1
|
Li Y, Zhang X, Zhao C, Lei X, Huang H, Shi Y, Li C, Bi J, Sun W, Lan T, Zheng M. Genetic characterization of Sus scrofa papillomavirus type 1 from domestic pigs in Guangxi Province, China. Braz J Microbiol 2023; 54:2437-2443. [PMID: 37578737 PMCID: PMC10484830 DOI: 10.1007/s42770-023-01092-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023] Open
Abstract
Sus scrofa papillomatosis (SsP) is a tumour caused by Sus scrofa papillomaviruses (SsPVs). To investigate the presence of SsPVs in China, 354 domestic pig skin samples collected from Guangxi Province were examined for SsPV DNA by PCR. Three SsPV1s (GX12, GX14, and GX18) were identified with a prevalence of 0.847% (3/354). Sequence analysis showed that L1 of SsPV1/GX12 and SsPV1/GX14 had 99.7% and 99.6% nucleotide identify with the reference SsPV1a, respectively. Phylogenetic and evolutionary analyses showed that SsPV1/GX12 and SsPV1/14 clustered into SsPV1a and that SsPV1/GX18 clustered into SsPV1b. Compared with other SsPV L1 and L2 proteins, we found that the SsPV1/GX18 and SsPV1b strains shared the same unique substitutions, and SsPV1/GX12, SsPV1/GX14, and SsPV1a shared almost identical amino acid sequences. This study reports the first detection of SsPV DNA in China based on whole genome information and provides a scientific basis for the development of SsPV pathogenic biology, epidemiology, and prevention, as well as control technology research.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Xinyu Zhang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Chenchen Zhao
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Xiaoxiao Lei
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Haixin Huang
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China
| | - Yaokai Shi
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Chengkai Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingshan Bi
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China
| | - Wenchao Sun
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| | - Tian Lan
- Institute of Virology, Wenzhou University, Wenzhou, 325035, China.
| | - Min Zheng
- Guangxi Centre for Animal Disease Control and Prevention, Nanning, 530001, China.
| |
Collapse
|
2
|
Zhao X, Dai C, Qian S, Tang Q, Li L, Hao Y, Zhou Z, Ge X, Gong C, Yuan J. Viral Diversity and Epidemiology in Critically Endangered Yangtze Finless Porpoises (Neophocaena asiaeorientalis asiaeorientalis). Microbiol Spectr 2023; 11:e0081023. [PMID: 37265414 PMCID: PMC10434060 DOI: 10.1128/spectrum.00810-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
The Yangtze finless porpoise (YFP) (Neophocaena asiaeorientalis asiaeorientalis) is a critically endangered freshwater cetacean, with about 1,249 individuals thought to be left in the wild. However, viral entities and viral diseases of YFPs remain obscure. In this study, anal swabs for virome analysis were collected during the physical examination of YFPs in the Tian-E-Zhou Oxbow (TEO) ex situ reserve. A total of 19 eukaryotic viral species belonging to 9 families, including Papillomaviridae, Herpesviridae, Picornaviridae, Picobirnaviridae, Caliciviridae, Retroviridae, Parvoviridae, Virgaviridae, and Narnaviridae, and other unclassified viruses were identified based on metasequencing. Among these detected viruses, a novel herpesvirus (NaHV), two different kobuviruses (NaKV1-2), and six different papillomaviruses (NaPV1 to -6) were considered potential risks to YFPs and confirmed by PCR or reverse transcription-PCR (RT-PCR). Most YFPs sampled were found to harbor one or more kinds of detected viral genomes (52/58 [89.7%]). Surveillance results demonstrated that kobuvirus and herpesvirus displayed obvious age distribution and PVs showed significant gender difference in YFPs. According to species demarcation criteria in individual genera in Papillomaviridae, two novel species (referred to as Omikronpapillomavirus 2 and 3) and four novel isolates of PV were identified in YFPs. Further evolutionary analysis suggested that NaPVs would occupy the mucosal niche and that virus-host codivergence mixed with duplications and host-switching events drives the evolution of cetacean PVs. Divergence times of PVs in YFP and other cetacean reflect the incipient speciation of YFPs. In summary, our findings revealed the potential viral entities, their prevalence, and their evolutionary history in YFPs, which raises an important issue regarding effects of viral infection on the fitness of YFPs. IMPORTANCE The Yangtze finless porpoise (YFP) is the only cetacean species in freshwater following the functional extinction of the baiji (Lipotes vexillifer). Health management, disease treatment, and other special measures are important for maintaining the existing YFP populations, especially in in situ and ex situ reserves. The discovery of potential viral entities and their prevalence in YFPs raises an important issue regarding the effects of viral infection on the fitness of YFPs and may contribute to the conservation of YFPs. The evolutionary history of papillomaviruses in YFP and other cetaceans reflects the phylogeny of their hosts and supports the status of incipient species, opening a window to investigate the evolutionary adaptation of cetaceans to freshwater as well as their phylogeny to remedy the deficiency of fossil evidence.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Shiyu Qian
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Qing Tang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| | - Yujiang Hao
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of Sciences, Institute of Hydrobiology of the Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Zhijian Zhou
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Xingyi Ge
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, People’s Republic of China
| | - Cheng Gong
- Tian-e-zhou National Reserve for Lipotes Vexillifer, Shishou, People’s Republic of China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, People’s Republic of China
| |
Collapse
|
3
|
King KM, Rajadhyaksha EV, Tobey IG, Van Doorslaer K. Synonymous nucleotide changes drive papillomavirus evolution. Tumour Virus Res 2022; 14:200248. [PMID: 36265836 PMCID: PMC9589209 DOI: 10.1016/j.tvr.2022.200248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Papillomaviruses have been evolving alongside their hosts for at least 450 million years. This review will discuss some of the insights gained into the evolution of this diverse family of viruses. Papillomavirus evolution is constrained by pervasive purifying selection to maximize viral fitness. Yet these viruses need to adapt to changes in their environment, e.g., the host immune system. It has long been known that these viruses evolved a codon usage that doesn't match the infected host. Here we discuss how papillomavirus genomes evolve by acquiring synonymous changes that allow the virus to avoid detection by the host innate immune system without changing the encoded proteins and associated fitness loss. We discuss the implications of studying viral evolution, lifecycle, and cancer progression.
Collapse
Affiliation(s)
- Kelly M King
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Esha Vikram Rajadhyaksha
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Department of Physiology and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Isabelle G Tobey
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; The BIO5 Institute, The Department of Immunobiology, Genetics Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, Arizona, USA.
| |
Collapse
|
4
|
Vulvar squamous cell carcinoma associated with Equus caballus papillomavirus type 2 infection in a Japanese mare. Tumour Virus Res 2021; 12:200226. [PMID: 34543774 PMCID: PMC8496317 DOI: 10.1016/j.tvr.2021.200226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Equus caballus papillomavirus type 2 (EcPV2) infection has been associated with genital squamous cell carcinoma (SCC) development in horses. However, very few reports on EcPV2-associated disease in Asia exist. Our study characterizes pathological and virological features of an EcPV2-associated vulvar SCC from a Japanese mare. Conventional PCR, in situ hybridization, reverse-transcriptase PCR and immunohistochemistry confirmed the presence and distribution of EcPV2 within the lesion and suggested that p53 degradation may not be the mechanism by which this virus induces neoplastic transformation. The complete viral sequence in this Japanese case shows near perfect sequence homology with European reference strains of EcPV2, which may be useful when considering the target for future EcPV2 vaccine development. This report also serves to highlight the importance of EcPV2 in female (vulvar) neoplasia, which is less commonly recognized than EcPV2-induced male (penile or preputial) neoplasia. Finally, the SCC described in this mare was an unusual acantholytic variant that has not been reported previously in horses. It is the first report of EcPV2 identified from genital SCC in Asia and underscores the likely worldwide distribution of this virus and its consistent association with equine genital neoplasia. This is the first report of Equus caballus papillomavirus 2 (EcPV2)-associated genital squamous cell carcinoma (SCC) in Asia. This report features EcPV2 in vulvar neoplasia, which is less commonly recognized than EcPV2-induced penile neoplasia. Histopathologically, the SCC described in this mare was an unusual acantholytic variant that has not been reported previously.
Collapse
|
5
|
Crespo-Bellido A, Hoyer JS, Dubey D, Jeannot RB, Duffy S. Interspecies Recombination Has Driven the Macroevolution of Cassava Mosaic Begomoviruses. J Virol 2021; 95:e0054121. [PMID: 34106000 PMCID: PMC8354330 DOI: 10.1128/jvi.00541-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper crop production and threaten food security around the world. The frequent emergence of new begomovirus genotypes is facilitated by high mutation frequencies and the propensity to recombine and reassort. Homologous recombination has been especially implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple food crop throughout Africa and an important industrial crop in Asia, two continents where production is severely constrained by CMD. The CMD species complex is comprised of 11 bipartite begomovirus species with ample distribution throughout Africa and the Indian subcontinent. While recombination is regarded as a frequent occurrence for CMBs, a revised, systematic assessment of recombination and its impact on CMB phylogeny is currently lacking. We assembled data sets of all publicly available, full-length DNA-A (n = 880) and DNA-B (n = 369) nucleotide sequences from the 11 recognized CMB species. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the CMB sequences. Six out of the 11 species descended from unique interspecies recombination events. Estimates of recombination and mutation rates revealed that all species experience mutation more frequently than recombination, but measures of population divergence indicate that recombination is largely responsible for the genetic differences between species. Our results support that recombination has significantly impacted the CMB phylogeny and has driven speciation in the CMD species complex. IMPORTANCE Cassava mosaic disease (CMD) is a significant threat to cassava production throughout Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species exhibiting accelerated rates of evolution, driven by high frequencies of mutation and genetic exchange. Here, we present a systematic analysis of the contribution of genetic exchange to cassava mosaic virus species-level diversity. Most of these species emerged as a result of genetic exchange. This is the first study to report the significant impact of genetic exchange on speciation in a group of viruses.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ronica B. Jeannot
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
6
|
Zheng J, Wang J, Gong Z, Han GZ. Molecular fossils illuminate the evolution of retroviruses following a macroevolutionary transition from land to water. PLoS Pathog 2021; 17:e1009730. [PMID: 34252162 PMCID: PMC8297934 DOI: 10.1371/journal.ppat.1009730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/22/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
The ancestor of cetaceans underwent a macroevolutionary transition from land to water early in the Eocene Period >50 million years ago. However, little is known about how diverse retroviruses evolved during this shift from terrestrial to aquatic environments. Did retroviruses transition into water accompanying their hosts? Did retroviruses infect cetaceans through cross-species transmission after cetaceans invaded the aquatic environments? Endogenous retroviruses (ERVs) provide important molecular fossils for tracing the evolution of retroviruses during this macroevolutionary transition. Here, we use a phylogenomic approach to study the origin and evolution of ERVs in cetaceans. We identify a total of 8,724 ERVs within the genomes of 25 cetaceans, and phylogenetic analyses suggest these ERVs cluster into 315 independent lineages, each of which represents one or more independent endogenization events. We find that cetacean ERVs originated through two possible routes. 298 ERV lineages may derive from retrovirus endogenization that occurred before or during the transition from land to water of cetaceans, and most of these cetacean ERVs were reaching evolutionary dead-ends. 17 ERV lineages are likely to arise from independent retrovirus endogenization events that occurred after the split of mysticetes and odontocetes, indicating that diverse retroviruses infected cetaceans through cross-species transmission from non-cetacean mammals after the transition to aquatic life of cetaceans. Both integration time and synteny analyses support the recent or ongoing activity of multiple retroviral lineages in cetaceans, some of which proliferated into hundreds of copies within the host genomes. Although ERVs only recorded a proportion of past retroviral infections, our findings illuminate the complex evolution of retroviruses during one of the most marked macroevolutionary transitions in vertebrate history.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianhua Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhen Gong
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|