N addition. Our results demonstrated that N deposition may lead to increases of plant water loss to the atmosphere as well as tree vulnerability to drought.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xingyun Liang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China; College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Haibin Road 1119, Nansha, Guangzhou 511458, China.
| | - Hormoz BassiriRad
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St., Chicago 60607, IL, USA
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Guilin Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xi'an Cai
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Xingquan Rao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Guangzhou 510650, China
| | - Shenglei Fu
- College of Environment and Planning, Henan University, Jinming Avenue, Kaifeng 475004, China
| |
Collapse
|
13
|
Zhang H, Yuan F, Wu J, Jin C, Pivovaroff AL, Tian J, Li W, Guan D, Wang A, McDowell NG. Responses of functional traits to seven-year nitrogen addition in two tree species: coordination of hydraulics, gas exchange and carbon reserves. TREE PHYSIOLOGY 2021; 41:190-205. [PMID: 33313912 DOI: 10.1093/treephys/tpaa120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/25/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Atmospheric nitrogen (N) deposition has been observed to impact plant structure and functional traits in terrestrial ecosystems. Although the effect of N deposition on plant water use has been well-evaluated in laboratories and in experimental forests, the linkages between water and carbon relations under N deposition are unclear. Here, we report on hydraulics, gas exchange and carbon reserves of two broad-leaved tree species (Quercus mongolica and Fraxinus mandshurica) in mature temperate forests after a seven-year experiment with different levels of N addition (control (CK), low (23 kg N ha-1 yr-1), medium (46 kg N ha-1 yr-1) and high (69 kg N ha-1 yr-1)). We investigated variation in hydraulic traits (xylem-specific hydraulic conductivity (Ks), native percentage loss of conductivity (PLC) and leaf water potential), xylem anatomy (vessel diameter and density), gas exchange (maximum net photosynthesis rate and stomatal conductance) and carbon reserves (soluble sugars, starch and total nonstructural carbohydrates (NSC)) with different N addition levels. We found that medium N addition significantly increased Ks and vessel diameter compared to control, but accompanied increasing PLC and decreasing leaf water potential, suggesting that N addition results in a greater hydraulic efficiency and higher risk of embolism. N addition promoted photosynthetic capacity via increasing foliar N concentration but did not change stomatal conductance. In addition, we found increase in foliar soluble sugar concentration and decrease in starch concentration with N addition, and positive correlations between hydraulic traits (vessel diameter and PLC) and soluble sugars. These coupled responses of tree hydraulics and carbon metabolism are consistent with a regulatory role of carbohydrates in maintaining hydraulic integrity. Our study provides an important insight into the relationship of plant water transport and carbon dynamics under increasing N deposition.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Alexandria L Pivovaroff
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jinyuan Tian
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Li
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
14
|
王 辉. Effect of Nitrogen Addition on Plant Growth in Early Spring: A Review. INTERNATIONAL JOURNAL OF ECOLOGY 2021. [DOI: 10.12677/ije.2021.103045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Toca A, Villar-Salvador P, Oliet JA, Jacobs DF. Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings. TREE PHYSIOLOGY 2020; 40:1381-1391. [PMID: 32483620 DOI: 10.1093/treephys/tpaa068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Plant hydraulics is key for plant survival and growth because it is linked to gas exchange and drought resistance. Although the environment influences plant hydraulics, there is no clear consensus on the effect of nitrogen (N) supply, which may be, in part, due to different hydraulic conductance normalization criteria and studied species. The objective of this study was to compare the variation of root hydraulic properties using several normalization criteria in four pine species in response to three contrasting N fertilization regimes. We studied four closely related, yet ecologically distinct species: Pinus nigra J.F. Arnold, Pinus pinaster Ait., Pinus pinea L. and Pinus halepensis Mill. Root hydraulic conductance (Kh) was measured with a high-pressure flow meter, and values were normalized by total leaf area (leaf specific conductance, Kl), xylem cross-section area (xylem specific conductance, Ks), total root area (root specific conductance, Kr) and the area of fine roots (fine root specific conductance, Kfr). Controlling for organ size differences allowed comparison of the hydraulic efficiency of roots to supply or absorb water among fertilization treatments and species. The effect of N on the root hydraulic efficiency depended on the normalization criteria. Increasing N availability reduced Kl and Ks, but increased Kh, Kr and especially Kfr. The positive effect of N on Kr and Kfr was positively related to seedling relative growth rate and was also consistent with published results at the interspecific level, whereby plant hydraulics is positively linked to photosynthesis and transpiration rate and fast growth. In contrast, normalization by leaf area and xylem cross-sectional area (Kl and Ks) reflected opposite responses to Kr and Kfr. This indicates that the normalization criteria determine the interpretation of the effect of N on plant hydraulics, which can limit species and treatment comparisons.
Collapse
Affiliation(s)
- Andrei Toca
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Apdo 20, Alcalá de Henares, Madrid 28805, Spain
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907, USA
| | - Pedro Villar-Salvador
- Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Apdo 20, Alcalá de Henares, Madrid 28805, Spain
| | - Juan A Oliet
- Departamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Ciudad Universitaria s/n, Madrid, 28040 Madrid, Spain
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
16
|
Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen J, Liu C, Yin W, Xia X. Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. THE NEW PHYTOLOGIST 2020; 227:407-426. [PMID: 32145071 DOI: 10.1111/nph.16524] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 05/21/2023]
Abstract
Root growth control plays an important role in plant adaptation to drought stress, but the underlying molecular mechanisms of this control remain largely elusive. Here, a root-specific nuclear factor Y (NF-Y) transcription factor PdNF-YB21 was isolated from Populus. The functional mechanism of PdNF-YB21 was characterised by various morphological, physiological, molecular, biochemical and spectroscopy techniques. Overexpression of PdNF-YB21 in poplar promoted root growth with highly lignified and enlarged xylem vessels, resulting in increased drought resistance. By contrast, CRISPR/Cas9-mediated poplar mutant nf-yb21 exhibited reduced root growth and drought resistance. PdNF-YB21 interacted with PdFUSCA3 (PdFUS3), a B3 domain transcription factor. PdFUS3 directly activated the promoter of the abscisic acid (ABA) synthesis key gene PdNCED3, resulting in a significant increase in root ABA content in poplars subjected to water deficit. Coexpression of poplar NF-YB21 and FUS3 significantly enhanced the expression of PdNCED3. Furthermore, ABA promoted indoylacetic acid transport in root tips, which ultimately increased root growth and drought resistance. Taken together, our data indicate that NF-YB21-FUS3-NCED3 functions as an important avenue in auxin-regulated poplar root growth in response to drought.
Collapse
Affiliation(s)
- Yangyan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Xiao Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Yi An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Shiwei Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chao Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - JiaLong Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
17
|
Liang X, Zhang T, Lu X, Ellsworth DS, BassiriRad H, You C, Wang D, He P, Deng Q, Liu H, Mo J, Ye Q. Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. GLOBAL CHANGE BIOLOGY 2020; 26:3585-3600. [PMID: 32146723 DOI: 10.1111/gcb.15071] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/07/2020] [Indexed: 05/17/2023]
Abstract
A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta-analysis to reveal effects of N addition on 14 photosynthesis-related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (Nmass , +18.4%) and area basis (Narea , +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (Aarea , +12.6%), stomatal conductance (gs , +7.5%), and transpiration rate (E, +10.5%). The responses of Aarea were positively related with that of gs , with no changes in instantaneous water-use efficiency and only slight increases in long-term water-use efficiency (+2.5%) inferred from 13 C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI and Aarea diminished while that of E increased significantly. The observed patterns of increases in both TLA and E indicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.
Collapse
Affiliation(s)
- Xingyun Liang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Tong Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiankai Lu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Hormoz BassiriRad
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chengming You
- Long-term Research Station of Alpine Forest Ecosystems, Provincial Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, China
| | - Dong Wang
- School of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Pengcheng He
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hui Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, Gannan Normal University, Ganzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
18
|
Liu J, Kang S, Davies WJ, Ding R. Elevated [CO 2 ] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems. PLANT, CELL & ENVIRONMENT 2020; 43:563-578. [PMID: 31721225 DOI: 10.1111/pce.13677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/06/2019] [Indexed: 05/15/2023]
Abstract
Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2 ] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2 ], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2 ] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2 ] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2 ], vessel diameter, vessel roundness, stem cross-section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2 ]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade-off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2 ] but not observed at elevated [CO2 ]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade-offs in xylem structure and function.
Collapse
Affiliation(s)
- Junzhou Liu
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - William J Davies
- Lancaster Environment Centre, Lancaster University, Bailrigg, LA1 4YQ, UK
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, 100083, China
- Shiyanghe Experimental Station for Improving Water Use Efficiency in Agriculture, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| |
Collapse
|
19
|
Zhang H, McDowell NG, Adams HD, Wang A, Wu J, Jin C, Tian J, Zhu K, Li W, Zhang Y, Yuan F, Guan D. Divergences in hydraulic conductance and anatomical traits of stems and leaves in three temperate tree species coping with drought, N addition and their interactions. TREE PHYSIOLOGY 2020; 40:230-244. [PMID: 31860728 DOI: 10.1093/treephys/tpz135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Drought and nitrogen (N) addition have been shown to affect tree hydraulic traits, but few studies have been made on their interactions across species with different wood types or leaf forms. We examined the responses of hydraulic conductance and xylem anatomical traits of Quercus mongolica (ring porous with simple leaves), Fraxinus mandshurica (ring porous with compound leaves) and Tilia amurensis (diffuse porous with simple leaves) to drought, N addition and their interactions. Drought stress decreased current-year xylem-specific conductivity in stems (Ksx) and leaf hydraulic conductance (Kleaf ), but N addition affected Ksx and Kleaf differently among species and watering regimes. These divergent effects were associated with different responses of anatomical traits and leaf forms. Higher mean vessel diameter in stems and lower vessel density in leaves were observed with N addition. The three-way interactive effects of drought, N addition and tree species were significant for most values of anatomical traits. These results were also reflected in large differences in vessel diameter and density among species with different wood types or leaf forms. The two-way interactive effects of drought and N addition were significant on Kleaf and predawn water potential, but not Ksx, indicating that leaves were more sensitive than stems to a combination of drought stress and N addition. Our results provide mechanistic insight into the variable responses of xylem water transport to the interactions of drought and N availability.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nate G McDowell
- Atmospheric Sciences & Global Change, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Henry D Adams
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK 74078-3013, USA
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jinyuan Tian
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Li
- State Key Laboratory of Grassland and Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yushu Zhang
- Institute of Atmospheric Environment, China Meteorological Administration, Shenyang 110166, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
20
|
Zhu L, Hu Y, Zhao X, Zhao P, Ouyang L, Ni G, Liu N. Specific responses of sap flux and leaf functional traits to simulated canopy and understory nitrogen additions in a deciduous broadleaf forest. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:986-993. [PMID: 31280758 DOI: 10.1071/fp18277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
To investigate the effects of atmospheric nitrogen (N) deposition on water use characteristics and leaf traits of trees, we performed canopy (C50) and understory (U50) N additions as NH4NO3 of 50 kg N ha-1 year-1 in a deciduous broadleaf forest of central China. We measured xylem sap flux, crown area:sapwood area ratio (Ca:As), specific leaf area (SLA), mass-based leaf nitrogen content (Nmass) and leaf carbon isotope ratio (δ13C) of Liquidambar formosana Hance, Quercus acutissima Carruth. and Quercus variabilis Blume. Functional traits under different N addition treatments and their responses among tree species were compared and the relationship between xylem sap flux and leaf functional traits under N additions were explored. Results showed that under U50 sap-flux density of xylem significantly decreased for three tree species. But the effect of C50 on sap flux was species-specific. The decrease of sap-flux density with N additions might be caused by the increased Ca/As. δ13C remained constant among different N addition treatments. The responses of SLA and Nmass to N additions were species- and N addition approaches-specific. The correlation of xylem sap flux with leaf traits was not found. Our findings indicate that the effects of canopy N addition on xylem sap flux and leaf functional traits were species-specific and it is necessary to employ canopy N addition for exploring the real responses of forest ecosystems to climate changes in the future researches.
Collapse
Affiliation(s)
- Liwei Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yanting Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiuhua Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; and Corresponding author.
| | - Lei Ouyang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Nan Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
21
|
Yang D, Zhang YJ, Song J, Niu CY, Hao GY. Compound leaves are associated with high hydraulic conductance and photosynthetic capacity: evidence from trees in Northeast China. TREE PHYSIOLOGY 2019; 39:729-739. [PMID: 30668831 DOI: 10.1093/treephys/tpy147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/08/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Characterizing differences in key functional traits between simple-leaved (SL) and compound-leaved (CL) tree species can contribute to a better understanding of the adaptive significance of compound leaf form. In particular, this information may provide a mechanistic explanation to the long-proposed fast-growth hypothesis of CL tree species. Here, using five SL and five CL tree species co-occurring in a typical temperate forest of Northeast China, we tested whether higher hydraulic efficiency underlies potentially high photosynthetic capacity in CL species. We found that the CL species had significantly higher hydraulic conductance at the whole-branch level than the SL species (0.52 ± 0.13 vs 0.15 ± 0.04 × 10-4 kg m-2 s-1 Pa-1, P = 0.029). No significant difference in net photosynthetic rate (14.7 ± 2.43 vs 12.5 ± 2.05 μmol m-2 s-1, P = 0.511) was detected between these two groups, but this was largely due to the existence of one outlier species in each of the two functional groups. Scrutinization of the intragroup variations in functional traits revealed that distinctions of the two outlier species in wood type (ring- vs diffuse-porous) from their respective functional groups have likely contributed to their aberrant physiological performances. The potentially high photosynthetic capacity of CL species seems to require ring-porous wood to achieve high hydraulic efficiency. Due to its limitation on leaf photosynthetic capacity, diffuse-porous wood with lower hydraulic conductivity largely precludes its combination with the 'throw-away' strategy (i.e., annually replacing the stem-like rachises) of compound-leaved tree species, which intrinsically requires high carbon assimilation rate to compensate for their extra carbon losses. Our results for the first time show clear differentiation in hydraulic architecture and CO2 assimilation between sympatric SL and CL species, which contributes to the probing of the underlying mechanism responsible for the potential fast growth of trees with compound leaves.
Collapse
Affiliation(s)
- Da Yang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Jiang Zhang
- School of Biology and Ecology, the University of Maine, Orono, ME, USA
| | - Jia Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cun-Yang Niu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
22
|
Beikircher B, Losso A, Gemassmer M, Jansen S, Mayr S. Does fertilization explain the extraordinary hydraulic behaviour of apple trees? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1915-1925. [PMID: 30793193 PMCID: PMC6436149 DOI: 10.1093/jxb/erz070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/07/2019] [Indexed: 05/13/2023]
Abstract
Fertilization of woody plants plays a central role in agriculture and forestry, but little is known about how plant water relations are thereby affected. Here we investigated the impact of fertilization on tree hydraulics, and xylem and pit anatomy in the high-yield apple cultivars Golden and Red Delicious. In fertilized trees of Golden Delicious, specific hydraulic conductivity of branch xylem, hydraulic conductance of the root system, and maximum stomatal conductance increased considerably. In Red Delicious, differences between fertilized and control trees were less pronounced. In both cultivars, xylem embolism resistance of fertilized trees was significantly lower and stomatal closure occurred at lower water potentials. Furthermore, water potential at turgor loss point and osmotic potential at full saturation were higher and cell wall elasticity was lower in fertilized plants, suggesting reduced drought tolerance of leaves. Anatomical differences were observed regarding conduit diameters, cell wall reinforcement, pit membrane thickness, pit chamber depth, and stomatal pore length, with more pronounced differences in Golden Delicious. The findings reveal altered hydraulic behaviour in both apple cultivars upon fertilization. The increased vulnerability to hydraulic failure might pose a considerable risk for apple productivity under a changing climate, which should be considered for future cultivation and management practices.
Collapse
Affiliation(s)
- Barbara Beikircher
- University of Innsbruck, Institute of Botany, Sternwartestrasse, Innsbruck, Austria
| | - Adriano Losso
- University of Innsbruck, Institute of Botany, Sternwartestrasse, Innsbruck, Austria
| | - Marilena Gemassmer
- University of Innsbruck, Institute of Botany, Sternwartestrasse, Innsbruck, Austria
| | - Steven Jansen
- Ulm University, Institute of Systematic Botany and Ecology, Albert-Einstein-Allee, Ulm, Germany
| | - Stefan Mayr
- University of Innsbruck, Institute of Botany, Sternwartestrasse, Innsbruck, Austria
| |
Collapse
|
23
|
Dry Season Irrigation Promotes Leaf Growth in Eucalyptus urophylla × E. grandis under Fertilization. FORESTS 2019. [DOI: 10.3390/f10010067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Leaves are essential for photosynthesis and gas exchange, and their growth characteristics are the key factors that influence the carbon budget. Eucalyptus is widely afforested in south China due to its fast-growing and high-yield features. Water and fertilizer are the main factors affecting plant growth. Studying the effects of different water and fertilizer treatments on the growth of Eucalyptus leaves under seasonal drought could further elucidate the optimal additions for Eucalyptus productivity. In this study, we investigated the leaf area, length, width, perimeter, and expansion rates of the commercial species E. urophylla × E. grandis under different treatments of dry season irrigation and fertilizer application to elucidate the growth dynamics of the leaves. The results indicated that both dry season irrigation and fertilizer could affect whole leaf expansion. Leaf area was largest when water and fertilizer were added at the same time. In this experiment, we found that fertilization had a significant effect on the leaf shape index of the Eucalyptus leaves. The leaf shape index was larger with the fertilizer treatment, which made the leaves slender. Dry season irrigation shorten the peak period of leaf growth and increase the leaf area. Our results help to further understand the mechanism of Eucalyptus productivity under seasonal drought and provide theoretical support for Eucalyptus production.
Collapse
|
24
|
Hao X, Tang H, Wang B, Yue C, Wang L, Zeng J, Yang Y, Wang X. Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. TREE PHYSIOLOGY 2018; 38:1041-1052. [PMID: 29401304 DOI: 10.1093/treephys/tpy001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/15/2018] [Indexed: 05/03/2023]
Abstract
Green tea has attracted an increasing number of consumers worldwide due to its multiple health benefits. With the increase in global warming, more frequent cold spells in the spring often cause more serious damage to green tea production because of the young leaves used. We recorded the changes in climatic conditions during a typical cold spell and the damage symptoms caused by the cold spell in different tea cultivars and breeding lines. By simulating the low temperature of a cold spell under controlled conditions, comparative transcriptome and metabolic analyses were performed with sprouting shoots. Many pathways and genes were regulated differentially by the cold spell conditions. Taking into account the metabolic analysis, the results suggested that the mitogen-activated protein kinase (MAPK)-dependent ethylene and calcium signalling pathways were two major early cold-responsive mechanisms involved in sprouting shoots and were followed by the induction of the Inducer of CBF Expressions (ICE)-C-repeat binding factors (CBF)-cold-responsive (COR) signalling pathway to augment cold tolerance. During the cold shock, growth, photosynthesis and secondary metabolism-mainly involving flavonoid biosynthesis-were remarkably affected. Notably, the increased starch metabolism, which might be dependent on the high expression of β-amylase3 (BAM3) induced by CBF, played crucial roles in protecting young shoots against freezing cold. A schematic diagram of cold spell response mechanisms specifically involved in the sprouting shoots of the tea plant is ultimately proposed. Some essential transcriptional and metabolic changes were further confirmed in the plant materials under natural cold spell conditions. Our results provide a global view of the reprograming of transcription and metabolism in sprouting tea shoots during a cold spell and meaningful information for future practices.
Collapse
Affiliation(s)
- Xinyuan Hao
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Hu Tang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Bo Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Chuan Yue
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou, China
| | - Lu Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
25
|
Zhang WW, Wang M, Wang AY, Yin XH, Feng ZZ, Hao GY. Elevated ozone concentration decreases whole-plant hydraulic conductance and disturbs water use regulation in soybean plants. PHYSIOLOGIA PLANTARUM 2018; 163:183-195. [PMID: 29193125 DOI: 10.1111/ppl.12673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/30/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Elevated tropospheric ozone (O3 ) concentration has been shown to affect many aspects of plant performance including detrimental effects on leaf photosynthesis and plant growth. However, it is not known whether such changes are accompanied by concomitant responses in plant hydraulic architecture and water relations, which would have great implications for plant growth and survival in face of unfavorable water conditions. A soybean (Glycine max (L.) Merr.) cultivar commonly used in Northeast China was exposed to non-filtered air (NF, averaged 24.0 nl l-1 ) and elevated O3 concentrations (eO3 , 40 nl l-1 supplied with NF air) in six open-top chambers for 50 days. The eO3 treatment resulted in a significant decrease in whole-plant hydraulic conductance that is mainly attributable to the reduced hydraulic conductance of the root system and the leaflets, while stem and leaf petiole hydraulic conductance showed no significant response to eO3 . Stomatal conductance of plants grown under eO3 was lower during mid-morning but significantly higher at midday, which resulted in substantially more negative daily minimum water potentials. Moreover, excised leaves from the eO3 treated plants showed significantly higher rates of water loss, suggesting a lower ability to withhold water when water supply is impeded. Our results indicate that, besides the direct detrimental effects of eO3 on photosynthetic carbon assimilation, its influences on hydraulic architecture and water relations may also negatively affect O3 -sensitive crops by deteriorating the detrimental effects of unfavorable water conditions.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Miao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ai-Ying Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Han Yin
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao-Zhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
26
|
Zhang H, Li W, Adams HD, Wang A, Wu J, Jin C, Guan D, Yuan F. Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. FRONTIERS IN PLANT SCIENCE 2018; 9:683. [PMID: 29875787 PMCID: PMC5974508 DOI: 10.3389/fpls.2018.00683] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
Atmospheric nitrogen (N) deposition has been found to significantly affect plant growth and physiological performance in terrestrial ecosystems. Many individual studies have investigated how N addition influences plant functional traits, however these investigations have usually been limited to a single species, and thereby do not allow derivation of general patterns or underlying mechanisms. We synthesized data from 56 papers and conducted a meta-analysis to assess the general responses of 15 variables related to leaf economics, gas exchange, and hydraulic traits to N addition among 61 woody plant species, primarily from temperate and subtropical regions. Results showed that under N addition, leaf area index (+10.3%), foliar N content (+7.3%), intrinsic water-use efficiency (+3.1%) and net photosynthetic rate (+16.1%) significantly increased, while specific leaf area, stomatal conductance, and transpiration rate did not change. For plant hydraulics, N addition significantly increased vessel diameter (+7.0%), hydraulic conductance in stems/shoots (+6.7%), and water potential corresponding to 50% loss of hydraulic conductivity (P50, +21.5%; i.e., P50 became less negative), while water potential in leaves (-6.7%) decreased (became more negative). N addition had little effect on vessel density, hydraulic conductance in leaves and roots, or water potential in stems/shoots. N addition had greater effects on gymnosperms than angiosperms and ammonium nitrate fertilization had larger effects than fertilization with urea, and high levels of N addition affected more traits than low levels. Our results demonstrate that N addition has coupled effects on both carbon and water dynamics of woody plants. Increased leaf N, likely fixed in photosynthetic enzymes and pigments leads to higher photosynthesis and water use efficiency, which may increase leaf growth, as reflected in LAI results. These changes appear to have downstream effects on hydraulic function through increases in vessel diameter, which leads to higher hydraulic conductance, but lower water potential and increased vulnerability to embolism. Overall, our results suggest that N addition will shift plant function along a tradeoff between C and hydraulic economies by enhancing C uptake while simultaneously increasing the risk of hydraulic dysfunction.
Collapse
Affiliation(s)
- Hongxia Zhang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weibin Li
- State Key Laboratory of Grassland and Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Henry D. Adams
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, United States
| | - Anzhi Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Jiabing Wu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Changjie Jin
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Dexin Guan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Fenghui Yuan
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
27
|
Zhang WW, Song J, Wang M, Liu YY, Li N, Zhang YJ, Holbrook NM, Hao GY. Divergences in hydraulic architecture form an important basis for niche differentiation between diploid and polyploid Betula species in NE China. TREE PHYSIOLOGY 2017; 37:604-616. [PMID: 28338717 DOI: 10.1093/treephys/tpx004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 01/25/2017] [Indexed: 05/02/2023]
Abstract
Habitat differentiation between polyploid and diploid plants are frequently observed, with polyploids usually occupying more stressed environments. In woody plants, polyploidization can greatly affect wood characteristics but knowledge of its influences on xylem hydraulics is scarce. The four Betula species in NE China, representing two diploids and two polyploids with obvious habitat differentiation, provide an exceptional study system for investigating the impact of polyploidization on environmental adaptation of trees from the point view of xylem hydraulics. To test the hypothesis that changes in hydraulic architecture play an important role in determining their niche differentiation, we measured wood structural traits at both the tissue and pit levels and quantified xylem water transport efficiency and safety in these species. The two polyploids had significantly larger hydraulic weighted mean vessel diameters than the two diploids (45.1 and 45.5 vs 25.9 and 24.5 μm) although the polyploids are occupying more stressed environments. As indicated by more negative water potentials corresponding to 50% loss of stem hydraulic conductivities, the two polyploids exhibited significantly higher resistance to drought-induced embolism than the two diploids (-5.23 and -5.05 vs -3.86 and -3.13 MPa) despite their larger vessel diameters. This seeming discrepancy is reconciled by distinct characteristics favoring greater embolism resistance at the pit level in the two polyploid species. Our results showed clearly that the two polyploid species have remarkably different pit-level anatomical traits favoring greater hydraulic safety than their congeneric diploid species, which have likely contributed to the abundance of polyploid birches in more stressed habitats; however, less porous inter-conduit pits together with a reduced leaf to sapwood area may have compromised their competitiveness under more favorable conditions. Contrasts in hydraulic architecture between diploid and polyploid Betula species suggest an important functional basis for their clear habitat differentiation along environmental gradients in Changbai Mountain of NE China.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Jia Song
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Yan-Yan Liu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| | - Yong-Jiang Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- The Arnold Arboretum of Harvard University, Boston, MA 02131, USA
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
| |
Collapse
|