1
|
Herold L, Choi S, He SY, Zipfel C. The conserved AvrE family of bacterial effectors: functions and targets during pathogenesis. Trends Microbiol 2025; 33:184-193. [PMID: 39278787 DOI: 10.1016/j.tim.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
The AvrE family of type III secreted effectors are highly conserved among many agriculturally important phytopathogenic bacteria. Despite their critical roles in the pathogenesis of phytopathogenic bacteria, the molecular functions and virulence mechanisms of these effectors have been largely unknown. However, recent studies have identified host-interacting proteins and demonstrated that AvrE family effectors can form water-permeable channels in the plant plasma membrane (PM) to create a hydrated and nutrient-rich extracellular space (apoplast) required for disease establishment. Here, we summarize these recent discoveries and highlight open questions related to AvrE-targeted host proteins.
Collapse
Affiliation(s)
- Laura Herold
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sera Choi
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland; The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Che S, Sun C, Yang L, Zhou M, Xia L, Yan J, Jiang M, Wang J, Wang H, Zhao W, Toth I, Hu B, Guo T, Fan J. T6SS and T4SS Redundantly Secrete Effectors to Govern the Virulence and Bacterial Competition in Pectobacterium PccS1. PHYTOPATHOLOGY 2024; 114:1926-1939. [PMID: 38749069 DOI: 10.1094/phyto-11-23-0455-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single-copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either the T6SS or type IV secretion system (T4SS). This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with strains defective in the T6SS and/or T4SS confirmed that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose deposition in the course of infection. Notably, this redundant secretion mechanism between the T6SS and T4SS is believed to be the first of its kind in bacteria.
Collapse
Affiliation(s)
- Shu Che
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Chen Sun
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liuke Yang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Zhou
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyan Xia
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingyuan Yan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengyi Jiang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaju Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Wang
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
- Institute of Agricultural Science of Suzhou, Taihu Lake District, Suzhou 215155, China
| | - Wenjun Zhao
- CAIQ Center for Biosafety, Sanya 572024, China
| | - Ian Toth
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Baishi Hu
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Guo
- Southern Breeding Administrate Office of Hainan Province, Sanya 572000, China
| | - Jiaqin Fan
- Laboratory of Bacteriology, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Ben Moussa H, Pédron J, Hugouvieux-Cotte-Pattat N, Barny MA. Two species with a peculiar evolution within the genus Pectobacterium suggest adaptation to a new environmental niche. Environ Microbiol 2023; 25:2465-2480. [PMID: 37550252 DOI: 10.1111/1462-2920.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Historically, research on Soft Rot Pectobacteriacea (SRP) has focused on economically important crops and ornamentals and knowledge of these bacteria outside the plant context remains poorly investigated. Recently, two closely related species Pectobacterium aquaticum and Pectobacterium quasiaquaticum were isolated from water and have not been isolated from any plant yet. To identify the distinctive characteristics of these two species, we performed a comparative genomic analysis of 80 genomes representing 19 Pectobacterium species and performed an evolutionary reconstruction. Both water species underwent a reduction in genome size associated with a high pseudogene content. A high gene loss was predicted at the emergence of both species. Among the 199 gene families missing from both P. aquaticum and P. quasiaquaticum genomes but present in at least 80% of other Pectobacterium genomes, COG analysis identified many genes involved in nutrient transport systems. In addition, many type II secreted proteins were also missing in both species. Phenotypic analysis revealed that both species had reduced pectinolytic activity, a biofilm formation defect, were highly motile and had reduced virulence on several plants. These genomic and phenotypic data suggest that the ecological niche of P. aquaticum and P. quasiaquaticum may differ from that of other Pectobacterium species.
Collapse
Affiliation(s)
- Hajar Ben Moussa
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | - Jacques Pédron
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| | | | - Marie-Anne Barny
- Sorbonne Université, INRAE, IRD, CNRS, UPEC, UMR 7618 Institut d'Écologie et des Sciences de l'Environnement de Paris, Paris, France
| |
Collapse
|
4
|
Nomura K, Andreazza F, Cheng J, Dong K, Zhou P, He SY. Bacterial pathogens deliver water- and solute-permeable channels to plant cells. Nature 2023; 621:586-591. [PMID: 37704725 PMCID: PMC10511319 DOI: 10.1038/s41586-023-06531-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a β-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | | | - Jie Cheng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC, USA.
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
5
|
Nomura K, Andreazza F, Cheng J, Dong K, Zhou P, He SY. Bacterial pathogens deliver water/solute-permeable channels as a virulence strategy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.547699. [PMID: 37546725 PMCID: PMC10402153 DOI: 10.1101/2023.07.29.547699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Many animal and plant pathogenic bacteria utilize a type III secretion system to deliver effector proteins into the host cell 1,2 . Elucidation of how these effector proteins function in the host cell is critical for understanding infectious diseases in animals and plants 3-5 . The widely conserved AvrE/DspE-family effectors play a central role in the pathogenesis of diverse phytopathogenic bacteria 6 . These conserved effectors are involved in the induction of "water-soaking" and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE/DspE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE/DspE-family effectors fold into a β-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in (i) inward and outward currents, (ii) permeability to water and (iii) osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine (PAMAM) dendrimers as inhibitors of the DspE/AvrE channels. Remarkably, PAMAMs broadly inhibit AvrE/DspE virulence activities in Xenopus oocytes and during Erwinia amylovora and Pseudomonas syringae infections. Thus, we have unraveled the enigmatic function of a centrally important family of bacterial effectors with significant conceptual and practical implications in the study of bacterial pathogenesis.
Collapse
Affiliation(s)
- Kinya Nomura
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | | | - Jie Cheng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ke Dong
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pei Zhou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Yang He
- Department of Biology, Duke University, Durham, NC 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
6
|
Kvitko BH, Collmer A. Discovery of the Hrp Type III Secretion System in Phytopathogenic Bacteria: How Investigation of Hypersensitive Cell Death in Plants Led to a Novel Protein Injector System and a World of Inter-Organismal Molecular Interactions Within Plant Cells. PHYTOPATHOLOGY 2023; 113:626-636. [PMID: 37099273 DOI: 10.1094/phyto-08-22-0292-kd] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In the early 1960s, Pseudomonas syringae and other host-specific phytopathogenic proteobacteria were discovered to elicit a rapid, resistance-associated death when infiltrated at high inoculum levels into nonhost tobacco leaves. This hypersensitive reaction (or response; HR) was a useful indicator of basic pathogenic ability. Research over the next 20 years failed to identify an elicitor of the HR but revealed that its elicitation required contact between metabolically active bacterial and plant cells. Beginning in the early 1980s, molecular genetic tools were applied to the HR puzzle, revealing the presence in P. syringae of clusters of hrp genes, so named because they are required for the HR and pathogenicity, and of avr genes, so named because their presence confers HR-associated avirulence in resistant cultivars of a host plant species. A series of breakthroughs over the next two decades revealed that (i) hrp gene clusters encode a type III secretion system (T3SS), which injects Avr (now "effector") proteins into plant cells, where their recognition triggers the HR; (ii) T3SSs, which are typically present in pathogenicity islands acquired by horizontal gene transfers, are found in many bacterial pathogens of plants and animals and inject many effector proteins, which are collectively essential for pathogenicity; and (iii) a primary function of phytopathogen effectors is to subvert non-HR defenses resulting from recognition of conserved microbial features presented outside of plant cells. In the 2000s, Hrp system research shifted to extracellular components enabling effector delivery across plant cell walls and plasma membranes, regulation, and tools for studying effectors. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Brian H Kvitko
- Department of Plant Pathology, University of Georgia, 120 Carlton St., Athens, GA 30602
| | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 334 Plant Science Bldg., Ithaca, NY 14853
| |
Collapse
|
7
|
Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Semin Cell Dev Biol 2023; 148-149:33-41. [PMID: 36621443 DOI: 10.1016/j.semcdb.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.
Collapse
|
8
|
Hadizadeh I, Peivastegan B, Wang J, Sipari N, Nielsen KL, Pirhonen M. Gene expression and phytohormone levels in the asymptomatic and symptomatic phases of infection in potato tubers inoculated with Dickeya solani. PLoS One 2022; 17:e0273481. [PMID: 36037153 PMCID: PMC9423618 DOI: 10.1371/journal.pone.0273481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Dickeya solani is a soft rot bacterium with high virulence. In potato, D. solani, like the other potato-infecting soft rot bacteria, causes rotting and wilting of the stems and rotting of tubers in the field and in storage. Latent, asymptomatic infections of potato tubers are common in harvested tubers, and if the storage conditions are not optimal, the latent infection turns into active rotting. We characterized potato gene expression in artificially inoculated tubers in nonsymptomatic, early infections 1 and 24 hours post-inoculation (hpi) and compared the results to the response in symptomatic tuber tissue 1 week (168 hpi) later with RNA-Seq. In the beginning of the infection, potato tubers expressed genes involved in the detection of the bacterium through pathogen-associated molecular patterns (PAMPs), which induced genes involved in PAMPs-triggered immunity, resistance, production of pathogenesis-related proteins, ROS, secondary metabolites and salicylic acid (SA) and jasmonic acid (JA) biosynthesis and signaling genes. In the symptomatic tuber tissue one week later, the PAMPs-triggered gene expression was downregulated, whereas primary metabolism was affected, most likely leading to free sugars fueling plant defense but possibly also aiding the growth of the pathogen. In the symptomatic tubers, pectic enzymes and cell wall-based defenses were activated. Measurement of hormone production revealed increased SA concentration and almost no JA in the asymptomatic tubers at the beginning of the infection and high level of JA and reduced SA in the symptomatic tubers one week later. These findings suggest that potato tubers rely on different defense strategies in the different phases of D. solani infection even when the infection takes place in fully susceptible plants incubated in conditions leading to rotting. These results support the idea that D. solani is a biotroph rather than a true necrotroph.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Hebei, China
| | - Nina Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| | | | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
9
|
Effects of Natural Rheum tanguticum on the Cell Wall Integrity of Resistant Phytopathogenic Pectobacterium carotovorum subsp. Carotovorum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165291. [PMID: 36014529 PMCID: PMC9414576 DOI: 10.3390/molecules27165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022]
Abstract
The abuse of agricultural antibiotics has led to the emergence of drug-resistant phytopathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer (FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed, which was also consistent with the morphological tests. In addition, from the downregulated flagellar motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used to attenuate the virulence of the drug-resistant phytopathogenic bacteria.
Collapse
|
10
|
Ji W, Zhao M, Fei N, Yang L, Qiao P, Walcott R, Yang Y, Zhao T. Essential Acidovorax citrulli Virulence Gene hrpE Activates Host Immune Response against Pathogen. Int J Mol Sci 2022; 23:ijms23169144. [PMID: 36012409 PMCID: PMC9409176 DOI: 10.3390/ijms23169144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli (Ac) is a devastating watermelon disease that severely impacts the global watermelon industry. Like other Gram-negative bacteria, the type three secretion system (T3SS) is the main pathogenicity factor of A. citrulli. The T3SS apparatus gene hrpE codes for the Hrp pilus and serves as a conduit to secret effector proteins into host cells. In this study, we found that the deletion of hrpE in A. citrulli results in the loss of pathogenicity on hosts and the hypersensitive response on non-hosts. In addition, the A. citrulli hrpE mutant showed a reduction in in vitro growth, in planta colonization, swimming and twitching motility, and displayed increases in biofilm formation ability compared to the wild type. However, when HrpE was transiently expressed in hosts, the defense responses, including reactive oxygen species bursts, callose deposition, and expression of defense-related genes, were activated. Thus, the A. Citrulli growth in HrpE-pretreated hosts was suppressed. These results indicated that HrpE is essential for A. citrulli virulence but can also be used by hosts to help resist A. citrulli. Our findings provide a better understanding of the T3SS pathogenesis in A. citrulli, thus providing a molecular basis for biopesticide development, and facilitating the effective control of BFB.
Collapse
Affiliation(s)
- Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Nuoya Fei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| |
Collapse
|
11
|
Zhou J, Hu M, Hu A, Li C, Ren X, Tao M, Xue Y, Chen S, Tang C, Xu Y, Zhang L, Zhou X. Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. FRONTIERS IN PLANT SCIENCE 2022; 13:852750. [PMID: 35557713 PMCID: PMC9088014 DOI: 10.3389/fpls.2022.852750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Ren
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Min Tao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chongzhi Tang
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
| | - Yiwu Xu
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
- Qingyuan Agricultural Science and Technology Service Co., Ltd., Qingyuan, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a bacterial pathogen of maize. Cell Host Microbe 2022; 30:502-517.e4. [PMID: 35421350 DOI: 10.1016/j.chom.2022.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Plant pathogens perturb their hosts to create environments suitable for their proliferation, including the suppression of immunity and promotion of water and nutrient availability. Although necrotrophs obtain water and nutrients by disrupting host-cell integrity, it is unknown whether hemibiotrophs, such as the bacterial pathogen Pantoea stewartii subsp. stewartii (Pnss), actively liberate water and nutrients during the early, biotrophic phase of infection. Here, we show that water and metabolite accumulation in the apoplast of Pnss-infected maize leaves precedes the disruption of host-cell integrity. Nutrient acquisition during this biotrophic phase is a dynamic process; the partitioning of metabolites into the apoplast rate limiting for their assimilation by proliferating Pnss cells. The formation of a hydrated and nutritive apoplast is driven by an AvrE-family type III effector, WtsE. Given the broad distribution of AvrE-family effectors, this work highlights the importance of actively acquiring water and nutrients for the proliferation of phytopathogenic bacteria during biotrophy.
Collapse
|
13
|
Mallick T, Mishra R, Mohanty S, Joshi RK. Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features. THE PLANT PATHOLOGY JOURNAL 2022; 38:102-114. [PMID: 35385916 PMCID: PMC9343900 DOI: 10.5423/ppj.oa.12.2021.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.
Collapse
Affiliation(s)
- Tista Mallick
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 751022, Odisha, India
| | - Sasmita Mohanty
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| |
Collapse
|
14
|
Arif M, Czajkowski R, Chapman TA. Editorial: Genome-Wide Analyses of Pectobacterium and Dickeya Species. FRONTIERS IN PLANT SCIENCE 2022; 13:855262. [PMID: 35317016 PMCID: PMC8934395 DOI: 10.3389/fpls.2022.855262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Robert Czajkowski
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdansk, Gdańsk, Poland
| | - Toni A. Chapman
- Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW, Australia
| |
Collapse
|
15
|
Olawole OI, Liu Q, Chen C, Gleason ML, Beattie GA. The Contributions to Virulence of the Effectors Eop1 and DspE Differ Between Two Clades of Erwinia tracheiphila Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1399-1408. [PMID: 34505816 DOI: 10.1094/mpmi-06-21-0149-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strains of Erwinia tracheiphila, causal agent of bacterial wilt of cucurbits, are divided into distinct clades. Et-melo clade strains wilt Cucumis spp. but not Cucurbita spp., thus exhibiting host specificity, whereas Et-C1 clade strains wilt Cucurbita spp. more rapidly than Cucumis melo, thus exhibiting a host preference. This study investigated the contribution of the effector proteins Eop1 and DspE to E. tracheiphila pathogenicity and host adaptation. Loss of eop1 did not enable Et-melo strains to infect squash (Cucurbita pepo) or an Et-C1 strain to induce a more rapid wilt of muskmelon (Cucumis melo), indicating that Eop1 did not function in host specificity or preference as in the related pathogen E. amylovora. However, overexpression of eop1 from Et-melo strain MDCuke but not from Et-C1 strain BHKY increased the virulence of a BHKY eop1 deletion mutant on muskmelon, demonstrating that the Eop1 variants in the two clades are distinct in their virulence functions. Loss of dspE from Et-melo strains reduced but did not eliminate virulence on hosts muskmelon and cucumber, whereas loss of dspE from an Et-C1 strain eliminated pathogenicity on hosts squash, muskmelon, and cucumber. Thus, the centrality of DspE to virulence differs in the two clades. Et-melo mutants lacking the chaperone DspF exhibited similar virulence to mutants lacking DspE, indicating that DspF is the sole chaperone for DspE in E. tracheiphila, unlike in E. amylovora. Collectively, these results provide the first functional evaluation of effectors in E. tracheiphila and demonstrate clade-specific differences in the roles of Eop1 and DspE.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Olakunle I Olawole
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Qian Liu
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Chiliang Chen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Mark L Gleason
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, U.S.A
| |
Collapse
|
16
|
Petrova O, Parfirova O, Gogolev Y, Gorshkov V. Stringent Response in Bacteria and Plants with Infection. PHYTOPATHOLOGY 2021; 111:1811-1817. [PMID: 34296953 DOI: 10.1094/phyto-11-20-0510-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stringent response (SR), a primary stress reaction in bacteria and plant chloroplasts, is a molecular switch that provides operational stress-induced reprogramming of transcription under conditions of abiotic and biotic stress. Because the infection is a stressful situation for both partners (the host plant and the pathogen), we analyzed the expression of bacterial and plastid SR-related genes during plant-microbial interaction. In the phytopathogenic bacterium Pectobacterium atrosepticum, SpoT-dependent SR was induced after contact with potato or tobacco plants. In plants, two different scenarios of molecular events developed under bacterial infection. Plastid SR was not induced in the host plant potato Solanum tuberosum, which co-evolved with the pathogen for a long time. In this case, the salicylic acid defense pathway was activated and plants were more resistant to bacterial infection. SR was activated in the tobacco Nicotiana tabacum (experimental host) along with activation of jasmonic acid-related genes, resulting in plant death. These results are important to more fully understand the evolutionary interactions between plants and symbionts/pathogens.
Collapse
Affiliation(s)
- Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Olga Parfirova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Yuri Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of Russian Academy of Sciences, Kazan 420111, Russian Federation
| |
Collapse
|
17
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|
18
|
A Re-evaluation of the Taxonomy and Classification of the Type III Secretion System in a Pathogenic Bacterium Causing Soft Rot Disease of Pleurotus eryngii. Curr Microbiol 2020; 78:179-189. [PMID: 33123750 DOI: 10.1007/s00284-020-02253-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Pantoea beijingensis, a gram-negative pathogenic bacterium, causes soft rot disease in the fungus Pleurotus eryngii in China. However, the taxonomic classification of this pathogen is controversial due to close relationships between bacteria of the genera Pantoea and Erwinia. This study aimed to resolve the identity of P. beijingensis using phylogenomic and systematic analyses of Pantoea and Erwinia by whole-genome sequencing. Single-copy orthologs identified from the Erwinia/Pantoea core genomes were used to delineate Erwinia/Pantoea phylogeny. P. beijingensis LMG27579T clustered within a single Erwinia clade. A whole-genome-based phylogenetic tree and average nucleotide and amino-acid identity values indicate that P. beijingensis LMG27579T should be renamed Erwinia beijingensis. The hrp/hrc genes encoding type III secretion system (T3SS) proteins in Erwinia and Pantoea were divided into five groups according to gene contents and organization. Neighbor-joining-inferred phylogenetic trees based on concatenated HrcU, HrcN, and HrcR in the main hrp/hrc cluster showed that E. beijingensis T3SS proteins are closely related to those in Ewingella americana, implying that E. beijingensis and E. americana have a recent common hrp/hrc gene ancestor. Furthermore, T3SS proteins of Erwinia and Pantoea were clustered in different clades separated by other bacterial T3SS proteins. Thus, T3SS genes in Pantoea and Erwinia strains might have been acquired by horizontal gene transfer. Overall, our findings clarify the taxonomy of the bacterium causing soft rot in P. eryngii, as well as the genetic structure and classification of the hrp/hrc T3SS virulence factor. We propose that T3SS acquisition is important for E. beijingensis emergence and pathogenesis.
Collapse
|
19
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
20
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
21
|
Cui Z, Yang CH, Kharadi RR, Yuan X, Sundin GW, Triplett LR, Wang J, Zeng Q. Cell-length heterogeneity: a population-level solution to growth/virulence trade-offs in the plant pathogen Dickeya dadantii. PLoS Pathog 2019; 15:e1007703. [PMID: 31381590 PMCID: PMC6695200 DOI: 10.1371/journal.ppat.1007703] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/15/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022] Open
Abstract
Necrotrophic plant pathogens acquire nutrients from dead plant cells, which requires the disintegration of the plant cell wall and tissue structures by the pathogen. Infected plants lose tissue integrity and functional immunity as a result, exposing the nutrient rich, decayed tissues to the environment. One challenge for the necrotrophs to successfully cause secondary infection (infection spread from an initially infected plant to the nearby uninfected plants) is to effectively utilize nutrients released from hosts towards building up a large population before other saprophytes come. In this study, we observed that the necrotrophic pathogen Dickeya dadantii exhibited heterogeneity in bacterial cell length in an isogenic population during infection of potato tuber. While some cells were regular rod-shape (<10μm), the rest elongated into filamentous cells (>10μm). Short cells tended to occur at the interface of healthy and diseased tissues, during the early stage of infection when active attacking and killing is occurring, while filamentous cells tended to form at a later stage of infection. Short cells expressed all necessary virulence factors and motility, whereas filamentous cells did not engage in virulence, were non-mobile and more sensitive to environmental stress. However, compared to the short cells, the filamentous cells displayed upregulated metabolic genes and increased growth, which may benefit the pathogens to build up a large population necessary for the secondary infection. The segregation of the two subpopulations was dependent on differential production of the alarmone guanosine tetraphosphate (ppGpp). When exposed to fresh tuber tissues or freestanding water, filamentous cells quickly transformed to short virulent cells. The pathogen adaptation of cell length heterogeneity identified in this study presents a model for how some necrotrophs balance virulence and vegetative growth to maximize fitness during infection. Virulence and vegetative growth are two distinct lifestyles in pathogenic bacteria. Although virulence factors are critical for pathogens to successfully cause infections, producing these factors is costly and imposes growth penalty to the pathogen. Although each single bacterial cell exists in one lifestyle or the other at any moment, we demonstrated in this study that a bacterial population could accomplish the two functions simultaneously by maintaining subpopulations of cells in each of the two lifestyles. During the invasion of potato tuber, the soft rot pathogen Dickeya dadantii formed two distinct subpopulations characterized by their cell morphology. The population consisting of short cells actively produced virulence factors to break down host tissues, whereas the other population, consisting of filamentous cells, was only engaged in vegetative growth and was non-virulent. We hypothesize that this phenotypic heterogeneity allows D. dadantii to break down plant tissues and release nutrients, while efficiently utilizing nutrients needed to build up a large pathogen population at the same time. Our study provides insights into how phenotypic heterogeneity could grant bacteria abilities to “multi-task” distinct functions as a population.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Roshni R. Kharadi
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Lindsay R. Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Jie Wang
- Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
22
|
Liu M, Wu F, Wang S, Lu Y, Chen X, Wang Y, Gu A, Zhao J, Shen S. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. HORTICULTURE RESEARCH 2019; 6:68. [PMID: 31231526 PMCID: PMC6544662 DOI: 10.1038/s41438-019-0149-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 05/20/2023]
Abstract
Pectobacterium carotovorum ssp. carotovorum (Pcc) is a necrotrophic bacterial species that causes soft rot disease in Chinese cabbage. In this study, plants harboring the resistant mutant sr gene, which confers resistance against Pcc, were screened from an 800 M2 population mutated by ethyl methane sulfonate (EMS) and scored in vitro and in vivo for lesion size. The transcript profiles showed ~512 differentially expressed genes (DEGs) between sr and WT plants occurring between 6 and 12 h postinoculation (hpi), which corresponded to the important defense regulation period (resistance) to Pcc in Chinese cabbage. The downstream defense genes (CPK, CML, RBOH MPK3, and MPK4) of pathogen pattern-triggered immunity (PTI) were strongly activated during infection at 12 hpi in resistant mutant sr; PTI appears to be central to plant defense against Pcc via recognition by three putative pattern recognition receptors (PRRs; BrLYM1-BrCERK1, BrBKK1/SERK4-PEPR1, BrWAKs). Pcc triggered the upregulation of the jasmonic acid (JA) and ethylene (ET) biosynthesis genes in mutant sr, but auxins and other hormones may have affected some negative signals. Endogenous hormones (auxins, JAs, and SA), as well as exogenous auxins (MEJA and BTH), were also verified as functioning in the immune system. Concurrently, the expression of glucosinolate and lignin biosynthesis genes was increased at 12 hpi in resistant mutant sr, and the accumulation of glucosinolate and lignin also indicated that these genes have a functional defensive role against Pcc. Our study provides valuable information and elucidates the resistance mechanism of Chinese cabbage against Pcc infection.
Collapse
Affiliation(s)
- Mengyang Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Fang Wu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shan Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| |
Collapse
|
23
|
Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1166-1178. [PMID: 30198820 DOI: 10.1094/mpmi-12-17-0303-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.
Collapse
Affiliation(s)
- Chunting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Pu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangying Lou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zishu Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Cui Z, Yuan X, Yang CH, Huntley RB, Sun W, Wang J, Sundin GW, Zeng Q. Development of a Method to Monitor Gene Expression in Single Bacterial Cells During the Interaction With Plants and Use to Study the Expression of the Type III Secretion System in Single Cells of Dickeya dadantii in Potato. Front Microbiol 2018; 9:1429. [PMID: 30002651 PMCID: PMC6031750 DOI: 10.3389/fmicb.2018.01429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/11/2018] [Indexed: 12/20/2022] Open
Abstract
Dickeya dadantii is a bacterial plant pathogen that causes soft rot disease on a wide range of host plants. The type III secretion system (T3SS) is an important virulence factor in D. dadantii. Expression of the T3SS is induced in the plant apoplast or in hrp-inducing minimal medium (hrp-MM), and is repressed in nutrient-rich media. Despite the understanding of induction conditions, how individual cells in a clonal bacterial population respond to these conditions and modulate T3SS expression is not well understood. In our previous study, we reported that in a clonal population, only a small proportion of bacteria highly expressed T3SS genes while the majority of the population did not express T3SS genes under hrp-MM condition. In this study, we developed a method that enabled in situ observation and quantification of gene expression in single bacterial cells in planta. Using this technique, we observed that the expression of the T3SS genes hrpA and hrpN is restricted to a small proportion of D. dadantii cells during the infection of potato. We also report that the expression of T3SS genes is higher at early stages of infection compared to later stages. This expression modulation is achieved through adjusting the ratio of T3SS ON and T3SS OFF cells and the expression intensity of T3SS ON cells. Our findings not only shed light into how bacteria use a bi-stable gene expression manner to modulate an important virulence factor, but also provide a useful tool to study gene expression in individual bacterial cells in planta.
Collapse
Affiliation(s)
- Zhouqi Cui
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Xiaochen Yuan
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Regan B. Huntley
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangzhou, China
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - George W. Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Quan Zeng
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
25
|
Expert D, Patrit O, Shevchik VE, Perino C, Boucher V, Creze C, Wenes E, Fagard M. Dickeya dadantii pectic enzymes necessary for virulence are also responsible for activation of the Arabidopsis thaliana innate immune system. MOLECULAR PLANT PATHOLOGY 2018; 19:313-327. [PMID: 27925401 PMCID: PMC6638122 DOI: 10.1111/mpp.12522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
Soft-rot diseases of plants attributed to Dickeya dadantii result from lysis of the plant cell wall caused by pectic enzymes released by the bacterial cell by a type II secretion system (T2SS). Arabidopsis thaliana can express several lines of defence against this bacterium. We employed bacterial mutants with defective envelope structures or secreted proteins to examine early plant defence reactions. We focused on the production of AtrbohD-dependent reactive oxygen species (ROS), callose deposition and cell death as indicators of these reactions. We observed a significant reduction in ROS and callose formation with a bacterial mutant in which genes encoding five pectate lyases (Pels) were disrupted. Treatment of plant leaves with bacterial culture filtrates containing Pels resulted in ROS and callose production, and both reactions were dependent on a functional AtrbohD gene. ROS and callose were produced in response to treatment with a cellular fraction of a T2SS-negative mutant grown in a Pels-inducing medium. Finally, ROS and callose were produced in leaves treated with purified Pels that had also been shown to induce the expression of jasmonic acid-dependent defence genes. Pel catalytic activity is required for the induction of ROS accumulation. In contrast, cell death observed in leaves infected with the wild-type strain appeared to be independent of a functional AtrbohD gene. It was also independent of the bacterial production of pectic enzymes and the type III secretion system (T3SS). In conclusion, the work presented here shows that D. dadantii is recognized by the A. thaliana innate immune system through the action of pectic enzymes secreted by bacteria at the site of infection. This recognition leads to AtrbohD-dependent ROS and callose accumulation, but not cell death.
Collapse
Affiliation(s)
- Dominique Expert
- Laboratoire Interactions Plantes–PathogènesInstitut National de la Recherche Agronomique/AgroParisTech/Université Pierre et Marie Curie, 16 rue Claude Bernard 75231Cedex 05 ParisFrance
- lnstitut Jean‐Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique, AgroParisTech, ERL3559 Centre National de la Recherche Scientifique, Université Paris‐Saclay, RD1078026Versailles CedexFrance
| | - Oriane Patrit
- Laboratoire Interactions Plantes–PathogènesInstitut National de la Recherche Agronomique/AgroParisTech/Université Pierre et Marie Curie, 16 rue Claude Bernard 75231Cedex 05 ParisFrance
| | - Vladimir E. Shevchik
- Université Claude Bernard Lyon 1, F‐69622 Villeurbanne, France; INSA‐Lyon, F‐69621 Villeurbanne, France; CNRS UMR5240 Microbiologie, Adaptation et PathogénieF‐69622 VilleurbanneFrance
| | - Claude Perino
- Laboratoire Interactions Plantes–PathogènesInstitut National de la Recherche Agronomique/AgroParisTech/Université Pierre et Marie Curie, 16 rue Claude Bernard 75231Cedex 05 ParisFrance
| | - Virginie Boucher
- Laboratoire Interactions Plantes–PathogènesInstitut National de la Recherche Agronomique/AgroParisTech/Université Pierre et Marie Curie, 16 rue Claude Bernard 75231Cedex 05 ParisFrance
- Present address:
Ecole Normale SupérieureInstitut de Biologie de l'ENS IBENS75005ParisFrance
| | - Christophe Creze
- Bases of Infectious Diseases, CNRS, UMR 5086F‐69367Lyon Cedex 07France
| | - Estelle Wenes
- lnstitut Jean‐Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique, AgroParisTech, ERL3559 Centre National de la Recherche Scientifique, Université Paris‐Saclay, RD1078026Versailles CedexFrance
| | - Mathilde Fagard
- lnstitut Jean‐Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique, AgroParisTech, ERL3559 Centre National de la Recherche Scientifique, Université Paris‐Saclay, RD1078026Versailles CedexFrance
| |
Collapse
|
26
|
Du Y, Overdijk EJR, Berg JA, Govers F, Bouwmeester K. Solanaceous exocyst subunits are involved in immunity to diverse plant pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:655-666. [PMID: 29329405 PMCID: PMC5853398 DOI: 10.1093/jxb/erx442] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/04/2017] [Indexed: 05/28/2023]
Abstract
The exocyst, a multiprotein complex consisting of eight subunits, plays an essential role in many biological processes by mediating secretion of post-Golgi-derived vesicles towards the plasma membrane. In recent years, roles for plant exocyst subunits in pathogen defence have been uncovered, largely based on studies in the model plant Arabidopsis. Only a few studies have been undertaken to assign the role of exocyst subunits in plant defence in other plants species, including crops. In this study, predicted protein sequences from exocyst subunits were retrieved by mining databases from the Solanaceous plants Nicotiana benthamiana, tomato, and potato. Subsequently, their evolutionary relationship with Arabidopsis exocyst subunits was analysed. Gene silencing in N. benthamiana showed that several exocyst subunits are required for proper plant defence against the (hemi-)biotrophic plant pathogens Phytophthora infestans and Pseudomonas syringae. In contrast, some exocyst subunits seem to act as susceptibility factors for the necrotrophic pathogen Botrytis cinerea. Furthermore, the majority of the exocyst subunits were found to be involved in callose deposition, suggesting that they play a role in basal plant defence. This study provides insight into the evolution of exocyst subunits in Solanaceous plants and is the first to show their role in immunity against multiple unrelated pathogens.
Collapse
Affiliation(s)
- Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Elysa J R Overdijk
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Cell Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen A Berg
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Burns JL, Jariwala PB, Rivera S, Fontaine BM, Briggs L, Weinert EE. Oxygen-Dependent Globin Coupled Sensor Signaling Modulates Motility and Virulence of the Plant Pathogen Pectobacterium carotovorum. ACS Chem Biol 2017; 12:2070-2077. [PMID: 28612602 DOI: 10.1021/acschembio.7b00380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial pathogens utilize numerous signals to identify the presence of their host and coordinate changes in gene expression that allow for infection. Within plant pathogens, these signals typically include small molecules and/or proteins from their plant hosts and bacterial quorum sensing molecules to ensure sufficient bacterial cell density for successful infection. In addition, bacteria use environmental signals to identify conditions when the host defenses are weakened and potentially to signal entry into an appropriate host/niche for infection. A globin coupled sensor protein (GCS), termed PccGCS, within the soft rot bacterium Pectobacterium carotovorum ssp. carotovorum WPP14 has been identified as an O2 sensor and demonstrated to alter virulence factor excretion and control motility, with deletion of PccGCS resulting in decreased rotting of a potato host. Using small molecules that modulate bacterial growth and quorum sensing, PccGCS signaling also has been shown to modulate quorum sensing pathways, resulting in the PccGCS deletion strain being more sensitive to plant-derived phenolic acids, which can function as quorum sensing inhibitors, and exhibiting increased N-acylhomoserine lactone (AHL) production. These findings highlight a role for GCS proteins in controlling key O2-dependent phenotypes of pathogenic bacteria and suggest that modulating GCS signaling to limit P. carotovorum motility may provide a means to decrease rotting of plant hosts.
Collapse
Affiliation(s)
- Justin L. Burns
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Parth B. Jariwala
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Shannon Rivera
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Benjamin M. Fontaine
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Laura Briggs
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| | - Emily E. Weinert
- Department of Chemistry, Emory University, 1515
Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
28
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
29
|
Jin L, Ham JH, Hage R, Zhao W, Soto-Hernández J, Lee SY, Paek SM, Kim MG, Boone C, Coplin DL, Mackey D. Direct and Indirect Targeting of PP2A by Conserved Bacterial Type-III Effector Proteins. PLoS Pathog 2016; 12:e1005609. [PMID: 27191168 PMCID: PMC4871590 DOI: 10.1371/journal.ppat.1005609] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
Bacterial AvrE-family Type-III effector proteins (T3Es) contribute significantly to the virulence of plant-pathogenic species of Pseudomonas, Pantoea, Ralstonia, Erwinia, Dickeya and Pectobacterium, with hosts ranging from monocots to dicots. However, the mode of action of AvrE-family T3Es remains enigmatic, due in large part to their toxicity when expressed in plant or yeast cells. To search for targets of WtsE, an AvrE-family T3E from the maize pathogen Pantoea stewartii subsp. stewartii, we employed a yeast-two-hybrid screen with non-lethal fragments of WtsE and a synthetic genetic array with full-length WtsE. Together these screens indicate that WtsE targets maize protein phosphatase 2A (PP2A) heterotrimeric enzyme complexes via direct interaction with B' regulatory subunits. AvrE1, another AvrE-family T3E from Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), associates with specific PP2A B' subunit proteins from its susceptible host Arabidopsis that are homologous to the maize B' subunits shown to interact with WtsE. Additionally, AvrE1 was observed to associate with the WtsE-interacting maize proteins, indicating that PP2A B' subunits are likely conserved targets of AvrE-family T3Es. Notably, the ability of AvrE1 to promote bacterial growth and/or suppress callose deposition was compromised in Arabidopsis plants with mutations of PP2A genes. Also, chemical inhibition of PP2A activity blocked the virulence activity of both WtsE and AvrE1 in planta. The function of HopM1, a Pto DC3000 T3E that is functionally redundant to AvrE1, was also impaired in specific PP2A mutant lines, although no direct interaction with B' subunits was observed. These results indicate that sub-component specific PP2A complexes are targeted by bacterial T3Es, including direct targeting by members of the widely conserved AvrE-family.
Collapse
Affiliation(s)
- Lin Jin
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jong Hyun Ham
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Rosemary Hage
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Wanying Zhao
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Jaricelis Soto-Hernández
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21Plus), PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Seung-Mann Paek
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University, Jinju daero, Jinju, Republic of Korea
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David L. Coplin
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, United States of America
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
30
|
Degrave A, Siamer S, Boureau T, Barny MA. The AvrE superfamily: ancestral type III effectors involved in suppression of pathogen-associated molecular pattern-triggered immunity. MOLECULAR PLANT PATHOLOGY 2015; 16:899-905. [PMID: 25640649 PMCID: PMC6638435 DOI: 10.1111/mpp.12237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The AvrE superfamily of type III effectors (T3Es) is widespread among type III-dependent phytobacteria and plays a crucial role during bacterial pathogenesis. Members of the AvrE superfamily are vertically inherited core effectors, indicating an ancestral acquisition of these effectors in bacterial plant pathogens. AvrE-T3Es contribute significantly to virulence by suppressing pathogen-associated molecular pattern (PAMP)-triggered immunity. They inhibit salicylic acid-mediated plant defences, interfere with vesicular trafficking and promote bacterial growth in planta. AvrE-T3Es elicit cell death in both host and non-host plants independent of any known plant resistance protein, suggesting an original interaction with the plant immune system. Recent studies in yeast have indicated that they activate protein phosphatase 2A and inhibit serine palmitoyl transferase, the first enzyme of the sphingolipid biosynthesis pathway. In this review, we describe the current picture that has emerged from studies of the different members of this fascinating large family.
Collapse
Affiliation(s)
- Alexandre Degrave
- AgroCampus-Ouest, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS), 49045, Angers, France
- UMR1345, IRHS, Institut National de la Recherche Agronomique (INRA), 49071, Beaucouzé, France
| | - Sabrina Siamer
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Tristan Boureau
- UMR1345, IRHS, Institut National de la Recherche Agronomique (INRA), 49071, Beaucouzé, France
- UMR1345, IRHS, Université d'Angers, SFR 4207 QUASAV, PRES l'UNAM, 49045, Angers, France
| | - Marie-Anne Barny
- UMR1392, INRA, Institut d'Ecologie et des Sciences de l'Environnement, Université Pierre et Marie Curie (UPMC), Bât á 7ème Etage Case 237, 7 Quai St.-Bernard, 75252, Paris, France
| |
Collapse
|
31
|
Cook DE, Mesarich CH, Thomma BPHJ. Understanding plant immunity as a surveillance system to detect invasion. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:541-63. [PMID: 26047564 DOI: 10.1146/annurev-phyto-080614-120114] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.
Collapse
Affiliation(s)
- David E Cook
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands; ,
| | | | | |
Collapse
|
32
|
Huang PY, Yeh YH, Liu AC, Cheng CP, Zimmerli L. The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:243-55. [PMID: 24844677 DOI: 10.1111/tpj.12557] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 05/27/2023]
Abstract
Pattern-triggered immunity (PTI) is broad spectrum and manipulation of PTI is believed to represent an attractive way to engineer plants with broad-spectrum disease resistance. PTI is activated upon perception of microbe-associated molecular patterns (MAMPs) by pattern-recognition receptors (PRRs). We have recently demonstrated that the L-type lectin receptor kinase-VI.2 (LecRK-VI.2) positively regulates Arabidopsis thaliana PTI. Here we show through in vitro pull-down, bimolecular fluorescence complementation and co-immunoprecipitation analyses that LecRK-VI.2 associates with the PRR FLS2. We also demonstrated that LecRK-VI.2 from the cruciferous plant Arabidopsis remains functional after interfamily transfer to the Solanaceous plant Nicotiana benthamiana. Wild tobacco plants ectopically expressing LecRK-VI.2 were indeed more resistant to virulent hemi-biotrophic and necrotrophic bacteria, but not to the fungal pathogen Botrytis cinerea suggesting that, as with Arabidopsis, the LecRK-VI.2 protective effect in N. benthamiana is bacteria specific. Ectopic expression of LecRK-VI.2 in N. benthamiana primed PTI-mediated reactive oxygen species production, mitogen-activated protein kinase (MAPK) activity, callose deposition and gene expression upon treatment with the MAMP flagellin. Our findings identified LecRK-VI.2 as a member of the FLS2 receptor complex and suggest that heterologous expression of components of PRR complexes can be used as tools to engineer plant disease resistance to bacteria.
Collapse
Affiliation(s)
- Pin-Yao Huang
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
33
|
Gorshkov V, Daminova A, Ageeva M, Petrova O, Gogoleva N, Tarasova N, Gogolev Y. Dissociation of a population of Pectobacterium atrosepticum SCRI1043 in tobacco plants: formation of bacterial emboli and dormant cells. PROTOPLASMA 2014; 251:499-510. [PMID: 23990131 DOI: 10.1007/s00709-013-0546-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/20/2013] [Indexed: 06/02/2023]
Abstract
The population dynamics of Pectobacterium atrosepticum SCRI1043 (Pba) within tobacco plants was monitored from the time of inoculation until after long-term preservation of microorganisms in the remnants of dead plants. We found and characterised peculiar structures that totally occlude xylem vessels, which we have named bacterial emboli. Viable but non-culturable (VBN) Pba cells were identified in the remnants of dead plants, and the conditions for resuscitation of these VBN cells were established. Our investigation shows that dissociation of the integrated bacterial population during plant colonisation forms distinct subpopulations and cell morphotypes, which are likely to perform specific functions that ensure successful completion of the life cycle within the plant.
Collapse
Affiliation(s)
- Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Research Center, Russian Academy of Sciences, Lobachevsky Street 2/31, 420111, Kazan, Russia,
| | | | | | | | | | | | | |
Collapse
|
34
|
Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis. mBio 2013; 4:e00875-13. [PMID: 24281716 PMCID: PMC3870264 DOI: 10.1128/mbio.00875-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During bacterial wilt of tomato, the plant pathogen Ralstonia solanacearum upregulates expression of popS, which encodes a type III-secreted effector in the AvrE family. PopS is a core effector present in all sequenced strains in the R. solanacearum species complex. The phylogeny of popS mirrors that of the species complex as a whole, suggesting that this is an ancient, vertically inherited effector needed for association with plants. A popS mutant of R. solanacearum UW551 had reduced virulence on agriculturally important Solanum spp., including potato and tomato plants. However, the popS mutant had wild-type virulence on a weed host, Solanum dulcamara, suggesting that some species can avoid the effects of PopS. The popS mutant was also significantly delayed in colonization of tomato stems compared to the wild type. Some AvrE-type effectors from gammaproteobacteria suppress salicylic acid (SA)-mediated plant defenses, suggesting that PopS, a betaproteobacterial ortholog, has a similar function. Indeed, the popS mutant induced significantly higher expression of tomato SA-triggered pathogenesis-related (PR) genes than the wild type. Further, pretreatment of roots with SA exacerbated the popS mutant virulence defect. Finally, the popS mutant had no colonization defect on SA-deficient NahG transgenic tomato plants. Together, these results indicate that this conserved effector suppresses SA-mediated defenses in tomato roots and stems, which are R. solanacearum’s natural infection sites. Interestingly, PopS did not trigger necrosis when heterologously expressed in Nicotiana leaf tissue, unlike the AvrE homolog DspEPcc from the necrotroph Pectobacterium carotovorum subsp. carotovorum. This is consistent with the differing pathogenesis modes of necrosis-causing gammaproteobacteria and biotrophic R. solanacearum. The type III-secreted AvrE effector family is widely distributed in high-impact plant-pathogenic bacteria and is known to suppress plant defenses for virulence. We characterized the biology of PopS, the only AvrE homolog made by the bacterial wilt pathogen Ralstonia solanacearum. To our knowledge, this is the first study of R. solanacearum effector function in roots and stems, the natural infection sites of this pathogen. Unlike the functionally redundant R. solanacearum effectors studied to date, PopS is required for full virulence and wild-type colonization of two natural crop hosts. R. solanacearum is a biotrophic pathogen that causes a nonnecrotic wilt. Consistent with this, PopS suppressed plant defenses but did not elicit cell death, unlike AvrE homologs from necrosis-causing plant pathogens. We propose that AvrE family effectors have functionally diverged to adapt to the necrotic or nonnecrotic lifestyle of their respective pathogens.
Collapse
|
35
|
Davidsson PR, Kariola T, Niemi O, Palva ET. Pathogenicity of and plant immunity to soft rot pectobacteria. FRONTIERS IN PLANT SCIENCE 2013; 4:191. [PMID: 23781227 PMCID: PMC3678301 DOI: 10.3389/fpls.2013.00191] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 05/20/2023]
Abstract
Soft rot pectobacteria are broad host range enterobacterial pathogens that cause disease on a variety of plant species including the major crop potato. Pectobacteria are aggressive necrotrophs that harbor a large arsenal of plant cell wall-degrading enzymes as their primary virulence determinants. These enzymes together with additional virulence factors are employed to macerate the host tissue and promote host cell death to provide nutrients for the pathogens. In contrast to (hemi)biotrophs such as Pseudomonas, type III secretion systems (T3SS) and T3 effectors do not appear central to pathogenesis of pectobacteria. Indeed, recent genomic analysis of several Pectobacterium species including the emerging pathogen Pectobacterium wasabiae has shown that many strains lack the entire T3SS as well as the T3 effectors. Instead, this analysis has indicated the presence of novel virulence determinants. Resistance to broad host range pectobacteria is complex and does not appear to involve single resistance genes. Instead, activation of plant innate immunity systems including both SA (salicylic acid) and JA (jasmonic acid)/ET (ethylene)-mediated defenses appears to play a central role in attenuation of Pectobacterium virulence. These defenses are triggered by detection of pathogen-associated molecular patterns (PAMPs) or recognition of modified-self such as damage-associated molecular patterns (DAMPs) and result in enhancement of basal immunity (PAMP/DAMP-triggered immunity or pattern-triggered immunity, PTI). In particular plant cell wall fragments released by the action of the degradative enzymes secreted by pectobacteria are major players in enhanced immunity toward these pathogens. Most notably bacterial pectin-degrading enzymes release oligogalacturonide (OG) fragments recognized as DAMPs activating innate immune responses. Recent progress in understanding OG recognition and signaling allows novel genetic screens for OG-insensitive mutants and will provide new insights into plant defense strategies against necrotrophs such as pectobacteria.
Collapse
Affiliation(s)
| | - Tarja Kariola
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Outi Niemi
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - E. T. Palva
- Division of Genetics, Department of Biosciences, University of HelsinkiHelsinki, Finland
| |
Collapse
|
36
|
Hogan CS, Mole BM, Grant SR, Willis DK, Charkowski AO. The type III secreted effector DspE is required early in solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)D/E motifs. PLoS One 2013; 8:e65534. [PMID: 23755246 PMCID: PMC3670860 DOI: 10.1371/journal.pone.0065534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022] Open
Abstract
Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effector protein, DspE. Previously, we found that the T3SS regulator HrpL and the effector DspE are required for P. carotovorum pathogenesis on leaves. Here, we identified genes up-regulated by HrpL, visualized expression of dspE in leaves, and established that DspE causes host cell death. DspE required its full length and WxxxE-like motifs, which are characteristic of the AvrE-family effectors, for host cell death. We also examined expression in plant leaves and showed that hrpL is required for the expression of dspE and hrpN, and that the loss of a functional T3SS had unexpected effects on expression of other genes during leaf infection. These data support a model where P. carotovorum uses the T3SS early in leaf infection to initiate pathogenesis through elicitation of DspE-mediated host cell death.
Collapse
Affiliation(s)
- Clifford S. Hogan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Beth M. Mole
- Department of Biology and Curriculum in Molecular Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Grant
- Department of Biology and Curriculum in Molecular Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David K. Willis
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Vegetable Crops Research Unit, United States Department of Agriculture – Agricultural Research Service, Madison, Wisconsin, United States of America
| | - Amy O. Charkowski
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
37
|
Degrave A, Moreau M, Launay A, Barny MA, Brisset MN, Patrit O, Taconnat L, Vedel R, Fagard M. The bacterial effector DspA/E is toxic in Arabidopsis thaliana and is required for multiplication and survival of fire blight pathogen. MOLECULAR PLANT PATHOLOGY 2013; 14:506-17. [PMID: 23634775 PMCID: PMC6638835 DOI: 10.1111/mpp.12022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The type III effector DspA/E is an essential pathogenicity factor of the phytopathogenic bacterium Erwinia amylovora. We showed that DspA/E was required for transient bacterial growth in nonhost Arabidopsis thaliana leaves, as an E. amylovora dspA/E mutant was unable to grow. We expressed DspA/E in A. thaliana transgenic plants under the control of an oestradiol-inducible promoter, and found that DspA/E expressed in planta restored the growth of a dspA/E mutant. DspA/E expression in these transgenic plants led to the modulation by at least two-fold of the expression of 384 genes, mostly induced (324 genes). Both induced and repressed genes contained high proportions of defence genes. DspA/E expression ultimately resulted in plant cell death without requiring a functional salicylic acid signalling pathway. Analysis of A. thaliana transgenic seedlings expressing a green fluorescent protein (GFP):DspA/E fusion indicated that the fusion protein could only be detected in a few cells per seedling, suggesting the degradation or absence of accumulation of DspA/E in plant cells. Consistently, we found that DspA/E repressed plant protein synthesis when injected by E. amylovora or when expressed in transgenic plants. Thus, we conclude that DspA/E is toxic to A. thaliana: it promotes modifications, among which the repression of protein synthesis could be determinant in the facilitation of necrosis and bacterial growth.
Collapse
Affiliation(s)
- Alexandre Degrave
- INRA, Laboratoire des Interactions Plantes Pathogènes, UMR217 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wei HL, Chakravarthy S, Worley JN, Collmer A. Consequences of flagellin export through the type III secretion system of Pseudomonas syringae reveal a major difference in the innate immune systems of mammals and the model plant Nicotiana benthamiana. Cell Microbiol 2013; 15:601-18. [PMID: 23107228 DOI: 10.1111/cmi.12059] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/28/2012] [Accepted: 10/16/2012] [Indexed: 02/02/2023]
Abstract
Bacterial flagellin is perceived as a microbe (or pathogen)-associated molecular pattern (MAMP or PAMP) by the extracellular pattern recognition receptors, FLS2 and TLR5, of plants and mammals respectively. Flagellin accidently translocated into mammalian cells by pathogen type III secretion systems (T3SSs) is recognized by nucleotide-binding leucine-rich repeat receptor NLRC4 as a pattern of pathogenesis and induces a death-associated immune response. The non-pathogen Pseudomonas fluorescens Pf0-1, expressing a Pseudomonas syringae T3SS, and the plant pathogen P. syringae pv. tomato DC3000 were used to seek evidence of an analogous cytoplasmic recognition system for flagellin in the model plant Nicotiana benthamiana. Flagellin (FliC) was secreted in culture and translocated into plant cells by the T3SS expressed in Pf0-1 and DC3000 and in their ΔflgGHI flagellar pathway mutants. ΔfliC and ΔflgGHI mutants of Pf0-1 and DC3000 were strongly reduced in elicitation of reactive oxygen species production and in immunity induction as indicated by the ability of challenge bacteria inoculated 6 h later to translocate a type III effector-reporter and to elicit effector-triggered cell death. Agrobacterium-mediated transient expression in N. benthamiana of FliC with or without a eukaryotic export signal peptide, coupled with virus-induced gene silencing of FLS2, revealed no immune response that was not FLS2 dependent. Transiently expressed FliC from DC3000 and Pectobacterium carotovorum did notinduce cell death in N. benthamiana, tobacco or tomato leaves. Flagellin is the major Pseudomonas MAMP perceived by N. benthamiana, and although flagellin secretion through the plant cell wall by the T3SS may partially contribute to FLS2-dependent immunity, flagellin in the cytosol does not elicit immune-associated cell death. We postulate that a death response to translocated MAMPs would produce vulnerability to the many necrotrophic pathogens of plants, such as P. carotovorum, which differ from P. syringae and other (hemi)biotrophic pathogens in benefitting from death-associated immune responses.
Collapse
Affiliation(s)
- Hai-Lei Wei
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
39
|
Kwan G, Charkowski AO, Barak JD. Salmonella enterica suppresses Pectobacterium carotovorum subsp. carotovorum population and soft rot progression by acidifying the microaerophilic environment. mBio 2013; 4:e00557-12. [PMID: 23404399 PMCID: PMC3573663 DOI: 10.1128/mbio.00557-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/11/2013] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. IMPORTANCE Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal and human hosts. Their populations are higher on plants cocolonized with the common bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum, turning edible plants into a risk factor for human disease. We inoculated leaves with P. carotovorum subsp. carotovorum and S. enterica or E. coli O157:H7 to study the interactions between these bacteria. While P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7, these human pathogens affected P. carotovorum subsp. carotovorum fundamentally differently. S. enterica reduced P. carotovorum subsp. carotovorum growth and acidified the environment, leading to less soft rot on leaves; E. coli O157:H7 had no such effects. As soft rot signals a food safety risk, the reduction of soft rot symptoms in the presence of S. enterica may lead consumers to eat healthy-looking but S. enterica-contaminated produce.
Collapse
Affiliation(s)
- Grace Kwan
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
40
|
Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M, Plyusnin I, Törönen P, Holm L, Pirhonen M, Palva ET. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 2012; 8:e1003013. [PMID: 23133391 PMCID: PMC3486870 DOI: 10.1371/journal.ppat.1003013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.
Collapse
Affiliation(s)
- Johanna Nykyri
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Outi Niemi
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Patrik Koskinen
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | - Miia Pasanen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Martin Broberg
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Ilja Plyusnin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Liisa Holm
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - E. Tapio Palva
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, López Solanilla E, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Rodríguez Palenzuela P, San Francisco M, Toth I, Tsuyumu S, van der Waals J, van der Wolf J, Van Gijsegem F, Yang CH, Yedidia I. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:425-49. [PMID: 22702350 DOI: 10.1146/annurev-phyto-081211-173013] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria. They also produce and detect multiple types of small molecules to coordinate pathogenesis, modify the plant environment, attack competing microbes, and perhaps to attract insect vectors. This review integrates new information about the role protein secretion and detection and production of ions and small molecules play in soft-rot pathogenicity.
Collapse
Affiliation(s)
- Amy Charkowski
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Siamer S, Patrit O, Fagard M, Belgareh-Touzé N, Barny MA. Expressing the Erwinia amylovora type III effector DspA/E in the yeast Saccharomyces cerevisiae strongly alters cellular trafficking. FEBS Open Bio 2011; 1:23-8. [PMID: 23650572 PMCID: PMC3642059 DOI: 10.1016/j.fob.2011.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/02/2011] [Accepted: 11/03/2011] [Indexed: 11/18/2022] Open
Abstract
Erwinia amylovora is responsible for fire blight, a necrotic disease of apples and pears. E. amylovora relies on a type III secretion system (T3SS) to induce disease on host plants. DspA/E belongs to the AvrE family of type III effector. Effectors of the AvrE family are injected via the T3SS in plant cell and are important to promote bacterial growth following infection and to suppress plant defense responses. Their mode of action in the plant cells is unknown. Here we study the physiological effects induced by dspA/E expression in the yeast Saccharomyces cerevisiae. Expression of dspA/E in the yeast inhibits cell growth. This growth inhibition is associated with perturbations of the actin cytoskeleton and endocytosis.
Collapse
Affiliation(s)
- Sabrina Siamer
- INRA, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- UPMC, Université Paris VI, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- AgroParisTech, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
| | - Oriane Patrit
- INRA, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- UPMC, Université Paris VI, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- AgroParisTech, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
| | - Mathilde Fagard
- INRA, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- UPMC, Université Paris VI, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- AgroParisTech, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
| | - Naïma Belgareh-Touzé
- FRE 3354 CNRS/UPMC, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Marie-Anne Barny
- INRA, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- UPMC, Université Paris VI, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- AgroParisTech, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France
- Corresponding author at: AgroParisTech, UMR217, LIPP, 16 rue Claude Bernard, 75231 Paris cedex 05, France. Fax: +33 1 44 08 16 98.
| |
Collapse
|