1
|
Lu F, Jiao G, Qiu J, Zhao S, Zhao F, Wang P, Chen L, Chen P, Li X, Dong N, Cao R, Li X, Ruan Z, Shao G, Hu S, Sheng Z, Xie L, Tang S, Hu P, Wei X. A molecular module improves rice grain quality and yield at high temperatures. Natl Sci Rev 2025; 12:nwae416. [PMID: 39868077 PMCID: PMC11759936 DOI: 10.1093/nsr/nwae416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/17/2024] [Accepted: 11/07/2024] [Indexed: 01/28/2025] Open
Abstract
Excessive temperatures during grain filling can compromise endosperm starch biosynthesis and decrease grain quality and yield in rice. However, the molecular mechanisms underlying these remain unclear. Here, we show that heat shock protein OsHsp40-1 interacts with and elevates the ATPase activity of OsHsp70-2 in rice. OsHsp40-1 also interacts with the key starch biosynthetic enzymes OsGBSSI and OsPPDKB and thereby enhances their stability and activity, which is essential for maintaining rice quality and grain yield under moderate high-temperature (HT) conditions. Overexpression of OsHsp70-2 and OsHsp40-1 in rice significantly improved grain quality and yield at HT. Furthermore, a haplotype analysis identified favorable alleles of OsHsp70-2 and OsHsp40-1, which could be used for improving thermotolerance in rice. Collectively, our findings reveal a novel mechanism by which the OsHsp70-2-OsHsp40-1 module ameliorates the effects of HT on starch biosynthesis, providing a new strategy for genetic improvement of rice quality and yield under HT conditions.
Collapse
Affiliation(s)
- Feifei Lu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaolu Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Ping Wang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Luna Chen
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Pengfei Chen
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinwei Li
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Nannan Dong
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoxue Li
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zheyan Ruan
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
2
|
Zhong Y, Chen Y, Pan M, Li X, Hebelstrup K, Cai J, Zhou Q, Dai T, Cao W, Jiang D. Transport and spatio-temporal conversion of sugar facilitate the formation of spatial gradients of starch in wheat caryopses. Commun Biol 2024; 7:928. [PMID: 39090206 PMCID: PMC11294588 DOI: 10.1038/s42003-024-06625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Wheat grain starch content displays large variations within different pearling fractions, which affecting the processing quality of corresponding flour, while the underlying mechanism on starch gradient formation is unclear. Here, we show that wheat caryopses acquire sugar through the transfer of cells (TCs), inner endosperm (IE), outer endosperm (OE), and finally aleurone (AL) via micro positron emission tomography-computed tomography (PET-CT). To obtain integrated information on spatial transcript distributions, developing caryopses are laser microdissected into AL, OE, IE, and TC. Most genes encoding carbohydrate transporters are upregulated or specifically expressed, and sugar metabolites are more highly enriched in the TC group than in the AL group, in line with the PET-CT results. Genes encoding enzymes in sucrose metabolism, such as sucrose synthase, beta-fructofuranosidase, glucose-1-phosphate adenylyltransferase show significantly lower expression in AL than in OE and IE, indicating that substrate supply is crucial for the formation of starch gradients. Furthermore, the low expressions of gene encoding starch synthase contribute to low starch content in AL. Our results imply that transcriptional regulation represents an important means of impacting starch distribution in wheat grains and suggests breeding targets for enhancing specially pearled wheat with higher quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Yuhua Chen
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Mingsheng Pan
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kim Hebelstrup
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Jian Cai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Qin Zhou
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Tingbo Dai
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Weixing Cao
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China.
| |
Collapse
|
3
|
Zhong Y, Chen Y, Pan M, Wang H, Sun J, Chen Y, Cai J, Zhou Q, Wang X, Jiang D. Insights into the Functional Components in Wheat Grain: Spatial Pattern, Underlying Mechanism and Cultivation Regulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112192. [PMID: 37299171 DOI: 10.3390/plants12112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Wheat is a staple crop; its production must achieve both high yield and good quality due to worldwide demands for food security and better quality of life. It has been found that the grain qualities vary greatly within the different layers of wheat kernels. In this paper, the spatial distributions of protein and its components, starch, dietary fiber, and microelements are summarized in detail. The underlying mechanisms regarding the formation of protein and starch, as well as spatial distribution, are discussed from the views of substrate supply and the protein and starch synthesis capacity. The regulating effects of cultivation practices on gradients in composition are identified. Finally, breakthrough solutions for exploring the underlying mechanisms of the spatial gradients of functional components are presented. This paper will provide research perspectives for producing wheat that is both high in yield and of good quality.
Collapse
Affiliation(s)
- Yingxin Zhong
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhua Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingsheng Pan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hengtong Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayu Sun
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Niu L, Liu L, Zhang J, Scali M, Wang W, Hu X, Wu X. Genetic Engineering of Starch Biosynthesis in Maize Seeds for Efficient Enzymatic Digestion of Starch during Bioethanol Production. Int J Mol Sci 2023; 24:ijms24043927. [PMID: 36835340 PMCID: PMC9967003 DOI: 10.3390/ijms24043927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Maize accumulates large amounts of starch in seeds which have been used as food for human and animals. Maize starch is an importantly industrial raw material for bioethanol production. One critical step in bioethanol production is degrading starch to oligosaccharides and glucose by α-amylase and glucoamylase. This step usually requires high temperature and additional equipment, leading to an increased production cost. Currently, there remains a lack of specially designed maize cultivars with optimized starch (amylose and amylopectin) compositions for bioethanol production. We discussed the features of starch granules suitable for efficient enzymatic digestion. Thus far, great advances have been made in molecular characterization of the key proteins involved in starch metabolism in maize seeds. The review explores how these proteins affect starch metabolism pathway, especially in controlling the composition, size and features of starch. We highlight the roles of key enzymes in controlling amylose/amylopectin ratio and granules architecture. Based on current technological process of bioethanol production using maize starch, we propose that several key enzymes can be modified in abundance or activities via genetic engineering to synthesize easily degraded starch granules in maize seeds. The review provides a clue for developing special maize cultivars as raw material in the bioethanol industry.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Liangwei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Monica Scali
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence:
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
5
|
Zhong Y, Qu JZ, Liu X, Ding L, Liu Y, Bertoft E, Petersen BL, Hamaker BR, Hebelstrup KH, Blennow A. Different genetic strategies to generate high amylose starch mutants by engineering the starch biosynthetic pathways. Carbohydr Polym 2022; 287:119327. [DOI: 10.1016/j.carbpol.2022.119327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 01/14/2023]
|
6
|
Mass spectral imaging showing the plant growth-promoting rhizobacteria's effect on the Brachypodium awn. Biointerphases 2022; 17:031006. [PMID: 35738921 DOI: 10.1116/6.0001949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.
Collapse
|
7
|
Zhong Y, Tai L, Blennow A, Ding L, Herburger K, Qu J, Xin A, Guo D, Hebelstrup KH, Liu X. High-amylose starch: Structure, functionality and applications. Crit Rev Food Sci Nutr 2022; 63:8568-8590. [PMID: 35373669 DOI: 10.1080/10408398.2022.2056871] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Starch with a high amylose (AM) content (high AM starch, HAS) has attracted increasing research attention due to its industrial application potential, such as functional foods and biodegradable packaging. In the past two decades, HAS structure, functionality, and applications have been the research hotspots. However, a review that comprehensively summarizes these areas is lacking, making it difficult for interested readers to keep track of past and recent advances. In this review, we highlight studies that benefited from rapidly developing techniques, and systematically review the structure, functionality, and applications of HAS. We particularly emphasize the relationships between HAS molecular structure and physicochemical properties.
Collapse
Affiliation(s)
- Yuyue Zhong
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingyu Tai
- Department of Chemical, Environmental and Material Engineering, Sapienza University of Rome, Rome, Italy
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Herburger
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Anzhou Xin
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Kim Henrik Hebelstrup
- Department of Agroecology, Aarhus University, Flakkebjerg, Denmark
- Plantcarb Aps, Vedbaek, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
8
|
geng L, Li M, Zhang G, Ye L. Barley: a potential cereal for producing healthy and functional foods. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Barley is the fourth largest cereal crop in the world. It is mainly used for feeding, beer production and food. Barley is receiving more attention from both agricultural and food scientists because of its special chemical composition and health benefits. In comparison with other cereal crops, including wheat, rice and maize, barley grains are rich in dietary fiber (such as β-glucan) and tocols, which are beneficial to human health. It is well proved that diets rich in those chemicals can provide protection against hypertension, cardiovascular disease, and diabetes. Barley has been widely recognized to be great potential as a healthy or functional food. In this review, we present the information about the studies on physical structure of barley grain and the distribution of main chemical components, nutrient and functional composition of barley grain and their health benefits, and the approaches of improving and utilizing the nutrient and functional chemicals in barley grain. With the development of processing technologies, functional components in barley grains, especially β-glucan, can be efficiently extracted and concentrated. Moreover, nutrient and functional components in barley grains can be efficiently improved by precise breeding and agronomic approaches. The review highlights the great potential of barley used as healthy and functional foods, and may be instructive for better utilization of barley in food processing.
Collapse
Affiliation(s)
- La geng
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Mengdi Li
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Lingzhen Ye
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
9
|
Qu J, Zhong Y, Ding L, Liu X, Xu S, Guo D, Blennow A, Xue J. Biosynthesis, structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate. Food Chem 2022; 368:130796. [PMID: 34418691 DOI: 10.1016/j.foodchem.2021.130796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/25/2022]
Abstract
In this study, we report important relationships between kernel starch and kernel dehydration rate for eight maize inbred lines with different dehydration characteristics. High-throughput RNA sequencing data of starch biosynthesis-related genes showed that kernel moisture content and dehydration rate were both associated with differential expression of most starch biosynthetic genes. Especially, kernel moisture content was positively correlated with the increased expression of SBEI and SBEIIb, thereby potentially inducing biosynthesis of amylose with low molecular weight and amylopectin with low content of amylopectin chains with degree of polymerization (DP) 6-12 in inbred lines with fast kernel dehydration rate. We found a negative correlation between short amylopectin chains (DP 6-12) and the starch retrogradation rate. Hence, a low amount of amylopectin chains with DP 6-12 in the inbred lines with fast kernel dehydration rate was a plausible reason for their high short- and long-term retrogradation.
Collapse
Affiliation(s)
- Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Maize Engineering Technology Research Centre of Shaanxi Province, Yanglin 712100, Shaanxi, China
| | - Yuyue Zhong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Li Ding
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Maize Engineering Technology Research Centre of Shaanxi Province, Yanglin 712100, Shaanxi, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Maize Engineering Technology Research Centre of Shaanxi Province, Yanglin 712100, Shaanxi, China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark.
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China; Maize Engineering Technology Research Centre of Shaanxi Province, Yanglin 712100, Shaanxi, China.
| |
Collapse
|
10
|
Influence of microwave treatment on the structure and functionality of pure amylose and amylopectin systems. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Zhong Y, Qu J, Blennow A, Liu X, Guo D. Expression Pattern of Starch Biosynthesis Genes in Relation to the Starch Molecular Structure in High-Amylose Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2805-2815. [PMID: 33645979 DOI: 10.1021/acs.jafc.0c07354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The molecular structure and the expression levels of starch biosynthesis-related genes of three types of high-amylose maize (HAM) genotypes and one normal maize (NM) genotype at 5-35 days after pollination (DAP) were studied. Size exclusion chromatography (SEC) analysis showed that the molecular size of amylopectin molecules in NM increased from 5 to 35 DAP and the amylose content in HAM genotypes increased from 15 to 35 DAP. Correlation analysis for both NM and HAMs combined showed that SBEIIb and ISAII were negatively correlated with the contents of amylose and long amylopectin chains (DP > 30) and positively correlated with the content of short amylopectin chains (DP ≤ 31) and the molecular size of amylopectin molecules. Correlation analysis for only the HAMs showed that amylose content was negatively correlated with SBEI and SSIIa. In both correlation analyses, SSIIa showed a negative correlation with the average chain lengths of amylose chains.
Collapse
Affiliation(s)
- Yuyue Zhong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, København 1017, Denmark
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, København 1017, Denmark
| | - Xingxun Liu
- Lab of Food Soft Matter Structure and Advanced Manufacturing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Rozanova IV, Khlestkina EK. [NGS sequencing in barley breeding and genetic studies]. Vavilovskii Zhurnal Genet Selektsii 2021; 24:348-355. [PMID: 33659817 PMCID: PMC7716553 DOI: 10.18699/vj20.627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Barley (Hordeum vulgare L.) is the one of the most important cereal species used as food and feed crops, as well as for malting and alcohol production. At the end of the last century, traditional breeding techniques were complemented by the use of DNA markers. Molecular markers have also been used extensively for molecular genetic mapping and QTL analysis. In 2012, the barley genome sequencing was completed, which provided a broad range of new opportunities - from a more efficient search for candidate genes controlling economically important traits to genomic selection. The review summarizes the results of the studies performed after barley genome sequencing, which discovered new areas of barley genetics and breeding with high throughput screening and genotyping methods. During this period, intensive studies aimed at identification of barley genomic loci associated with economically important traits have been carried out; online databases and tools for working with barley genomic data and their deposition have appeared and are being replenished. In recent years, GWAS analysis has been used for large-scale phenotypegenotype association studies, which has been widely used in barley since 2010 due to the developed SNP-arrays, as well as genotyping methods based on direct NGS sequencing of selected fractions of the genome. To date, more than 80 papers have been published that describe the results of the GWAS analysis in barley. SNP identification associated with economically important traits and their transformation into CAPS or KASP markers convenient for screening selection material significantly expands the possibilities of marker-assisted selection of barley. In addition, the currently available information on potential target genes and the quality of the whole barley genome sequence provides a good base for applying genome editing technologies to create material for the creation of varieties with desired properties.
Collapse
Affiliation(s)
- I V Rozanova
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E K Khlestkina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
13
|
Xu J, Sagnelli D, Faisal M, Perzon A, Taresco V, Mais M, Giosafatto CVL, Hebelstrup KH, Ulvskov P, Jørgensen B, Chen L, Howdle SM, Blennow A. Amylose/cellulose nanofiber composites for all-natural, fully biodegradable and flexible bioplastics. Carbohydr Polym 2021; 253:117277. [PMID: 33278948 DOI: 10.1016/j.carbpol.2020.117277] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Thermoplastic, polysaccharide-based plastics are environmentally friendly. However, typical shortcomings include lack of water resistance and poor mechanical properties. Nanocomposite manufacturing using pure, highly linear, polysaccharides can overcome such limitations. Cast nanocomposites were fabricated with plant engineered pure amylose (AM), produced in bulk quantity in transgenic barley grain, and cellulose nanofibers (CNF), extracted from agrowaste sugar beet pulp. Morphology, crystallinity, chemical heterogeneity, mechanics, dynamic mechanical, gas and water permeability, and contact angle of the films were investigated. Blending CNF into the AM matrix significantly enhanced the crystallinity, mechanical properties and permeability, whereas glycerol increased elongation at break, mainly by plasticizing the AM. There was significant phase separation between AM and CNF. Dynamic plasticizing and anti-plasticizing effects of both CNF and glycerol were demonstrated by NMR demonstrating high molecular order, but also non-crystalline, and evenly distributed 20 nm-sized glycerol domains. This study demonstrates a new lead in functional polysaccharide-based bioplastic systems.
Collapse
Affiliation(s)
- Jinchuan Xu
- School of Food Science and Engineering, South China University of Technology, 510640, Guangzhou, China; Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Domenico Sagnelli
- School of Chemistry, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Marwa Faisal
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Alixander Perzon
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Marco Mais
- School of Chemistry, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | | | - Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, 4200, Slagelse, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Ling Chen
- School of Food Science and Engineering, South China University of Technology, 510640, Guangzhou, China
| | - Steven M Howdle
- School of Chemistry, University of Nottingham, NG7 2RD, Nottingham, United Kingdom
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Li M, Geng L, Xie S, Wu D, Ye L, Zhang G. Genome-Wide Association Study on Total Starch, Amylose and Amylopectin in Barley Grain Reveals Novel Putative Alleles. Int J Mol Sci 2021; 22:ijms22020553. [PMID: 33430526 PMCID: PMC7828029 DOI: 10.3390/ijms22020553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 11/18/2022] Open
Abstract
The content and composition of starch in cereal grains are closely related to yield. Few studies have been done on the identification of the genes or loci associated with these traits in barley. This study was conducted to identify the genes or loci controlling starch traits in barley grains, including total starch (TS), amylose (AC) and amylopectin (AP) contents. A large genotypic variation was found in all examined starch traits. GWAS analysis detected 13, 2, 10 QTLs for TS, AC and AP, respectively, and 5 of them were commonly shared by AP and TS content. qTS-3.1, qAC-6.2 and qAP-5.1 may explain the largest variation of TS, AC and AP, respectively. Four putative candidate genes, i.e., HORVU6Hr1G087920, HORVU5Hr1G011230, HORVU5Hr1G011270 and HORVU5Hr1G011280, showed the high expression in the developing barley grains when starch accumulates rapidly. The examined 100 barley accessions could be divided into two groups based on the polymorphism of the marker S5H_29297679, with 93 accessions having allele GG and seven accessions having AA. Moreover, significantly positive correlation was found between the number of favorable alleles of the identified QTLs and TS, AC, AP content. In conclusion, the identified loci or genes in this study could be useful for genetic improvement of grains starch in barley.
Collapse
Affiliation(s)
- Mengdi Li
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - La Geng
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Shanggeng Xie
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Dezhi Wu
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
| | - Lingzhen Ye
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
- Correspondence:
| | - Guoping Zhang
- Institute of Crop Science, Zhejiang University, Hangzhou 310058, China; (M.L.); (L.G.); (S.X.); (D.W.); (G.Z.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
15
|
Blennow A, Skryhan K, Tanackovic V, Krunic SL, Shaik SS, Andersen MS, Kirk H, Nielsen KL. Non-GMO potato lines, synthesizing increased amylose and resistant starch, are mainly deficient in isoamylase debranching enzyme. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2096-2108. [PMID: 32096588 PMCID: PMC7540516 DOI: 10.1111/pbi.13367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/31/2020] [Accepted: 02/17/2020] [Indexed: 05/04/2023]
Abstract
Solanum tuberosum potato lines with high amylose content were generated by crossing with the wild potato species Solanum sandemanii followed by repeated backcrossing to Solanum tuberosum lines. The trait, termed increased amylose (IAm), was recessive and present after three generations of backcrossing into S. tuberosum lines (6.25% S. sandemanii genes). The tubers of these lines were small, elongated and irregular with small and misshaped starch granules and high sugar content. Additional backcrossing resulted in less irregular tuber morphology, increased starch content (4.3%-9.5%) and increased amylose content (29%-37.9%) but indifferent sugar content. The amylose in the IAm starch granules was mainly located in peripheral spots, and large cavities were found in the granules. Starch pasting was suppressed, and the digestion-resistant starch (RS) content was increased. Comprehensive microarray polymer profiling (CoMPP) analysis revealed specific alterations of major pectic and glycoprotein cell wall components. This complex phenotype led us to search for candidate IAm genes exploiting its recessive trait. Hence, we sequenced genomic DNA of a pool of IAm lines, identified SNPs genome wide against the draft genome sequence of potato and searched for regions of decreased heterozygosity. Three regions, located on chromosomes 3, 7 and 10, respectively, displayed markedly less heterozygosity than average. The only credible starch metabolism-related gene found in these regions encoded the isoamylase-type debranching enzyme Stisa1. Decreased expression of mRNA (>500 fold) and reduced enzyme activity (virtually absent from IAm lines) supported Stisa1 as a candidate gene for IAm.
Collapse
Affiliation(s)
- Andreas Blennow
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Vanja Tanackovic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Susanne L. Krunic
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | | | | | - Kåre L. Nielsen
- Department of Chemistry and BiologyAalborg UniversityAalborgDenmark
| |
Collapse
|
16
|
Zhong Y, Sagnelli D, Topbjerg HB, Hasler-Sheetal H, Andrzejczak OA, Hooshmand K, Gislum R, Jiang D, Møller IM, Blennow A, Hebelstrup KH. Expression of starch-binding factor CBM20 in barley plastids controls the number of starch granules and the level of CO2 fixation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:234-246. [PMID: 31494665 PMCID: PMC6913705 DOI: 10.1093/jxb/erz401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/22/2019] [Indexed: 05/20/2023]
Abstract
The biosynthesis of starch granules in plant plastids is coordinated by the orchestrated action of transferases, hydrolases, and dikinases. These enzymes either contain starch-binding domain(s) themselves, or are dependent on direct interactions with co-factors containing starch-binding domains. As a means to competitively interfere with existing starch-protein interactions, we expressed the protein module Carbohydrate-Binding Motif 20 (CBM20), which has a very high affinity for starch, ectopically in barley plastids. This interference resulted in an increase in the number of starch granules in chloroplasts and in formation of compound starch granules in grain amyloplasts, which is unusual for barley. More importantly, we observed a photosystem-independent inhibition of CO2 fixation, with a subsequent reduced growth rate and lower accumulation of carbohydrates with effects throughout the metabolome, including lower accumulation of transient leaf starch. Our results demonstrate the importance of endogenous starch-protein interactions for controlling starch granule morphology and number, and plant growth, as substantiated by a metabolic link between starch-protein interactions and control of CO2 fixation in chloroplasts.
Collapse
Affiliation(s)
- Yingxin Zhong
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Domenico Sagnelli
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Henrik Bak Topbjerg
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Harald Hasler-Sheetal
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Olga Agata Andrzejczak
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Kourosh Hooshmand
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - René Gislum
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, P. R. China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
17
|
Zhong Y, Blennow A, Kofoed-Enevoldsen O, Jiang D, Hebelstrup KH. Protein Targeting to Starch 1 is essential for starchy endosperm development in barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:485-496. [PMID: 30407538 PMCID: PMC6322578 DOI: 10.1093/jxb/ery398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/26/2018] [Indexed: 05/20/2023]
Abstract
Plant starch is the main energy contributor to the human diet. Its biosynthesis is catalyzed and regulated by co-ordinated actions of several enzymes. Recently, a factor termed Protein Targeting to Starch 1 (PTST1) was identified as being required for correct granule-bound starch synthase (GBSS) localization and demonstrated to be crucial for amylose synthesis in Arabidopsis. However, the function of its homologous protein in storage tissues (e.g. endosperm) is unknown. We identified a PTST1 homolog in barley and it was found to contain a crucial coiled-coil domain and carbohydrate-binding module. We demonstrated the interaction between PTST1 and GBSS1 by fluorescence resonance energy transfer (FRET) in barley endosperm. By tagging PTST1 with the fluorophore mCherry, we observed that it is localized in the stroma of barley endosperm amyloplasts. PTST1 overexpression in endosperm increased endogenous gbss1a gene expression and amylose content. Gbss1a and ptst1 mutants were generated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-related protein 9 (Cas9)-based targeted mutagenesis. Homozygous gbss1a mutants showed a waxy phenotype. Grains of ptst1 mutants did not accumulate any starch. These grains dried out during the desiccation stage and were unable to germinate, suggesting that PTST1 is essential for development of starchy endosperm and viable grains.
Collapse
Affiliation(s)
- Yingxin Zhong
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej, Slagelse, Denmark
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | | | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/National Engineering and technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, PR China
- Correspondence: or
| | - Kim Henrik Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Forsøgsvej, Slagelse, Denmark
- Correspondence: or
| |
Collapse
|
18
|
Progress in the genetic engineering of cereals to produce essential polyunsaturated fatty acids. J Biotechnol 2018; 284:115-122. [DOI: 10.1016/j.jbiotec.2018.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/28/2023]
|
19
|
Jin Y, Fei M, Rosenquist S, Jin L, Gohil S, Sandström C, Olsson H, Persson C, Höglund AS, Fransson G, Ruan Y, Åman P, Jansson C, Liu C, Andersson R, Sun C. A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley. MOLECULAR PLANT 2017; 10:1556-1570. [PMID: 29126994 DOI: 10.1016/j.molp.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcription factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes.
Collapse
Affiliation(s)
- Yunkai Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Mingliang Fei
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden; Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sara Rosenquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Lu Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Suresh Gohil
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Corine Sandström
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Helena Olsson
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Cecilia Persson
- The Swedish NMR Centre at University of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Anna-Stina Höglund
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Gunnel Fransson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Ying Ruan
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Per Åman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Christer Jansson
- The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, P.O. Box 999, K8-93, Richland, WA 99352, USA
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Roger Andersson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden.
| |
Collapse
|
20
|
Abstract
The starch-rich endosperms of the Poaceae, which includes wild grasses and their domesticated descendents the cereals, have provided humankind and their livestock with the bulk of their daily calories since the dawn of civilization up to the present day. There are currently unprecedented pressures on global food supplies, largely resulting from population growth, loss of agricultural land that is linked to increased urbanization, and climate change. Since cereal yields essentially underpin world food and feed supply, it is critical that we understand the biological factors contributing to crop yields. In particular, it is important to understand the biochemical pathway that is involved in starch biosynthesis, since this pathway is the major yield determinant in the seeds of six out of the top seven crops grown worldwide. This review outlines the critical stages of growth and development of the endosperm tissue in the Poaceae, including discussion of carbon provision to the growing sink tissue. The main body of the review presents a current view of our understanding of storage starch biosynthesis, which occurs inside the amyloplasts of developing endosperms.
Collapse
|
21
|
Sorndech W, Tongta S, Blennow A. Slowly Digestible‐ and Non‐Digestible α‐Glucans: An Enzymatic Approach to Starch Modification and Nutritional Effects. STARCH-STARKE 2017. [DOI: 10.1002/star.201700145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Waraporn Sorndech
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Sunanta Tongta
- School of Food Technology Institute of Agricultural Technology Suranaree University of TechnologyNakhon Ratchasima 30000Thailand
| | - Andreas Blennow
- Faculty of Sciences Department of Plant and Environmental Sciences University of CopenhagenFrederiksberg C 1871Denmark
| |
Collapse
|
22
|
Li C, Powell PO, Gilbert RG. Recent progress toward understanding the role of starch biosynthetic enzymes in the cereal endosperm. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/amylase-2017-0006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractStarch from cereal endosperm is a major energy source for many mammals. The synthesis of this starch involves a number of different enzymes whose mode of action is still not completely understood. ADPglucose pyrophosphorylase is involved in the synthesis of starch monomer (ADP-glucose), a process, which almost exclusively takes place in the cytosol. ADPglucose is then transported into the amyloplast and incorporated into starch granules by starch synthase, starch-branching enzyme and debranching enzyme. Additional enzymes, including starch phosphorylase and disproportionating enzyme, may be also involved in the formation of starch granules, although their exact functions are still obscure. Interactions between these enzymes in the form of functional complexes have been proposed and investigated, resulting more complicated starch biosynthetic pathways. An overall picture and recent advances in understanding of the functions of these enzymes is summarized in this review to provide insights into how starch granules are synthesized in cereal endosperm.
Collapse
|
23
|
Effect of diurnal photosynthetic activity on the fine structure of amylopectin from normal and waxy barley starch. Int J Biol Macromol 2017; 102:924-932. [DOI: 10.1016/j.ijbiomac.2017.04.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/18/2022]
|
24
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
25
|
Sagnelli D, Kirkensgaard JJK, Giosafatto CVL, Ogrodowicz N, Kruczała K, Mikkelsen MS, Maigret JE, Lourdin D, Mortensen K, Blennow A. All-natural bio-plastics using starch-betaglucan composites. Carbohydr Polym 2017; 172:237-245. [PMID: 28606531 DOI: 10.1016/j.carbpol.2017.05.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 11/16/2022]
Abstract
Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems.
Collapse
Affiliation(s)
- Domenico Sagnelli
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | | | | | - Natalia Ogrodowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Kraków, Poland
| | | | - Mette S Mikkelsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Denis Lourdin
- Institut National De La Recherche Agronomique, Nantes, France
| | - Kell Mortensen
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
26
|
Wang F, Kong W, Niu Y, Ye Y, Fan S, Wang Y, Chen X, Zhou Q. StTrxF, a potato plastidic thioredoxin F-type protein gene, is involved in starch accumulation in transgenic Arabidopsis thaliana. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1302360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Feibing Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Weili Kong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuan Niu
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Yuxiu Ye
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Song Fan
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Yongjun Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Xinhong Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Qing Zhou
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| |
Collapse
|
27
|
Hebelstrup KH. Differences in nutritional quality between wild and domesticated forms of barley and emmer wheat. PLANT SCIENCE 2017; 256:1-4. [PMID: 0 DOI: 10.1016/j.plantsci.2016.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 05/29/2023]
|
28
|
Krunic SL, Skryhan K, Mikkelsen L, Ruzanski C, Shaik SS, Kirk HG, Palcic M, Blennow A. Non-GMO potato lines with an altered starch biosynthesis pathway confer increased-amylose and resistant starch properties. STARCH-STARKE 2017. [DOI: 10.1002/star.201600310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Susanne L. Krunic
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Katsiaryna Skryhan
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Lisbeth Mikkelsen
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | - Christian Ruzanski
- CMC Biologics, Søborg; Copenhagen Denmark
- Carlsberg Laboratory, Valby; Copenhagen Denmark
| | - Shahnoor S. Shaik
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| | | | - Monica Palcic
- Carlsberg Laboratory, Valby; Copenhagen Denmark
- Department of Biochemistry and Microbiology; University of Victoria; British Columbia Canada
| | - Andreas Blennow
- Department of Plant and Environmental Sciences; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
29
|
Wang F, Fu L, Kong W, Ye Y, Chen X, Zhou Q, Chen B. Constitutive expression of StAATP, a potato plastidic ATP/ADP transporter gene, increases starch content in transgenic Arabidopsis. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1282837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Feibing Wang
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology Chinese, Academy of Sciences, Institute of Microbiology, Beijing, PR China
| | - Weili Kong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yuxiu Ye
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Xinhong Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Qin Zhou
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| | - Boqing Chen
- Plant Production and Processing Practice Education Center of Jiangsu Province, School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, PR China
| |
Collapse
|
30
|
Hebelstrup KH, Nielsen MM, Carciofi M, Andrzejczak O, Shaik SS, Blennow A, Palcic MM. Waxy and non-waxy barley cultivars exhibit differences in the targeting and catalytic activity of GBSS1a. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:931-941. [PMID: 28199682 PMCID: PMC5441850 DOI: 10.1093/jxb/erw503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Amylose synthesis is strictly associated with activity of granule-bound starch synthase (GBSS) enzymes. Among several crops there are cultivars containing starch types with either little or no amylose known as near-waxy or waxy. This (near) amylose-free phenotype is associated with a single locus (waxy) which has been mapped to GBSS-type genes in different crops. Most waxy varieties are a result of either low or no expression of a GBSS gene. However, there are some waxy cultivars where the GBSS enzymes are expressed normally. For these types, single nucleotide polymorphisms have been hypothesized to represent amino-acid substitutions leading to loss of catalytic activity. We here confirm that the HvGBSSIa enzyme from one such waxy barley variety, CDC_Alamo, has a 90% reduction in catalytic activity. We also engineered plants with expression of transgenic C-terminal green fluorescent protein-tagged HvGBSSIa of both the non-waxy type and of the CDC_Alamo type to monitor their subcellular localization patterns in grain endosperm. HvGBSSIa from non-waxy cultivars was found to localize in discrete concentric spheres strictly within starch granules. In contrast, HvGBSSIa from waxy CDC_Alamo showed deficient starch targeting mostly into unknown subcellular bodies of 0.5-3 µm in size, indicating that the waxy phenotype of CDC_Alamo is associated with deficient targeting of HvGBSSIa into starch granules.
Collapse
Affiliation(s)
- Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | | | - Massimiliano Carciofi
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 København V, Denmark
| | - Olga Andrzejczak
- Department of Molecular Biology and Genetics, Section of Crop Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Shahnoor Sultana Shaik
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Monica M Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-1799 København V, Denmark
| |
Collapse
|
31
|
Sagnelli D, Hebelstrup KH, Leroy E, Rolland-Sabaté A, Guilois S, Kirkensgaard JJ, Mortensen K, Lourdin D, Blennow A. Plant-crafted starches for bioplastics production. Carbohydr Polym 2016; 152:398-408. [DOI: 10.1016/j.carbpol.2016.07.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/27/2016] [Accepted: 07/10/2016] [Indexed: 01/26/2023]
|
32
|
Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates. Carbohydr Polym 2016; 152:51-61. [DOI: 10.1016/j.carbpol.2016.06.097] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/26/2016] [Indexed: 11/23/2022]
|
33
|
Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism. PLoS One 2016; 11:e0149613. [PMID: 26891365 PMCID: PMC4758647 DOI: 10.1371/journal.pone.0149613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro-structure was achieved by decreasing starch branching and increasing starch-bound phosphate content in the barley caryopsis starch by RNAi suppression of all three Starch Branching Enzyme (SBE) isoforms or overexpression of potato Glucan Water Dikinase (GWD). The resulting lines displayed Amylose-Only (AO) and Hyper-Phosphorylated (HP) starch chemotypes, respectively. We studied the influence of these alterations on primary metabolism, grain composition, starch structural features and starch granule morphology over caryopsis development at 10, 20 and 30 days after pollination (DAP) and at grain maturity. While HP showed relatively little effect, AO showed significant reduction in starch accumulation with re-direction to protein and β-glucan (BG) accumulation. Metabolite profiling indicated significantly higher sugar accumulation in AO, with re-partitioning of carbon to accumulate amino acids, and interestingly it also had high levels of some important stress-related metabolites and potentially protective metabolites, possibly to elude deleterious effects. Investigations on starch molecular structure revealed significant increase in starch phosphate and amylose content in HP and AO respectively with obvious differences in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch-bound phosphate as a result of overexpressing GWD.
Collapse
|
34
|
Cuesta-Seijo JA, Nielsen MM, Ruzanski C, Krucewicz K, Beeren SR, Rydhal MG, Yoshimura Y, Striebeck A, Motawia MS, Willats WGT, Palcic MM. In vitro Biochemical Characterization of All Barley Endosperm Starch Synthases. FRONTIERS IN PLANT SCIENCE 2016; 6:1265. [PMID: 26858729 PMCID: PMC4730117 DOI: 10.3389/fpls.2015.01265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/27/2015] [Indexed: 05/18/2023]
Abstract
Starch is the main storage polysaccharide in cereals and the major source of calories in the human diet. It is synthesized by a panel of enzymes including five classes of starch synthases (SSs). While the overall starch synthase (SS) reaction is known, the functional differences between the five SS classes are poorly understood. Much of our knowledge comes from analyzing mutant plants with altered SS activities, but the resulting data are often difficult to interpret as a result of pleitropic effects, competition between enzymes, overlaps in enzyme activity and disruption of multi-enzyme complexes. Here we provide a detailed biochemical study of the activity of all five classes of SSs in barley endosperm. Each enzyme was produced recombinantly in E. coli and the properties and modes of action in vitro were studied in isolation from other SSs and other substrate modifying activities. Our results define the mode of action of each SS class in unprecedented detail; we analyze their substrate selection, temperature dependence and stability, substrate affinity and temporal abundance during barley development. Our results are at variance with some generally accepted ideas about starch biosynthesis and might lead to the reinterpretation of results obtained in planta. In particular, they indicate that granule bound SS is capable of processive action even in the absence of a starch matrix, that SSI has no elongation limit, and that SSIV, believed to be critical for the initiation of starch granules, has maltoligosaccharides and not polysaccharides as its preferred substrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Maja G. Rydhal
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Copenhagen, Denmark
| | | | | | - Mohammed S. Motawia
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Copenhagen, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, University of CopenhagenFrederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
35
|
Butardo VM, Sreenivasulu N. Tailoring Grain Storage Reserves for a Healthier Rice Diet and its Comparative Status with Other Cereals. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 323:31-70. [DOI: 10.1016/bs.ircmb.2015.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
36
|
Skryhan K, Cuesta-Seijo JA, Nielsen MM, Marri L, Mellor SB, Glaring MA, Jensen PE, Palcic MM, Blennow A. The Role of Cysteine Residues in Redox Regulation and Protein Stability of Arabidopsis thaliana Starch Synthase 1. PLoS One 2015; 10:e0136997. [PMID: 26367870 PMCID: PMC4569185 DOI: 10.1371/journal.pone.0136997] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/11/2015] [Indexed: 11/23/2022] Open
Abstract
Starch biosynthesis in Arabidopsis thaliana is strictly regulated. In leaf extracts, starch synthase 1 (AtSS1) responds to the redox potential within a physiologically relevant range. This study presents data testing two main hypotheses: 1) that specific thiol-disulfide exchange in AtSS1 influences its catalytic function 2) that each conserved Cys residue has an impact on AtSS1 catalysis. Recombinant AtSS1 versions carrying combinations of cysteine-to-serine substitutions were generated and characterized in vitro. The results demonstrate that AtSS1 is activated and deactivated by the physiological redox transmitters thioredoxin f1 (Trxf1), thioredoxin m4 (Trxm4) and the bifunctional NADPH-dependent thioredoxin reductase C (NTRC). AtSS1 displayed an activity change within the physiologically relevant redox range, with a midpoint potential equal to -306 mV, suggesting that AtSS1 is in the reduced and active form during the day with active photosynthesis. Cys164 and Cys545 were the key cysteine residues involved in regulatory disulfide formation upon oxidation. A C164S_C545S double mutant had considerably decreased redox sensitivity as compared to wild type AtSS1 (30% vs 77%). Michaelis-Menten kinetics and molecular modeling suggest that both cysteines play important roles in enzyme catalysis, namely, Cys545 is involved in ADP-glucose binding and Cys164 is involved in acceptor binding. All the other single mutants had essentially complete redox sensitivity (98–99%). In addition of being part of a redox directed activity “light switch”, reactivation tests and low heterologous expression levels indicate that specific cysteine residues might play additional roles. Specifically, Cys265 in combination with Cys164 can be involved in proper protein folding or/and stabilization of translated protein prior to its transport into the plastid. Cys442 can play an important role in enzyme stability upon oxidation. The physiological and phylogenetic relevance of these findings is discussed.
Collapse
Affiliation(s)
- Katsiaryna Skryhan
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - Morten M. Nielsen
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Lucia Marri
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
| | - Silas B. Mellor
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Mikkel A. Glaring
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Poul E. Jensen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Monica M. Palcic
- Carlsberg Laboratory, Gamle Carlsberg Vej 10, 1799 Copenhagen V, Denmark
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Andreas Blennow
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- * E-mail:
| |
Collapse
|
37
|
Hebelstrup KH, Sagnelli D, Blennow A. The future of starch bioengineering: GM microorganisms or GM plants? FRONTIERS IN PLANT SCIENCE 2015; 6:247. [PMID: 25954284 PMCID: PMC4407504 DOI: 10.3389/fpls.2015.00247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/27/2015] [Indexed: 05/10/2023]
Abstract
Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.
Collapse
Affiliation(s)
- Kim H. Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
- *Correspondence: Kim H. Hebelstrup, Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Domenico Sagnelli
- Department of Molecular Biology and Genetics, Aarhus University, Slagelse, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
38
|
Tanackovic V, Svensson JT, Jensen SL, Buléon A, Blennow A. The deposition and characterization of starch in Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5179-92. [PMID: 25056772 PMCID: PMC4157704 DOI: 10.1093/jxb/eru276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 05/26/2023]
Abstract
Brachypodium distachyon is a non-domesticated cereal. Nonetheless, Brachypodium was recently introduced as a model plant for temperate cereals. This study compares grain starch metabolism in Brachypodium and barley (Hordeum vulgare). In Brachypodium, we identified and annotated 28 genes involved in starch metabolism and identified important motifs including transit peptides and putative carbohydrate-binding modules (CBMs) of the families CBM20, CBM45, CBM48, and CBM53. Starch content was markedly lower in Brachypodium grains (12%) compared to barley grains (47%). Brachypodium starch granules were doughnut shaped and bimodally distributed into distinct small B-type (2.5-10 µm) and very small C-type (0.5-2.5 µm) granules. Large A-type granules, typical of cereals, were absent. Starch-bound phosphate, important for starch degradation, was 2-fold lower in Brachypodium compared with barley indicating different requirements for starch mobilization. The amylopectin branch profiles were similar and the amylose content was only slightly higher compared with barley cv. Golden Promise. The crystallinity of Brachypodium starch granules was low (10%) compared to barley (20%) as determined by wide-angle X-ray scattering (WAXS) and molecular disorder was confirmed by differential scanning calorimetry (DSC). The expression profiles in grain for most genes were distinctly different for Brachypodium compared to barley, typically showing earlier decline during the course of development, which can explain the low starch content and differences in starch molecular structure and granule characteristics. High transitory starch levels were observed in leaves of Brachypodium (2.8% after 14h of light) compared to barley (1.9% after 14h of light). The data suggest important pre-domesticated features of cereals.
Collapse
Affiliation(s)
- Vanja Tanackovic
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| | - Jan T Svensson
- Nordic Genetic Resource Centre, P.O. Box 41, SE-230 53 Alnarp, Sweden
| | - Susanne L Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| | - Alain Buléon
- UR1268 Biopolymeres Interactions Assemblages, INRA, F-44300 Nantes, France
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, DK-1871, Denmark
| |
Collapse
|
39
|
Shaik SS, Carciofi M, Martens HJ, Hebelstrup KH, Blennow A. Starch bioengineering affects cereal grain germination and seedling establishment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2257-70. [PMID: 24642850 PMCID: PMC4036499 DOI: 10.1093/jxb/eru107] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated for both HP and AO lines as compared with the WT. At late seedling establishment stages, specific sugars were rapidly consumed in the AO line. α-Amylase activity was distinctly suppressed in both the HP and the AO lines. Pre-germination β-amylase deposition was low in the AO grains and β-amylase was generally suppressed in both HP and AO lines throughout germination. As further supported by scanning electron microscopy and histochemical analyses on grain and seedlings, it was concluded that inadequate starch granule deposition in combination with the suppressed hydrolase activity leads to temporal and compensating re-direction of starch, sugar, and protein catabolism important to maintain metabolic dynamics during grain germination and seedling establishment.
Collapse
Affiliation(s)
- Shahnoor S Shaik
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Massimiliano Carciofi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Helle J Martens
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Kim H Hebelstrup
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
40
|
|
41
|
Lafiandra D, Riccardi G, Shewry PR. Improving cereal grain carbohydrates for diet and health. J Cereal Sci 2014; 59:312-326. [PMID: 24966450 PMCID: PMC4064937 DOI: 10.1016/j.jcs.2014.01.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/20/2013] [Accepted: 01/01/2014] [Indexed: 12/20/2022]
Abstract
Starch and cell wall polysaccharides (dietary fibre) of cereal grains contribute to the health benefits associated with the consumption of whole grain cereal products, including reduced risk of obesity, type 2 diabetes, cardiovascular disease and colorectal cancer. The physiological bases for these effects are reviewed in relation to the structures and physical properties of the polysaccharides and their behaviour (including digestion and fermentation) in the gastro-intestinal tract. Strategies for modifying the content and composition of grain polysaccharides to increase their health benefits are discussed, including exploiting natural variation and using mutagenesis and transgenesis to generate further variation. These studies will facilitate the development of new types of cereals and cereal products to face the major health challenges of the 21st century.
Collapse
Affiliation(s)
- Domenico Lafiandra
- Università degli Studi della Tuscia, Department of Agriculture, Forestry, Nature and Energy, Via S.C. De Lellis, Viterbo 01100, Italy
| | - Gabriele Riccardi
- Università degli Studi di Napoli Federico II, Department of Clinical Medicine and Surgery, Via Pansini 5, Napoli 80131, Italy
| | - Peter R. Shewry
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
- School of Agriculture, Policy and Development, University of Reading, Earley Gate, Whiteknights Road, Reading RG6 6AR, UK
| |
Collapse
|