1
|
He R, Shi H, Hu M, Zhou Q, Zhang Q, Dang H. Divergent effects of warming on nonstructural carbohydrates in woody plants: a meta-analysis. PHYSIOLOGIA PLANTARUM 2023; 175:e14117. [PMID: 38148215 DOI: 10.1111/ppl.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Nonstructural carbohydrates (NSC, including soluble sugars and starch) are essential for supporting growth and survival of woody plants, and play multifunctional roles in various ecophysiological processes that are being rapidly changed by climate warming. However, it still remains unclear whether there is a consistent response pattern of NSC dynamics in woody plants to climate warming across organ types and species taxa. Here, based on a compiled database of 52 woody plant species worldwide, we conducted a meta-analysis to investigate the effects of experimental warming on NSC dynamics. Our results indicated that the responses of NSC dynamics to warming were primarily driven by the fluctuations of starch, while soluble sugars did not undergo significant changes. The effects of warming on NSC shifted from negative to positive with the extension of warming duration, while the negative warming effects on NSC became more pronounced as warming magnitude increased. Overall, our study showed the divergent responses of NSC and its components in different organs of woody plants to experimental warming, suggesting a potentially changed carbon (C) balance in woody plants in future global warming. Thus, our findings highlight that predicting future changes in plant functions and terrestrial C cycle requires a mechanism understanding of how NSC is linked to a specific global change driver.
Collapse
Affiliation(s)
- Rui He
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hang Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Man Hu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quan Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Haishan Dang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
2
|
Fu M, Liao J, Liu X, Li M, Zhang S. Artificial warming affects sugar signals and flavonoid accumulation to improve female willows' growth faster than males. TREE PHYSIOLOGY 2023; 43:1584-1602. [PMID: 37384415 DOI: 10.1093/treephys/tpad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Increasing global warming is severely affecting tree growth and development. However, research on the sex-specific responses of dioecious trees to warming is scarce. Here, male and female Salix paraplesia were selected for artificial warming (an increase of 4 °C relative to ambient temperature) to investigate the effects on morphological, physiological, biochemical and molecular responses. The results showed that warming significantly promoted the growth of female and male S. paraplesia, but females grew faster than males. Warming affected photosynthesis, chloroplast structures, peroxidase activity, proline, flavonoids, nonstructural carbohydrates (NSCs) and phenolic contents in both sexes. Interestingly, warming increased flavonoid accumulation in female roots and male leaves but inhibited it in female leaves and male roots. The transcriptome and proteome results indicated that differentially expressed genes and proteins were significantly enriched in sucrose and starch metabolism and flavonoid biosynthesis pathways. The integrative analysis of transcriptomic, proteomic, biochemical and physiological data revealed that warming changed the expression of SpAMY, SpBGL, SpEGLC and SpAGPase genes, resulting in the reduction of NSCs and starch and the activation of sugar signaling, particularly SpSnRK1s, in female roots and male leaves. These sugar signals subsequently altered the expression of SpHCTs, SpLAR and SpDFR in the flavonoid biosynthetic pathway, ultimately leading to the differential accumulation of flavonoids in female and male S. paraplesia. Therefore, warming causes sexually differential responses of S. paraplesia, with females performing better than males.
Collapse
Affiliation(s)
- Mingyue Fu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jun Liao
- College of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Menghan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Guo J, Beverly DP, Ewers BE, Williams DG. Stomatal, mesophyll and biochemical limitations to photosynthesis and their relationship with leaf structure over an elevation gradient in two conifers. PHOTOSYNTHESIS RESEARCH 2023; 157:85-101. [PMID: 37212937 DOI: 10.1007/s11120-023-01022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/29/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic responses across complex elevational gradients provides insight into fundamental processes driving responses of plant growth and net primary production to environmental change. Gas exchange of needles and twig water potential were measured in two widespread coniferous tree species, Pinus contorta and Picea engelmannii, over an 800-m elevation gradient in southeastern Wyoming, USA. We hypothesized that limitations to photosynthesis imposed by mesophyll conductance (gm) would be greatest at the highest elevation sites due to higher leaf mass per area (LMA) and that estimations of maximum rate of carboxylation (Vcmax) without including gm would obscure elevational patterns of photosynthetic capacity. We found that gm decreased with elevation for P. contorta and remained constant for P. engelmannii, but in general, limitation to photosynthesis by gm was small. Indeed, estimations of Vcmax when including gm were equivalent to those estimated without including gm and no correlation was found between gm and LMA nor between gm and leaf N. Stomatal conductance (gs) and biochemical demand for CO2 were by far the most limiting processes to photosynthesis at all sites along the elevation gradient. Photosynthetic capacity (A) and gs were influenced strongly by differences in soil water availability across the elevation transect, while gm was less responsive to water availability. Based on our analysis, variation in gm plays only a minor role in driving patterns of photosynthesis in P. contorta and P. engelmannii across complex elevational gradients in dry, continental environments of the Rocky Mountains and accurate modeling of photosynthesis, growth and net primary production in these forests may not require detailed estimation of this trait value.
Collapse
Affiliation(s)
- Jiemin Guo
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.
| | - Daniel P Beverly
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
- Biology Department, Indiana University, Bloomington, IN, USA
| | - Brent E Ewers
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - David G Williams
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
4
|
Yu L, Tang S, Guo C, Korpelainen H, Li C. Differences in ecophysiological responses of Populus euphratica females and males exposed to salinity and alkali stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107707. [PMID: 37086693 DOI: 10.1016/j.plaphy.2023.107707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Soil salinity is usually accompanied by alkalization in northwest China, and they both negatively impact plant growth and result in severe ecological problems. Some studies have reported tree responses to salinity or alkali stress alone, however, the interactive salinity and alkali effects are still unclear, especially in dioecious trees. In this study, we measured growth, morphology, leaf stomata, gas exchange, carbon isotope composition (δ13C), total soluble sugar and starch contents, Na+ accumulation and allocation, oxidative stress, and antioxidants of female and male Populus euphratica seedlings in response to salinity, alkali and their interaction. Our study showed no significant sexual differences in studied traits under control conditions. In addition, P. euphratica females showed greater inhibitory and negative effects, such as bigger decreases in growth and gas exchange, lower stomatal density and water use efficiency (as described by δ13C), and lower levels of soluble sugars and antioxidant enzyme activities compared with males under salinity, alkali and interactive stress conditions. Furthermore, P. euphratica males had a greater ability of ion exclusion and Na + transport restriction. For example, males allocated more Na+ to stems and roots than females, whereas females had higher Na+ contents in leaves under stress conditions. In conclusion, our results indicated that P. euphratica males have superior resistance and they perform better than females under salinity, alkali and their interactive stress conditions.
Collapse
Affiliation(s)
- Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shuanglei Tang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chengjin Guo
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Wang Y, Xu S, Li B, Chen W, Li Y, He X, Wang N. Responses of spring leaf phenological and functional traits of two urban tree species to air warming and/or elevated ozone. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:158-167. [PMID: 35358866 DOI: 10.1016/j.plaphy.2022.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Climate warming and surface ozone (O3) pollution are important global environmental issues today. However, the combined impacts of air warming and O3 on phenology and its functional traits of urban trees are still poorly understood. Here, an experiment was performed to explore the variations of the spring phenological and functional traits in leaves of Populus alba 'Berolinensis' and Forsythia suspensa under ambient air (15.8 °C, 35.7 ppb), increased air temperature (IT, ambient air temperature + 2 °C, 17.9 °C), elevated O3 (EO, ambient air O3 concentrations + 40 ppb, 77.4 ppb), and their combined treatments (17.7 °C, 74.5 ppb). Our results showed that: IT advanced the beginning of leaf bud expansion phase of P. alba 'Berolinensis' and F. suspensa for 6 d and 5 d, respectively, increased leaf unfolding rate, leaf area and dry weight, and enhanced photosynthesis and antioxidative enzyme activities. EO delayed the beginning of leaf bud expansion phase of P. alba 'Berolinensis' for 5 d, decreased leaf area and biomass, and inhibited photosynthesis and caused oxidative damage of plant leaves. Compared to EO, the combined treatment advanced the spring phenophase, increased growth and induced the higher level of photosynthetic rate and antioxidative enzymes activities in plant leaves, which indicated that the positive effects of increased temperature (17.7 °C) alleviated the inhibition of growth and photosynthesis induced by ozone. Our findings can provide a theoretical reference for predicting the adaptation of functional traits of the two trees blossomed early under warming and O3 pollution at spring phenological stage.
Collapse
Affiliation(s)
- Yijing Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng Xu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Bo Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yan Li
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xingyuan He
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Nan Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Yu L, Dong H, Huang Z, Korpelainen H, Li C. Elevated CO2 causes different growth stimulation, water- and nitrogen-use efficiencies, and leaf ultrastructure responses in two conifer species under intra- and interspecific competition. TREE PHYSIOLOGY 2021; 41:2082-2095. [PMID: 33891044 DOI: 10.1093/treephys/tpab054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The continuously increasing atmospheric carbon dioxide concentration ([CO2]) has substantial effects on plant growth, and on the composition and structure of forests. However, how plants respond to elevated [CO2] (e[CO2]) under intra- and interspecific competition has been largely overlooked. In this study, we employed Abies faxoniana Rehder & Wilson and Picea purpurea Mast. seedlings to explore the effects of e[CO2] (700 p.p.m.) and plant-plant competition on plant growth, physiological and morphological traits, and leaf ultrastructure. We found that e[CO2] stimulated plant growth, photosynthesis and nonstructural carbohydrates (NSC), affected morphological traits and leaf ultrastructure, and enhanced water- and nitrogen (N)- use efficiencies in A. faxoniana and P. purpurea. Under interspecific competition and e[CO2], P. purpurea showed a higher biomass accumulation, photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies compared with A. faxoniana. However, under intraspecific competition and e[CO2], the two conifers showed no differences in biomass accumulation, photosynthetic capacity, and water- and N-use efficiencies. In addition, under interspecific competition and e[CO2], A. faxoniana exhibited higher NSC levels in leaves as well as more frequent and greater starch granules, which may indicate carbohydrate limitation. Consequently, we concluded that under interspecific competition, P. purpurea possesses a positive growth and adjustment strategy (e.g. a higher photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies), while A. faxoniana likely suffers from carbohydrate limitation to cope with rising [CO2]. Our study highlights that plant-plant competition should be taken into consideration when assessing the impact of rising [CO2] on the plant growth and physiological performance.
Collapse
Affiliation(s)
- Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Haojie Dong
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Zongdi Huang
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5 FI-00014, Helsinki, Finland
| | - Chunyang Li
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China
| |
Collapse
|
7
|
Cao JH, Qi R, Liu T, Li B, Gao BQ, Chen XL, Zhao Y, Zhao ZG. Patterns of species and phylogenetic diversity in Picea purpurea forests under different levels of disturbance on the northeastern Qinghai-Tibetan Plateau. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Coupling Photosynthetic Measurements with Biometric Data to Estimate Gross Primary Productivity (GPP) in Mediterranean Pine Forests of Different Post-Fire Age. FORESTS 2021. [DOI: 10.3390/f12091256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantification of forest Gross Primary Productivity (GPP) is important for understanding ecosystem function and designing appropriate carbon mitigation strategies. Coupling forest biometric data with canopy photosynthesis models can provide a means to simulate GPP across different stand ages. In this study we developed a simple framework to integrate biometric and leaf gas-exchange measurements, and to estimate GPP across four Mediterranean pine forests of different post-fire age. We used three different methods to estimate the Leaf Area Index (LAI) of the stands, and monthly gas exchange data to calibrate the photosynthetic light response of the leaves. Upscaling of carbon sequestration at the canopy level was made by implementing a Big Leaf and a Sun/Shade model, using both average and variant (monthly) photosynthetic capacity values. The Big Leaf model simulations systematically underestimated GPP compared to the Sun/Shade model simulations. Our simulations suggest an increasing GPP with age up to a stand maturity stage. The shape of the GPP trend with stand age was not affected by the method used to parameterise the model. At the scale of our study, variability in stand and canopy structure among the study sites seems to be the key determinant of GPP.
Collapse
|
9
|
Zhang Q, Luo D, Yang L, Xie J, Yang Z, Zhou J, Li X, Xiong D, Chen Y, Yang Y. Variations in Rainfall Affect the Responses of Foliar Chemical Properties of Cunninghamia lanceolata Seedlings to Soil Warming. FRONTIERS IN PLANT SCIENCE 2021; 12:705861. [PMID: 34394162 PMCID: PMC8363246 DOI: 10.3389/fpls.2021.705861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Climate warming is becoming an increasingly serious threat. Understanding plant stoichiometry changes under climate warming is crucial for predicting the effects of future warming on terrestrial ecosystem productivity. Nevertheless, how plant stoichiometry responds to warming when interannual rainfall variation is considered, remains poorly understood. We performed a field soil warming experiment (+5°C) using buried heating cables in subtropical areas of China from 2015 to 2018. Stoichiometric patterns of foliar C:N:P:K:Ca:Mg, non-structural carbohydrate, and stable isotope of Cunninghamia lanceolata seedlings were studied. Our results showed that soil warming decreased foliar P and K concentrations, C:Ca, P:Ca, and P:Mg ratios. However, soil warming increased foliar Ca concentration, δ15N value, C:P and N:P ratios. The response ratios of foliar N, C:N, and δ15N to soil warming were correlated with rainfall. Our findings indicate that there was non-homeostasis of N and C:N under warming conditions. Three possible reasons for this result are considered and include interannual variations in rainfall, increased loss of N, and N limitation in leaves. Piecewise structural equation models showed that stoichiometric non-homeostasis indirectly affected the growth of C. lanceolata seedlings in response to soil warming. Consequently, the growth of C. lanceolata seedlings remained unchanged under the warming treatment. Taken together, our results advance the understanding of how altered foliar stoichiometry relates to changes in plant growth in response to climate warming. Our results emphasize the importance of rainfall variations for modulating the responses of plant chemical properties to warming. This study provides a useful method for predicting the effects of climate warming on economically important timber species.
Collapse
Affiliation(s)
- Qiufang Zhang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Dawei Luo
- Department of Renewable Resources, Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liuming Yang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Jinsheng Xie
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Zhijie Yang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Jiacong Zhou
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Xiaojie Li
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Decheng Xiong
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Yuehmin Chen
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| | - Yusheng Yang
- College of Geographical Science, Fujian Normal University, Fuzhou, China
- State Key Laboratory of Subtropical Mountain Ecology (Funded by Ministry of Science and Technology and Fujian Province), Fujian Normal University, Fuzhou, China
| |
Collapse
|
10
|
Wang Y, Xu S, Zhang W, Li Y, Wang N, He X, Chen W. Responses of growth, photosynthesis and related physiological characteristics in leaves of Acer ginnala Maxim. to increasing air temperature and/or elevated O 3. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:221-231. [PMID: 33527649 DOI: 10.1111/plb.13240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 05/26/2023]
Abstract
Regional warming and atmospheric ozone (O3 ) pollution are two of the most important environmental issues, and commonly coexist in many areas. Both factors have an intense impact on plants. However, little information is available on the combined and interactive effects of air warming and elevated O3 concentrations on physiological characteristics of plants. To explore this issue, we studied variations in growth, photosynthesis and physiological characteristics of leaves of Acer ginnala seedlings exposed to control (ambient temperature and O3 ), increasing air temperature (ambient temperature + 2 °C), elevated O3 (ambient O3 concentration + 40 ppb) and a combination of the two abiotic factors at different phenological stages by using open-top chambers. The results showed that increasing air temperature had no significant effect on growth, but increased photosynthesis and antioxidant enzyme activity at the leaf unfolding and defoliation stages. In contrast, elevated O3 decreased growth and photosynthesis and caused oxidative stress injury in A. ginnala leaves at each phenological stage. The combination of increasing air temperature and elevated O3 improved growth and net photosynthetic rates of tested plants and alleviated the oxidative stress compared to O3 alone. Our findings demonstrated that moderate warming was beneficial to A. ginnala at leaf unfolding and defoliation stages, and alleviated the adverse effects of O3 stress on growth, photosynthesis and the antioxidant system. These results will provide a theoretical reference and scientific basis for the adaptation and response of A. ginnala under regional air warming and atmospheric O3 pollution.
Collapse
Affiliation(s)
- Y Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - S Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
| | - W Zhang
- College of Environment, Shenyang University, 110044, China
| | - Y Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - N Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - X He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| | - W Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Academy of Sciences Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Shenyang, 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
11
|
Wang B, Zhang J, Pei D, Yu L. Combined effects of water stress and salinity on growth, physiological, and biochemical traits in two walnut genotypes. PHYSIOLOGIA PLANTARUM 2021; 172:176-187. [PMID: 33314146 DOI: 10.1111/ppl.13316] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 05/27/2023]
Abstract
Due to its great economic value, walnut (Juglans regia L.) has received increasing attention during recent years. However, water stress and salinity limit walnut growth, production, and quality. We employed two walnut genotypes, precocious walnut, and late-bearing walnut, to investigate their growth, photosynthetic capacity, non-structural carbohydrate contents, Cl- allocation, reactive oxygen species (ROS) accumulation, and osmotic regulation under water stress, salinity, and their combination. We found that late-bearing walnut showed higher total biomass and net photosynthetic rate, higher activities of antioxidant enzymes, higher osmoregulation, and lower ROS accumulation than precocious walnut under stressful conditions. In addition, late-bearing walnut restricted salt transport and allocated more Cl- into roots, whereas precocious walnut allocated more Cl- into leaves when exposed to salinity stress. These data collectively demonstrated that late-bearing walnut possesses better stress tolerance under water stress, salinity, and especially under their combination. Such knowledge of genotype-specific responses and tolerances to water stress and salinity is important for walnut plantation management under increasing drought and aggravated soil salinization occurring with climate change.
Collapse
Affiliation(s)
- Baoqing Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Akesu National Observation and Research Station of Chinese Forest Ecosystem, Xinjiang Forestry Academy, Urumqi, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Lei Yu
- Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
12
|
Veromann-Jürgenson LL, Brodribb TJ, Niinemets Ü, Tosens T. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4958-4971. [PMID: 32392579 DOI: 10.1093/jxb/eraa231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic efficiency of plants in different environments is controlled by stomata, hydraulics, biochemistry, and mesophyll conductance (gm). Recently, gm was demonstrated to be the key limitation of photosynthesis in gymnosperms. Values of gm across gymnosperms varied over 20-fold, but this variation was poorly explained by robust structure-bound integrated traits such as leaf dry mass per area. Understanding how the component structural traits control gm is central for identifying the determinants of variability in gm across plant functional and phylogenetic groups. Here, we investigated the structural traits responsible for gm in 65 diverse gymnosperms. Although the integrated morphological traits, shape, and anatomical characteristics varied widely across species, the distinguishing features of all gymnosperms were thick mesophyll cell walls and low chloroplast area exposed to intercellular airspace (Sc/S) compared with angiosperms. Sc/S and cell wall thickness were the fundamental traits driving variations in gm across gymnosperm species. Chloroplast thickness was the strongest limitation of gm among liquid-phase components. The variation in leaf dry mass per area was not correlated with the key ultrastructural traits determining gm. Thus, given the absence of correlating integrated easy-to-measure traits, detailed knowledge of underlying component traits controlling gm across plant taxa is necessary to understand the photosynthetic limitations across ecosystems.
Collapse
Affiliation(s)
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
13
|
Shen H, Dong S, Li S, Wang W, Xiao J, Yang M, Zhang J, Gao X, Xu Y, Zhi Y, Liu S, Dong Q, Zhou H, Yeomans JC. Effects of Warming and N Deposition on the Physiological Performances of Leymus secalinus in Alpine Meadow of Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2020; 10:1804. [PMID: 32153598 PMCID: PMC7047333 DOI: 10.3389/fpls.2019.01804] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/24/2019] [Indexed: 05/31/2023]
Abstract
Warming and Nitrogen (N) deposition are key global changes that may affect eco-physiological process of territorial plants. In this paper, we examined the effects of warming, N deposition, and their combination effect on the physiological performances of Leymus secalinus. Four treatments were established in an alpine meadow of Qinghai-Tibetan plateau: control (CK), warming (W), N deposition (N), and warming plus N deposition (NW). Warming significantly decreased the photosynthetic rate (Anet ), stomatal conductance (gs ), intercellular CO2 concentration (Ci ), and transpiration rate (Tr ), while N deposition and warming plus N deposition significantly increased those parameters of L. secalinus. Warming significantly increased the VPD and Ls , while N deposition and warming plus N deposition had a significant positive effect. Warming negatively reduced the leaf N content, Chla, Chlb, and total Chl content, while N deposition significantly promoted these traits. Warming, N deposition, and their combination significantly increased the activity of SOD, POD, and CAT. Besides, warming and warming plus N deposition significantly increased the MDA content, while N deposition significantly decreased the MDA content. N deposition and warming plus N deposition significantly increased the Rubisco activity, while warming showed no significant effect on Rubisco activity. N deposition and warming plus N deposition significantly increased the Fv/Fm, ΦPSII, qP, and decreased NPQ, while warming significantly decreased the Fv/Fm, ΦPSII, qP, and increased NPQ. N deposition strengthened the relations between gs , Chl, Chla, Chlb, Rubisco activity, and Anet . Under warming, only gs showed a significantly positive relation with Anet . Our findings suggested that warming could impair the photosynthetic potential of L. secalinus enhanced by N deposition. Additionally, the combination of warming and N deposition still tend to lead positive effects on L. secalinus.
Collapse
Affiliation(s)
- Hao Shen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Shikui Dong
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Shuai Li
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Wenying Wang
- School of Life and Geographic Sciences, Qinghai Normal University, Xining, China
| | - Jiannan Xiao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Mingyue Yang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Jing Zhang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Xiaoxia Gao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Yudan Xu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Yangliu Zhi
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Shiliang Liu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Quanming Dong
- Qinghai Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, China
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Key Laboratory of Restoration Ecology of Cold Are in Qinghai Province, Chinese Academy of Science, Xining, China
| | | |
Collapse
|