1
|
Sung YC, Li Y, Bernasconi Z, Baik S, Asuke S, Keller B, Fahima T, Coaker G. Wheat tandem kinase RWT4 directly binds a fungal effector to activate defense. Nat Genet 2025; 57:1238-1249. [PMID: 40229601 DOI: 10.1038/s41588-025-02162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025]
Abstract
Plants have intricate innate immune receptors that detect pathogens. Research has intensely focused on two receptor classes recognizing external and internal threats. Recent research has identified a class of disease-resistance proteins called tandem kinase proteins (TKPs). We investigated RWT4, a wheat TKP that confers resistance to the devastating fungal pathogen Magnaporthe oryzae. We established a rice protoplast system, revealing RWT4 specifically recognizes the AvrPWT4 effector, leading to the transcription of defense genes and inducing cell death. RWT4 possesses both kinase and pseudokinase domains, with its kinase activity essential for defense. RWT4 directly interacts with and transphosphorylates AvrPWT4. Biolayer interferometry revealed both RWT4 kinase and pseudokinase regions bind the effector. Sequence similarity and structural modeling revealed a partial kinase duplication in RWT4's kinase region as critical for effector interaction and defense activation. Collectively, these findings demonstrate that TKPs can directly bind a recognized effector, leading to downstream defense activation.
Collapse
Affiliation(s)
- Yi-Chang Sung
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Yinghui Li
- Department of Plant Pathology, University of California, Davis, CA, USA
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Suji Baik
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Tzion Fahima
- Institute of Evolution and the Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Castanho FM, Costa BLCD, Abe VY, Yokoyama A, Darben LM, Oliveira LS, Ferreira EGC, Lopes IDON, Carvalho MCDCGD, Balbi-Peña MI, Marcelino-Guimarães FC. Variability and functional characterization of the Phakopsora pachyrhizi Egh16-like effectors. Genet Mol Biol 2024; 47:e20230192. [PMID: 39239924 PMCID: PMC11378017 DOI: 10.1590/1678-4685-gmb-2023-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/05/2024] [Indexed: 09/07/2024] Open
Abstract
Effector proteins in Phakopsora pachyrhizi (Pp), the causative agent of Asian Soybean rust, are involved in the infection process. A previous study identified a rust effector Egh16-like family based expression profile during the interaction with soybean. Herein, we scrutinized available the Pp genomes to validate the predicted Egh16-like family of Pp and identify new family members. We described 22 members of the Egh16-like gene family in the Pp MT2006 genome and 18 in the UFV02 and K8108 genomes, highlighting a family expansion. Family members have a small signal peptide, conserved cysteine-rich R/Y/FxC motifs in the C-terminal region, and a virulence-related Egh16-like domain and were able to suppress PTI related responses in Benthamiana. Phylogenetic analysis placed the family members into eight clusters, with members induced during the early stages of rust infection. Members of clusters VI and VII are present in different copy numbers in Pp genomes and suppressed PAMP-related responses.
Collapse
Affiliation(s)
- Fernanda Machado Castanho
- Centro de Ciências Biológicas, Programa de Pós-Graduação em Genética e Biologia Molecular, Londrina, PR, Brazil
| | | | - Valéria Yukari Abe
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Departamento de Bioquímica e Biotecnologia, Programa de Pós-Graduação em Biotecnologia, Londrina, PR, Brazil
| | | | - Liliane Santana Oliveira
- Empresa Brasileira de Pesquisa e Agropecuária (Embrapa Soja), Laboratório de Biotecnologia Vegetal e Bioinformática, Londrina, PR, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Upadhaya A, Upadhaya SGC, Brueggeman R. Association mapping with a diverse population of Puccinia graminis f. sp. tritici identified avirulence loci interacting with the barley Rpg1 stem rust resistance gene. BMC Genomics 2024; 25:751. [PMID: 39090588 PMCID: PMC11295639 DOI: 10.1186/s12864-024-10670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of barley and wheat. A diverse sexual Pgt population from the Pacific Northwest (PNW) region of the US contains a high proportion of individuals with virulence on the barley stem rust resistance (R) gene, Rpg1. However, the evolutionary mechanisms of this virulence on Rpg1 are mysterious considering that Rpg1 had not been deployed in the region and the gene had remained remarkably durable in the Midwestern US and prairie provinces of Canada. METHODS AND RESULTS To identify AvrRpg1 effectors, genome wide association studies (GWAS) were performed using 113 Pgt isolates collected from the PNW (n = 89 isolates) and Midwest (n = 24 isolates) regions of the US. Disease phenotype data were generated on two barley lines Morex and the Golden Promise transgenic (H228.2c) that carry the Rpg1 gene. Genotype data was generated by whole genome sequencing (WGS) of 96 isolates (PNW = 89 isolates and Midwest = 7 isolates) and RNA sequencing (RNAseq) data from 17 Midwestern isolates. Utilizing ~1.2 million SNPs generated from WGS and phenotype data (n = 96 isolates) on the transgenic line H228.2c, 53 marker trait associations (MTAs) were identified. Utilizing ~140 K common SNPs generated from combined analysis of WGS and RNAseq data, two significant MTAs were identified using the cv Morex phenotyping data. The 55 MTAs defined two distinct avirulence loci, on supercontig 2.30 and supercontig 2.11 of the Pgt reference genome of Pgt isolate CRL 75-36-700-3. The major avirulence locus designated AvrRpg1A was identified with the GWAS using both barley lines and was delimited to a 35 kb interval on supercontig 2.30 containing four candidate genes (PGTG_10878, PGTG_10884, PGTG_10885, and PGTG_10886). The minor avirulence locus designated AvrRpg1B identified with cv Morex contained a single candidate gene (PGTG_05433). AvrRpg1A haplotype analysis provided strong evidence that a dominant avirulence gene underlies the locus. CONCLUSIONS The association analysis identified strong candidate AvrRpg1 genes. Further analysis to validate the AvrRpg1 genes will fill knowledge gaps in our understanding of rust effector biology and the evolution and mechanism/s of Pgt virulence on Rpg1.
Collapse
Affiliation(s)
- Arjun Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Sudha G C Upadhaya
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6420, USA.
| |
Collapse
|
4
|
Klymiuk V, Coaker G, Fahima T, Pozniak CJ. Tandem Protein Kinases Emerge as New Regulators of Plant Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1094-1102. [PMID: 34096764 PMCID: PMC8761531 DOI: 10.1094/mpmi-03-21-0073-cr] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plant-pathogen interactions result in disease development in a susceptible host. Plants actively resist pathogens via a complex immune system comprising both surface-localized receptors that sense the extracellular space as well as intracellular receptors recognizing pathogen effectors. To date, the majority of cloned resistance genes encode intracellular nucleotide-binding leucine-rich repeat receptor proteins. Recent discoveries have revealed tandem kinase proteins (TKPs) as another important family of intracellular proteins involved in plant immune responses. Five TKP genes-barley Rpg1 and wheat WTK1 (Yr15), WTK2 (Sr60), WTK3 (Pm24), and WTK4-protect against devastating fungal diseases. Moreover, a large diversity and numerous putative TKPs exist across the plant kingdom. This review explores our current knowledge of TKPs and serves as a basis for future studies that aim to develop and exploit a deeper understanding of innate plant immunity receptor proteins.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Valentyna Klymiuk
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Gitta Coaker
- Department of Plant Pathology, University of California,
Davis, CA, U.S.A
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi
Avenue, Mt. Carmel, 3498838 Haifa, Israel
- Department of Evolutionary and Environmental Biology,
University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, 3498838 Haifa, Israel
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences,
University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
5
|
A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 2020; 11:680. [PMID: 32015344 PMCID: PMC6997164 DOI: 10.1038/s41467-020-14294-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.
Collapse
|
6
|
Solanki S, Ameen G, Zhao J, Flaten J, Borowicz P, Brueggeman RS. Visualization of spatial gene expression in plants by modified RNAscope fluorescent in situ hybridization. PLANT METHODS 2020; 16:71. [PMID: 32467719 PMCID: PMC7229616 DOI: 10.1186/s13007-020-00614-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/11/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND In situ analysis of biomarkers such as DNA, RNA and proteins are important for research and diagnostic purposes. At the RNA level, plant gene expression studies rely on qPCR, RNAseq and probe-based in situ hybridization (ISH). However, for ISH experiments poor stability of RNA and RNA based probes commonly results in poor detection or poor reproducibility. Recently, the development and availability of the RNAscope RNA-ISH method addressed these problems by novel signal amplification and background suppression. This method is capable of simultaneous detection of multiple target RNAs down to the single molecule level in individual cells, allowing researchers to study spatio-temporal patterning of gene expression. However, this method has not been optimized thus poorly utilized for plant specific gene expression studies which would allow for fluorescent multiplex detection. Here we provide a step-by-step method for sample collection and pretreatment optimization to perform the RNAscope assay in the leaf tissues of model monocot plant barley. We have shown the spatial distribution pattern of HvGAPDH and the low expressed disease resistance gene Rpg1 in leaf tissue sections of barley and discuss precautions that should be followed during image analysis. RESULTS We have shown the ubiquitous HvGAPH and predominantly stomatal guard cell associated subsidiary cell expressed Rpg1 expression pattern in barley leaf sections and described the improve RNAscope methodology suitable for plant tissues using confocal laser microscope. By addressing the problems in the sample collection and incorporating additional sample backing steps we have significantly reduced the section detachment and experiment failure problems. Further, by reducing the time of protease treatment, we minimized the sample disintegration due to over digestion of barley tissues. CONCLUSIONS RNAscope multiplex fluorescent RNA-ISH detection is well described and adapted for animal tissue samples, however due to morphological and structural differences in the plant tissues the standard protocol is deficient and required optimization. Utilizing barley specific HvGAPDH and Rpg1 RNA probes we report an optimized method which can be used for RNAscope detection to determine the spatial expression and semi-quantification of target RNAs. This optimized method will be immensely useful in other plant species such as the widely utilized Arabidopsis.
Collapse
Affiliation(s)
- Shyam Solanki
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Gazala Ameen
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Jin Zhao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Jordan Flaten
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Pawel Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Robert S. Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| |
Collapse
|
7
|
Rampitsch C, Huang M, Djuric-Cignaovic S, Wang X, Fernando U. Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust ( Puccinia triticina). FRONTIERS IN PLANT SCIENCE 2019; 10:1291. [PMID: 31708941 PMCID: PMC6819374 DOI: 10.3389/fpls.2019.01291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Wheat leaf rust caused by the pathogenic fungus, Puccinia triticina, is a serious threat to bread wheat and durum production in many areas of the world. This plant-pathogen interaction has been studied extensively at the molecular genetics level however, proteomics data are still relatively scarce. The present study investigated temporal changes in the abundance of the apoplastic fluid proteome of resistant and susceptible wheat leaves infected with P. triticina race-1, using a label-free LC-MS-based approach. In general, there was very little difference between inoculated and control apoplastic proteomes in either host, until haustoria had become well established in the susceptible host, although the resistant host responds to pathogen challenge sooner. In the earlier samplings (up to 72 h after inoculation) there were just 46 host proteins with significantly changing abundance, and pathogen proteins were detected only rarely and not reproducibly. This is consistent with the biotrophic lifestyle of P. triticina, where the invading pathogen initially causes little tissue damage or host cell death, which occur only later during the infection cycle. The majority of the host proteins with altered abundance up to 72 h post-inoculation were pathogen-response-related, including peroxidases, chitinases, β-1-3-endo-glucanases, and other PR proteins. Five days after inoculation with the susceptible apoplasm it was possible to detect 150 P. triticina proteins and 117 host proteins which had significantly increased in abundance as well as 33 host proteins which had significantly decreased in abundance. The latter represents potential targets of pathogen effectors and included enzymes which could damage the invader. The pathogen-expressed proteins-seen most abundantly in the incompatible interaction-were mostly uncharacterized proteins however, many of their functions could be inferred through homology-matching with pBLAST. Pathogen proteins also included several candidate effector proteins, some novel, and some which have been reported previously. All MS data have been deposited in the PRIDE archive (www.ebi.ac.uk/pride/archive/) under Project PXD012586.
Collapse
|
8
|
Solanki S, Richards J, Ameen G, Wang X, Khan A, Ali H, Stangel A, Tamang P, Gross T, Gross P, Fetch TG, Brueggeman RS. Characterization of genes required for both Rpg1 and rpg4-mediated wheat stem rust resistance in barley. BMC Genomics 2019; 20:495. [PMID: 31200635 PMCID: PMC6570958 DOI: 10.1186/s12864-019-5858-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/29/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Puccinia graminis f. sp. tritici (Pgt) race TTKSK and its lineage pose a threat to barley production world-wide justifying the extensive efforts to identify, clone, and characterize the rpg4-mediated resistance locus (RMRL), the only effective resistance to virulent Pgt races in the TTKSK lineage. The RMRL contains two nucleotide-binding domain and leucine-rich repeat (NLR) resistance genes, Rpg5 and HvRga1, which are required for resistance. The two NLRs have head-to-head genome architecture with one NLR, Rpg5, containing an integrated C-terminal protein kinase domain, characteristic of an "integrated sensory domain" resistance mechanism. Fast neutron mutagenesis of line Q21861 was utilized in a forward genetics approach to identify genetic components that function in the RMRL or Rpg1 resistance mechanisms, as Q21861 contains both genes. A mutant was identified that compromises both RMRL and Rpg1-mediated resistances and had stunted seedling roots, designated required for P. graminis resistance 9 (rpr9). RESULTS The rpr9 mutant generated in the Q21861 background was crossed with the Swiss landrace Hv584, which carries RMRL but contains polymorphism across the genome compared to Q21861. To map Rpr9, a Hv584 x rpr9 F6:7 recombinant inbred line (RIL) population was developed. The RIL population was phenotyped with Pgt race QCCJB. The Hv584 x rpr9 RIL population was genotyped with the 9 k Illumina Infinium iSelect marker panel, producing 2701 polymorphic markers. A robust genetic map consisting of 563 noncosegregating markers was generated and used to map Rpr9 to an ~ 3.4 cM region on barley chromosome 3H. The NimbleGen barley exome capture array was utilized to capture rpr9 and wild type Q21861 exons, followed by Illumina sequencing. Comparative analysis, resulting in the identification of a 1.05 Mbp deletion at the chromosome 3H rpr9 locus. The identified deletion contains ten high confidence annotated genes with the best rpr9 candidates encoding a SKP1-like 9 protein and a F-box family protein. CONCLUSION Genetic mapping and exome capture rapidly identified candidate gene/s that function in RMRL and Rpg1 mediated resistance pathway/s. One or more of the identified candidate rpr9 genes are essential in the only two known effective stem rust resistance mechanisms, present in domesticated barley.
Collapse
Affiliation(s)
- Shyam Solanki
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Jonathan Richards
- Department of Plant Pathology and Crop Physiology, Louisiana State University AgCenter, Baton Rouge, LA 70803 USA
| | - Gazala Ameen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Xue Wang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Atiya Khan
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Harris Ali
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Alex Stangel
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Prabin Tamang
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Thomas Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Patrick Gross
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| | - Thomas G. Fetch
- Cereal Research Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB R6M 1Y5 Canada
| | - Robert S. Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108-6050 USA
| |
Collapse
|
9
|
Solanki S, Ameen G, Borowicz P, Brueggeman RS. Shedding Light on Penetration of Cereal Host Stomata by Wheat Stem Rust Using Improved Methodology. Sci Rep 2019; 9:7939. [PMID: 31138873 PMCID: PMC6538696 DOI: 10.1038/s41598-019-44280-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/08/2019] [Indexed: 11/09/2022] Open
Abstract
Asexual urediniospore infection of primary cereal hosts by Puccinia graminis f. sp. tritici (Pgt), the wheat stem rust pathogen, was considered biphasic. The first phase, spore germination and appressoria formation, requires a dark period and moisture. The second phase, host entry by the penetration peg originating from the appressoria formed over the guard cells, was thought to require light to induce natural stomata opening. Previous studies concluded that inhibition of colonization by the dark was due to lack of penetration through closed stomata. A sensitive WGA-Alexa Fluor 488 fungal staining, surface creation and biovolume analysis method was developed enabling visualization and quantification of fungal growth in planta at early infection stages surpassing visualization barriers using previous methods. The improved method was used to investigate infection processes of Pgt during stomata penetration and colonization in barley and wheat showing that penetration is light independent. Based on the visual growth and fungal biovolume analysis it was concluded that the differences in pathogen growth dynamics in both resistant and susceptible genotypes was due to light induced pathogen growth after penetration into the substomatal space. Thus, light induced plant or pathogen cues triggers pathogen growth in-planta post penetration.
Collapse
Affiliation(s)
- Shyam Solanki
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gazala Ameen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Pawel Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
10
|
Sharma Poudel R, Al-Hashel AF, Gross T, Gross P, Brueggeman R. Pyramiding rpg4- and Rpg1-Mediated Stem Rust Resistance in Barley Requires the Rrr1 Gene for Both to Function. FRONTIERS IN PLANT SCIENCE 2018; 9:1789. [PMID: 30568667 PMCID: PMC6290389 DOI: 10.3389/fpls.2018.01789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/19/2018] [Indexed: 05/20/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt) is an economically important disease of wheat and barley. Rpg1 is the only resistance gene deployed in Midwestern US barley varieties and provides remarkable resistance to most North American races, except Pgt race QCCJB. Rpg1 is also ineffective against Pgt race TTKSK and its lineage that originated in Africa. The barley rpg4-mediated resistance locus (RMRL) conferring resistance to Pgt races QCCJB and TTKSK was isolated from line Q21861, which is resistant to all known Pgt races due to Rpg1 and RMRL. To develop elite barley varieties RMRL was pyramided into the varieties, Pinnacle and Conlon (both contain Rpg1), producing the near isogenic lines (NILs), Pinnacle RMRL-NIL (PRN) and Conlon RMRL-NIL (CRN). The CRN was resistant to Pgt races QCCJB (RMRL specific) and HKHJC (Rpg1 specific) at the seedling stage and Pgt race TTKSK (RMRL specific) at the adult stage. In contrast, PRN was susceptible to QCCJB and HKHJC at the seedling stage and TTKSK at the adult stage. Interestingly, PRN's susceptibility to QCCJB and HKHJC showed that RMRL was non-functional in the Pinnacle background but its presence also suppressed Rpg1-mediated resistance. Thus, in the absence of a gene/s found in the Q21861 background, Rpg1 becomes non-functional if RMRL is present, suggesting that another polymorphic gene, that we designated Rrr1 (required for rpg4-mediated resistance 1), is required for RMRL resistance and Rpg1-mediated resistance in the presence of RMRL. Utilizing a PRN/Q21861 derived recombinant inbred line (RIL) population, Rrr1 was delimited to a ∼0.5 MB physical region, slightly proximal (∼1.8 MB) of RMRL on barley chromosome 5H. A second gene, designated required for Rpg1-mediated resistance 2 (Rrr2), with duplicate gene action to Rrr1 in Rpg1-mediated resistance function, was genetically delimited to a physical region of ∼0.7 MB, slightly distal (∼3.1 MB) to Rpg1 on the short arm of barley chromosome 7H. Thus, Rrr1 is required for RMRL resistance and Rrr1 or Rrr2 is required for functional Rpg1-mediated resistance in the presence of the RMRL introgression. Candidate Rrr1 and Rrr2 genes were identified that need to be considered when pyramiding Rpg1 and RMRL in barley.
Collapse
Affiliation(s)
| | | | | | | | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
11
|
Nicolis V, Venter E. Silencing of a Unique Integrated Domain Nucleotide-Binding Leucine-Rich Repeat Gene in Wheat Abolishes Diuraphis noxia Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018. [PMID: 29533135 DOI: 10.1094/mpmi-11-17-0262-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants respond in a similar manner to aphid feeding as to pathogen attack. Diuraphis noxia is a specialist aphid, feeding only on selected grasses that include wheat, barley, and oats. The wheat-Diuraphis noxia interaction is characterized by responses very similar to those seen in wheat-pathogen interactions with none of the underlying resistance pathways and genes characterized yet. From wheat harboring the Dn1 resistance gene, we have identified a nucleotide-binding leucine-rich repeat (NLR) gene containing two integrated domains (IDs). These are three C-terminus ankyrin repeat domains and an N-terminus WRKY domain. The NLR core of the gene can be traced through speciation events within the grass family, with a recent WRKY domain integration that is Triticum-specific. Virus-induced gene silencing of the gene in a resistant wheat line resulted in the abolishment of the resistance response and induced a highly susceptible phenotype. Silenced plants supported a higher number of aphids, similar to the susceptible near-isogenic line (NIL), and the intrinsic rate of increase of the aphids matched that of aphids feeding on the susceptible NIL. The presence of the gene is necessary for Dn1 resistance and we have named the gene Associated with Dn resistance 1 (Adnr1) to reflect this function.
Collapse
Affiliation(s)
- Vittorio Nicolis
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Eduard Venter
- Department of Botany and Plant Biotechnology, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
12
|
Shen Y, Liu N, Li C, Wang X, Xu X, Chen W, Xing G, Zheng W. The early response during the interaction of fungal phytopathogen and host plant. Open Biol 2018; 7:rsob.170057. [PMID: 28469008 PMCID: PMC5451545 DOI: 10.1098/rsob.170057] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023] Open
Abstract
Plants can be infected by a variety of pathogens, most of which can cause severe economic losses. The plants resist the invasion of pathogens via the innate or acquired immune system for surviving biotic stress. The associations between plants and pathogens are sophisticated beyond imaging and the interactions between them can occur at a very early stage after their touching each other. A number of researchers in the past decade have shown that many biochemical events appeared even as early as 5 min after their touching for plant disease resistance response. The early molecular interactions of plants and pathogens are likely to involve protein phosphorylation, ion fluxes, reactive oxygen species (ROS) and other signalling transduction. Here, we reviewed the recent progress in the study for molecular interaction response of fungal pathogens and host plant at the early infection stage, which included many economically important crop fungal pathogens such as cereal rust fungi, tomato Cladosporium fulvum, rice blast and so on. By dissecting the earlier infection stage of the diseases, the avirulent/virulent genes of pathogen or resistance genes of plant could be defined more clearly and accurately, which would undoubtedly facilitate fungal pathogenesis study and resistant crop breeding.
Collapse
Affiliation(s)
- Yilin Shen
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Na Liu
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Xiaomeng Xu
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wan Chen
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Guozhen Xing
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
13
|
Stotz HU, de Oliveira Almeida R, Davey N, Steuber V, Valente GT. Review of combinations of experimental and computational techniques to identify and understand genes involved in innate immunity and effector-triggered defence. Methods 2017; 131:120-127. [DOI: 10.1016/j.ymeth.2017.08.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022] Open
|
14
|
Florez JC, Mofatto LS, do Livramento Freitas-Lopes R, Ferreira SS, Zambolim EM, Carazzolle MF, Zambolim L, Caixeta ET. High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection. PLANT MOLECULAR BIOLOGY 2017; 95:607-623. [PMID: 29094279 DOI: 10.1007/s11103-017-0676-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/21/2017] [Indexed: 06/07/2023]
Abstract
We provide a transcriptional profile of coffee rust interaction and identified putative up regulated resistant genes Coffee rust disease, caused by the fungus Hemileia vastatrix, is one of the major diseases in coffee throughout the world. The use of resistant cultivars is considered to be the most effective control strategy for this disease. To identify candidate genes related to different mechanism defense in coffee, we present a time-course comparative gene expression profile of Caturra (susceptible) and Híbrido de Timor (HdT, resistant) in response to H. vastatrix race XXXIII infection. The main objectives were to obtain a global overview of transcriptome in both interaction, compatible and incompatible, and, specially, analyze up-regulated HdT specific genes with inducible resistant and defense signaling pathways. Using both Coffea canephora as a reference genome and de novo assembly, we obtained 43,159 transcripts. At early infection events (12 and 24 h after infection), HdT responded to the attack of H. vastatrix with a larger number of up-regulated genes than Caturra, which was related to prehaustorial resistance. The genes found in HdT at early hours were involved in receptor-like kinases, response ion fluxes, production of reactive oxygen species, protein phosphorylation, ethylene biosynthesis and callose deposition. We selected 13 up-regulated HdT-exclusive genes to validate by real-time qPCR, which most of them confirmed their higher expression in HdT than in Caturra at early stage of infection. These genes have the potential to assist the development of new coffee rust control strategies. Collectively, our results provide understanding of expression profiles in coffee-H. vastatrix interaction over a time course in susceptible and resistant coffee plants.
Collapse
Affiliation(s)
- Juan Carlos Florez
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Luciana Souto Mofatto
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Rejane do Livramento Freitas-Lopes
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Sávio Siqueira Ferreira
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Eunize Maciel Zambolim
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas, SP, 13083-970, Brazil
| | - Laércio Zambolim
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil
| | - Eveline Teixeira Caixeta
- Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), BioCafé, Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil.
- Embrapa Café, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Campus Universitário, Avenida P.H. Rolfs, s/n, Viçosa, MG, Brazil.
| |
Collapse
|
15
|
de Carvalho MCDCG, Costa Nascimento L, Darben LM, Polizel‐Podanosqui AM, Lopes‐Caitar VS, Qi M, Rocha CS, Carazzolle MF, Kuwahara MK, Pereira GAG, Abdelnoor RV, Whitham SA, Marcelino‐Guimarães FC. Prediction of the in planta Phakopsora pachyrhizi secretome and potential effector families. MOLECULAR PLANT PATHOLOGY 2017; 18:363-377. [PMID: 27010366 PMCID: PMC6638266 DOI: 10.1111/mpp.12405] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance. In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes, as well as the development of sample enrichment strategies and bioinformatics tools, has improved our knowledge of the ASR secretome and its potential effectors. In this context, we used a combination of laser capture microdissection (LCM), RNAseq and a bioinformatics pipeline to identify a total of 36 350 P. pachyrhizi contigs expressed in planta and a predicted secretome of 851 proteins. Some of the predicted secreted proteins had characteristics of candidate effectors: small size, cysteine rich, do not contain PFAM domains (except those associated with pathogenicity) and strongly expressed in planta. A comparative analysis of the predicted secreted proteins present in Pucciniales species identified new members of soybean rust and new Pucciniales- or P. pachyrhizi-specific families (tribes). Members of some families were strongly up-regulated during early infection, starting with initial infection through haustorium formation. Effector candidates selected from two of these families were able to suppress immunity in transient assays, and were localized in the plant cytoplasm and nuclei. These experiments support our bioinformatics predictions and show that these families contain members that have functions consistent with P. pachyrhizi effectors.
Collapse
Affiliation(s)
| | - Leandro Costa Nascimento
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | - Luana M. Darben
- Embrapa sojaPlant BiotechnologyLondrinaParanáCEP 70770‐901Brazil
| | | | - Valéria S. Lopes‐Caitar
- Embrapa sojaPlant BiotechnologyLondrinaParanáCEP 70770‐901Brazil
- Universidade Estadual de LondrinaLondrinaParanáCEP 86057‐970Brazil
| | - Mingsheng Qi
- Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | | | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | | | - Goncalo A. G. Pereira
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | | | - Steven A. Whitham
- Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | | |
Collapse
|
16
|
Gill U, Brueggeman R, Nirmala J, Chai Y, Steffenson B, Kleinhofs A. Molecular and genetic characterization of barley mutants and genetic mapping of mutant rpr2 required for Rpg1-mediated resistance against stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1519-1529. [PMID: 27142847 DOI: 10.1007/s00122-016-2721-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
This study describes the generation, screening, genetic and molecular characterization, and high-resolution mapping of barley mutants susceptible to stem rust ( Puccinia graminis f. sp. tritici ) races MCCF and HKHJ. A single gene, Rpg1, has protected barley cultivars against many races of stem rust pathogen (Puccinia graminis f. sp. tritici) for the last 70 years in the United States and Canada. To identify signaling components of protein product RPG1, we employed a mutagenesis approach. Using this approach, six mutants exhibiting susceptibility to Puccinia graminis f. sp. tritici races MCCF and HKHJ were identified in the gamma irradiated M2 population of resistant cultivar Morex, which carries Rpg1 on chromosome 7H. The mutants retained a functional Rpg1 gene and an apparently functional protein, suggesting that the mutated genes were required for downstream or upstream signaling. Selected mutants were non-allelic, hence each mutant represents a unique gene. Low and high-resolution genetic mapping of the rpr2 mutant identified chromosome 6H (bin 6) as the location of the mutated gene. The target region was reduced to 0.6 cM and gene content analyzed. Based on the published barley genomic sequence, the target region contains approximately 157 genes, including a set that encodes putative leucine-rich receptor-like protein kinases, which may be strong candidates for the gene of interest. Overall, this study presents a strong platform for future map-based cloning of genes identified in this mutant screen.
Collapse
Affiliation(s)
- Upinder Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jayaveeramuthu Nirmala
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Cereal Disease Laboratory, USDA-ARS, Saint Paul, MN, 55108, USA
| | - Yuan Chai
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Brian Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Andris Kleinhofs
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
17
|
Figueroa M, Castell-Miller CV, Li F, Hulbert SH, Bradeen JM. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:558. [PMID: 26284085 PMCID: PMC4519692 DOI: 10.3389/fpls.2015.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Claudia V. Castell-Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
18
|
Zurn JD, Dugyala S, Borowicz P, Brueggeman R, Acevedo M. Unraveling the Wheat Stem Rust Infection Process on Barley Genotypes Through Relative qPCR and Fluorescence Microscopy. PHYTOPATHOLOGY 2015; 105:707-712. [PMID: 25689517 DOI: 10.1094/phyto-09-14-0251-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The infection process of wheat stem rust (Puccinia graminis f. sp. tritici) on barley (Hordeum vulgare) is often observed as a mesothetic infection type at the seedling stages, and cultivars containing the same major resistance genes often show variation in the level of resistance provided against the same pathogen race or isolate. Thus, robust phenotyping data based on quantification of fungal DNA can improve the ability to elucidate host-pathogen interaction, especially at early time points of infection when disease symptoms are not yet evident. Quantitative real-time polymerase chain reaction (qPCR) was used to determine the amount of fungal DNA relative to host DNA in infected tissue, providing new insights about fungal development and host resistance during the infection process in this pathosystem. The stem rust susceptible 'Steptoe', resistant cultivars containing only Rpg1 ('Beacon', 'Morex', and 'Chevron'), and the resistant line Q21861 containing Rpg1 and the rpg4/Rpg5 complex were evaluated using the traditional 0-to-4 rating scale, fluorescence microscopy, and qPCR. Statistical differences (P<0.05) were observed in fungal development as early as 24 h postinoculation using the qPCR assay. Fungal development observed using fluorescence microscopy displayed the same hierarchal ordering observed using the qPCR assay. The fungal development occurring at 24 and 48 h postinoculation was vastly different than what was expected using the traditional disease phenotyping methodology; with Steptoe appearing more resistant than the barley lines harboring the known Rpg1 and rpg4/Rpg5 resistance complex. These data indicate potential early prehaustorial resistance contributions in a cultivar considered susceptible based on infection type. Moreover, the temporal differences in resistance suggest pre- and post-haustorial resistance mechanisms in the barley-wheat stem rust infection process, indicating potential host genotype contributions related to basal defense during the wheat stem rust infection process.
Collapse
Affiliation(s)
- J D Zurn
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - S Dugyala
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - P Borowicz
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - R Brueggeman
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| | - M Acevedo
- First, second, fourth, and fifth authors: Department of Plant Pathology, and third author: Department of Animal Sciences, North Dakota State University, Fargo 58108
| |
Collapse
|
19
|
Bettgenhaeuser J, Gilbert B, Ayliffe M, Moscou MJ. Nonhost resistance to rust pathogens - a continuation of continua. FRONTIERS IN PLANT SCIENCE 2014; 5:664. [PMID: 25566270 PMCID: PMC4263244 DOI: 10.3389/fpls.2014.00664] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 05/25/2023]
Abstract
The rust fungi (order: Pucciniales) are a group of widely distributed fungal plant pathogens, which can infect representatives of all vascular plant groups. Rust diseases significantly impact several crop species and considerable research focuses on understanding the basis of host specificity and nonhost resistance. Like many pathogens, rust fungi vary considerably in the number of hosts they can infect, such as wheat leaf rust (Puccinia triticina), which can only infect species in the genera Triticum and Aegilops, whereas Asian soybean rust (Phakopsora pachyrhizi) is known to infect over 95 species from over 42 genera. A greater understanding of the genetic basis determining host range has the potential to identify sources of durable resistance for agronomically important crops. Delimiting the boundary between host and nonhost has been complicated by the quantitative nature of phenotypes in the transition between these two states. Plant-pathogen interactions in this intermediate state are characterized either by (1) the majority of accessions of a species being resistant to the rust or (2) the rust only being able to partially complete key components of its life cycle. This leads to a continuum of disease phenotypes in the interaction with different plant species, observed as a range from compatibility (host) to complete immunity within a species (nonhost). In this review we will highlight how the quantitative nature of disease resistance in these intermediate interactions is caused by a continuum of defense barriers, which a pathogen needs to overcome for successfully establishing itself in the host. To illustrate continua as this underlying principle, we will discuss the advances that have been made in studying nonhost resistance towards rust pathogens, particularly cereal rust pathogens.
Collapse
Affiliation(s)
| | - Brian Gilbert
- Commonwealth Scientific and Industrial Research Organisation, Agriculture FlagshipCanberra, ACT, Australia
| | - Michael Ayliffe
- Commonwealth Scientific and Industrial Research Organisation, Agriculture FlagshipCanberra, ACT, Australia
| | | |
Collapse
|
20
|
Hulbert S, Pumphrey M. A time for more booms and fewer busts? Unraveling cereal-rust interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:207-14. [PMID: 24499028 DOI: 10.1094/mpmi-09-13-0295-fi] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Recent advances in our understanding of the nature of resistance genes and rust fungus genomics are providing some insight into the basis of resistance and susceptibility to rust diseases in our cereal crops. Characterized rust resistance genes, for the most part, resemble other resistance genes that interact with effectors intracellularly, but some have unique features. Characterization of rust effectors is just beginning but genomic information and technical advances in rust functional genomics will accelerate their characterization. The ephemeral nature of resistance in past varieties has made the design of cultivars with durable resistance a major focus for geneticists and cereal breeders. This includes strategies for deploying race-specific resistance genes that prolong their effects and methods of predicting which will be difficult for the pathogen to defeat. Identification of resistance genes with race-nonspecific effects is another strategy where recent breakthroughs have been made. Routinely combining the numerous genes required for complex resistance, whether specific or nonspecific, in elite cultivars remains a primary constraint to realizing durable resistance in most programs.
Collapse
|
21
|
Delventhal R, Falter C, Strugala R, Zellerhoff N, Schaffrath U. Ectoparasitic growth of Magnaporthe on barley triggers expression of the putative barley wax biosynthesis gene CYP96B22 which is involved in penetration resistance. BMC PLANT BIOLOGY 2014; 14:26. [PMID: 24423145 PMCID: PMC3897914 DOI: 10.1186/1471-2229-14-26] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/09/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Head blast caused by the fungal plant pathogen Magnaporthe oryzae is an upcoming threat for wheat and barley cultivation. We investigated the nonhost response of barley to an isolate of the Magnaporthe species complex which is pathogenic on Pennisetum spp. as a potential source for novel resistance traits. RESULTS Array experiments identified a barley gene encoding a putative cytochrome P450 monooxygenase whose transcripts accumulate to a higher concentration in the nonhost as compared to the host interaction. The gene clusters within the CYP96 clade of the P450 plant gene family and is designated as CYP96B22. Expression of CYP96B22 was triggered during the ectoparasitic growth of the pathogen on the outside of the leaf. Usage of a fungicidal treatment and a Magnaporthe mutant confirmed that penetration was not necessary for this early activation of CYP96B22. Transcriptional silencing of CYP96B22 using Barley stripe mosaic virus led to a decrease in penetration resistance of barley plants to Magnaporthe host and nonhost isolates. This phenotype seems to be specific for the barley-Magnaporthe interaction, since penetration of the adapted barley powdery mildew fungus was not altered in similarly treated plants. CONCLUSION Taken together our results suggest a cross-talk between barley and Magnaporthe isolates across the plant surface. Since members of the plant CYP96 family are known to be involved in synthesis of epicuticular waxes, these substances or their derivatives might act as signal components. We propose a functional overlap of CYP96B22 in the execution of penetration resistance during basal and nonhost resistance of barley against different Magnaporthe species.
Collapse
Affiliation(s)
- Rhoda Delventhal
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Christian Falter
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
- current address: Biozentrum Klein Flottbek, Molecular Phytopathology and Genetics, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Roxana Strugala
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Nina Zellerhoff
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
- current address: Institute of Botany, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| |
Collapse
|
22
|
Proteomics of model and crop plant species: Status, current limitations and strategic advances for crop improvement. J Proteomics 2013; 93:5-19. [DOI: 10.1016/j.jprot.2013.05.036] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 12/22/2022]
|
23
|
Wang X, Richards J, Gross T, Druka A, Kleinhofs A, Steffenson B, Acevedo M, Brueggeman R. The rpg4-mediated resistance to wheat stem rust (Puccinia graminis) in barley (Hordeum vulgare) requires Rpg5, a second NBS-LRR gene, and an actin depolymerization factor. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:407-18. [PMID: 23216085 DOI: 10.1094/mpmi-06-12-0146-r] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rpg4 gene confers recessive resistance to several races of wheat stem rust (Puccinia graminis f. sp. tritici) and Rpg5 provides dominant resistance against isolates of the rye stem rust (P. graminis f. sp. secalis) in barley. The rpg4 and Rpg5 genes are tightly linked on chromosome 5H, and positional cloning using high-resolution populations clearly separated the genes, unambiguously identifying Rpg5; however, the identity of rpg4 remained unclear. High-resolution genotyping of critical recombinants at the rpg4/Rpg5 locus, designated here as rpg4-mediated resistance locus (RMRL) delimited two distinct yet tightly linked loci required for resistance, designated as RMRL1 and RMRL2. Utilizing virus-induced gene silencing, each gene at RMRL1, i.e., HvRga1 (a nucleotide-binding site leucine-rich repeat [NBS-LRR] domain gene), Rpg5 (an NBS-LRR-protein kinase domain gene), and HvAdf3 (an actin depolymerizing factor-like gene), was individually silenced followed by inoculation with P. graminis f. sp. tritici race QCCJ. Silencing each gene changed the reaction type from incompatible to compatible, indicating that all three genes are required for rpg4-mediated resistance. This stem rust resistance mechanism in barley follows the emerging theme of unrelated pairs of genetically linked NBS-LRR genes required for specific pathogen recognition and resistance. It also appears that actin cytoskeleton dynamics may play an important role in determining resistance against several races of stem rust in barley.
Collapse
Affiliation(s)
- X Wang
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chaves MS, Martinelli JA, Wesp-Guterres C, Graichen FAS, Brammer SP, Scagliusi SM, da Silva PR, Wiethölter P, Torres GAM, Lau EY, Consoli L, Chaves ALS. The importance for food security of maintaining rust resistance in wheat. Food Secur 2013. [DOI: 10.1007/s12571-013-0248-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Petre B, Morin E, Tisserant E, Hacquard S, Da Silva C, Poulain J, Delaruelle C, Martin F, Rouhier N, Kohler A, Duplessis S. RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter. PLoS One 2012; 7:e44408. [PMID: 22952974 PMCID: PMC3431362 DOI: 10.1371/journal.pone.0044408] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/02/2012] [Indexed: 02/03/2023] Open
Abstract
Biotroph pathogens establish intimate interactions with their hosts that are conditioned by the successful secretion of effectors in infected tissues and subsequent manipulation of host physiology. The identification of early-expressed pathogen effectors and early-modulated host functions is currently a major goal to understand the molecular basis of biotrophy. Here, we report the 454-pyrosequencing transcriptome analysis of early stages of poplar leaf colonization by the rust fungus Melampsora larici-populina. Among the 841,301 reads considered for analysis, 616,879 and 649 were successfully mapped to Populus trichocarpa and M. larici-populina genome sequences, respectively. From a methodological aspect, these results indicate that this single approach is not appropriate to saturate poplar transcriptome and to follow transcript accumulation of the pathogen. We identified 19 pathogen transcripts encoding early-expressed small-secreted proteins representing candidate effectors of interest for forthcoming studies. Poplar RNA-Seq data were validated by oligoarrays and quantitatively analysed, which revealed a highly stable transcriptome with a single transcript encoding a sulfate transporter (herein named PtSultr3;5, POPTR_0006s16150) showing a dramatic increase upon colonization by either virulent or avirulent M. larici-populina strains. Perspectives connecting host sulfate transport and biotrophic lifestyle are discussed.
Collapse
Affiliation(s)
- Benjamin Petre
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Emmanuelle Morin
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Emilie Tisserant
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Stéphane Hacquard
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | | | - Julie Poulain
- CEA-Genoscope, Centre National de Séquençage, Evry, France
| | - Christine Delaruelle
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Francis Martin
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Nicolas Rouhier
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Annegret Kohler
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
| | - Sébastien Duplessis
- Unité Mixte de Recherche 1136 ‘Interactions Arbres/Microorganismes’, INRA (Institut National de la Recherche Agronomique)/Université de Lorraine, Centre INRA de Nancy, Champenoux, France
- * E-mail:
| |
Collapse
|
26
|
Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:349-57. [PMID: 22705024 DOI: 10.1016/j.pbi.2012.05.006] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 05/15/2012] [Accepted: 05/23/2012] [Indexed: 05/18/2023]
Abstract
A key feature of innate immunity is the ability to recognize and respond to potential pathogens in a highly sensitive and specific manner. In plants, the activation of pattern recognition receptors (PRRs) by pathogen-associated molecular patterns (PAMPs) elicits a defense programme known as PAMP-triggered immunity (PTI). Although only a handful of PAMP-PRR pairs have been defined, all known PRRs are modular transmembrane proteins containing ligand-binding ectodomains. It is becoming clear that PRRs do not act alone but rather function as part of multi-protein complexes at the plasma membrane. Recent studies describing the molecular interactions and protein modifications that occur between PRRs and their regulatory proteins have provided important mechanistic insight into how plants avoid infection and achieve immunity.
Collapse
|
27
|
Dardick C, Schwessinger B, Ronald P. Non-arginine-aspartate (non-RD) kinases are associated with innate immune receptors that recognize conserved microbial signatures. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:358-66. [PMID: 22658367 DOI: 10.1016/j.pbi.2012.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 05/23/2023]
Abstract
An important question in the field of plant-pathogen interactions is how the detection of pathogens is converted into an effective immune response. In recent years, substantial insight has been gained into the identities of both the plant receptors and the microbial molecules they recognize. Likewise, many of the downstream signaling proteins and transcriptions factors that activate defense responses have been characterized. However, the early molecular events that comprise 'recognition' and how defense signaling specificity is achieved are not as well understood. In this review we discuss the significance of non-arginine-aspartate (non-RD) kinases, a subclass of kinases that are often found in association with pattern recognition receptors (PRRs).
Collapse
Affiliation(s)
- Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430, United States.
| | | | | |
Collapse
|
28
|
Schwessinger B, Ronald PC. Plant innate immunity: perception of conserved microbial signatures. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:451-82. [PMID: 22404464 DOI: 10.1146/annurev-arplant-042811-105518] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants and animals sense conserved microbial signatures through receptors localized to the plasma membrane and cytoplasm. These receptors typically carry or associate with non-arginine-aspartate (non-RD) kinases that initiate complex signaling networks cumulating in robust defense responses. In plants, coregulatory receptor kinases have been identified that not only are critical for the innate immune response but also serve an essential function in other regulatory signaling pathways.
Collapse
|
29
|
Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci U S A 2011; 108:14676-81. [PMID: 21873196 DOI: 10.1073/pnas.1111771108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.
Collapse
|
30
|
Duplessis S, Hacquard S, Delaruelle C, Tisserant E, Frey P, Martin F, Kohler A. Melampsora larici-populina transcript profiling during germination and timecourse infection of poplar leaves reveals dynamic expression patterns associated with virulence and biotrophy. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:808-18. [PMID: 21644839 DOI: 10.1094/mpmi-01-11-0006] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Melampsora larici-populina is responsible for poplar leaf rust disease and causes severe epidemics in poplar plantations in Europe. The poplar rust genome has been recently sequenced and, in order to find the genetic determinants associated with its biotrophic lifestyle, we generated a whole-genome custom oligoarray and analyzed transcript profiles of M. larici-populina during the infection timecourse in poplar leaves. Different stages were investigated during the asexual development of the rust fungus, including resting and germinating urediniospores and seven in planta stages in the telial host. In total, 76% of the transcripts were detected during leaf infection as well as in urediniospores, whereas 20% were only detected in planta, including several transporters and many small secreted proteins (SSP). We focused our analysis on gene categories known to be related to plant colonization and biotrophic growth in rust pathogens, such as SSP, carbohydrate active enzymes (CAZymes), transporters, lipases, and proteases. Distinct sets of SSP transcripts were expressed all along the infection process, suggesting highly dynamic expression of candidate rust effectors. In contrast, transcripts encoding transporters and proteases were mostly expressed after 48 h postinoculation, when numerous haustoria are already formed in the leaf mesophyll until uredinia formation, supporting their role in nutrient acquisition during biotrophic growth. Finally, CAZymes and lipase transcripts were predominantly expressed at late stages of infection, highlighting their importance during sporulation.
Collapse
|