1
|
Wang D, Weng H, Zhao Y, Zhou H, Guo H, Cheng H, Shen J, Yin M, Yan S, Su X. Preparation of a Fluxapyroxad Nanoformulation with Strong Plant Uptake for Efficient Control of Verticillium Wilt in Potato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7121-7130. [PMID: 40066939 DOI: 10.1021/acs.jafc.4c12450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Potato (Solanum tuberosum L.) is ranked as the fourth largest staple crop in China. However, potato production is increasingly threatened by Verticillium wilt (VW) caused by the fungus Verticillium dahliae in various provinces. In the present study, we explored the application of star polycation (SPc) nanocarrier to improve the effectiveness of the fungicide fluxapyroxad (Flu) in combating VW. The SPc self-assembled with Flu through hydrogen bonds and van der Waals forces to form the Flu/SPc complex spontaneously, which exhibited strong intermolecular interactions, as indicated by a high affinity constant and favorable thermodynamic parameters. Complexation with SPc decreased the particle size of Flu. The Flu/SPc complex had a greater effect on V. dahliae than Flu alone, reducing the colony diameter and spore numbers more effectively. Expression levels of multiple key genes involved in nitrogen, polysaccharide, and sugar metabolism were downregulated in V. dahliae upon Flu/SPc complex treatment compared to Flu treatment, which might contribute to the greater growth inhibition in Flu/SPc-treated samples. Uptake studies in potato plants demonstrated that SPc significantly enhanced the absorption of Flu compared with Flu alone. Slighter disease symptoms and lower fungal biomass in greenhouse and field trials confirmed the enhanced protective effects of the Flu/SPc complex on potato seedlings. This is the first report that a self-assembled nanofungicide limits V. dahliae growth and protects potatoes from destructive VW.
Collapse
Affiliation(s)
- Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiting Weng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yuanzheng Zhao
- Institute of Plant Protection, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiming Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Hongmei Cheng
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Meizhen Yin
- Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100093, China
| | - Xiaofeng Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
2
|
Zhang Y, Cui L, Liu R, Feng Z, Feng H, Zhou J, Zhao L, Wei F, Zhu H. In the coevolution of cotton and pathogenic fungi, resistant cotton varieties lead to an escalation in the virulence of Verticillium dahliae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117730. [PMID: 39837007 DOI: 10.1016/j.ecoenv.2025.117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/23/2025]
Abstract
Verticillium dahliae is highly prone to pathogenic differentiation and influenced by host cotton's resistance. To better understand the mechanisms of this phenomenon, we applied the host selective pressures of resistant and susceptible cotton varieties on V. dahliae strain Vd076 within an artificial cotton Verticillium wilt nursery and greenhouse. Consequently, among the offspring strains, high virulence strains exhibited higher levels of physiological characteristics and genetic diversity compared to moderate and low virulence strains. Moreover, whole genome resequencing revealed that the Ka/Ks ratio of single nucleotide polymorphism (SNPs) in the majority of the offspring strains was about 0.6, indicating an adverse selection impact in the offspring strains. Pathogenicity assays demonstrated that the virulence of the offspring strains triggered by continuous induction of disease-resistant cotton cultivar increased from the 4th generation and reached its peak by the 6th generation. Additionally, the transcriptome analysis revealed that the 4th and 6th generations of strains differentially expressed genes (DEGs) accumulated a significant number of response genes associated with pathogen pathogenicity differentiation, including the mitogen-activated protein kinase (MAPK) signaling pathway, amino and antibiotic biosynthesis, phenylpropanoid metabolism. Furthermore, VDAG_04757, VDAG_06462, VDAG_03218, and VDAG_08487 genes exhibited significant correlation with the pathogenicity of V. dahliae. Collectively, this study has significant implications for elucidating the evolution of virulence in V. dahliae induced by the host, as well as for advancing holistic strategies for preventing and managing Verticillium wilt disease.
Collapse
Affiliation(s)
- Yalin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China; Hebei Agricultural University, Hebei Research Base of State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071000, China
| | - Lifang Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Ruibing Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Heqin Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
3
|
Wang Y, Xu D, Yu B, Lian Q, Huang J. Combined Transcriptome and Metabolome Analysis Reveals That Carbon Catabolite Repression Governs Growth and Pathogenicity in Verticillium dahliae. Int J Mol Sci 2024; 25:11575. [PMID: 39519126 PMCID: PMC11546859 DOI: 10.3390/ijms252111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon catabolite repression (CCR) is a common transcriptional regulatory mechanism that microorganisms use to efficiently utilize carbon nutrients, which is critical for the fitness of microorganisms and for pathogenic species to cause infection. Here, we characterized two CCR genes, VdCreA and VdCreC, in Verticillium dahliae that cause cotton Verticillium wilt disease. The VdCreA and VdCreC knockout mutants displayed slow growth with decreased conidiation and microsclerotium production and reduced virulence to cotton, suggesting that VdCreA and VdCreC are involved in growth and pathogenicity in V. dahliae. We further generated 36 highly reliable and stable ΔVdCreA and ΔVdCreC libraries to comprehensively explore the dynamic expression of genes and metabolites when grown under different carbon sources and CCR conditions. Based on the weighted gene co-expression network analysis (WGCNA) and correlation networks, VdCreA is co-expressed with a multitude of downregulated genes. These gene networks span multiple functional pathways, among which seven genes, including PYCR (pyrroline-5-carboxylate reductase), are potential target genes of VdCreA. Different carbon source conditions triggered entirely distinct gene regulatory networks, yet they exhibited similar changes in metabolic pathways. Six genes, including 6-phosphogluconolactonase and 2-ODGH (2-oxoglutarate dehydrogenase E1), may serve as hub genes in this process. Both VdCreA and VdCreC could comprehensively influence the expression of plant cell wall-degrading enzyme (PCWDE) genes, suggesting that they have a role in pathogenicity in V. dahliae. The integrated expression profiles of the genes and metabolites involved in the glycolysis/gluconeogenesis and pentose phosphate pathways showed that the two major sugar metabolism-related pathways were completely changed, and GADP (glyceraldehyde-3-phosphate) may be a pivotal factor for CCR under different carbon sources. All these results provide a more comprehensive perspective for further analyzing the role of Cre in CCR.
Collapse
Affiliation(s)
| | | | | | - Qinggui Lian
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (Y.W.); (D.X.); (B.Y.)
| | - Jiafeng Huang
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, College of Agriculture, Shihezi University, Shihezi 832000, China; (Y.W.); (D.X.); (B.Y.)
| |
Collapse
|
4
|
Nguyen HT, Duong TT, Nguyen VX, Nguyen TD, Bui TT, Pham DTN. Verticillium dahliae VdPBP1 Transcription Factor Is Required for Hyphal Growth, Virulence, and Microsclerotia Formation. Microorganisms 2024; 12:265. [PMID: 38399669 PMCID: PMC10891935 DOI: 10.3390/microorganisms12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Verticillium dahliae, a fungal pathogen that affects more than 200 plant species, including tomatoes, requires specific proteins for its early steps in plant infection. One such crucial protein, VdPBP1, exhibits high expression in the presence of tomato roots. Its 313-amino acid C-terminal section restores adhesion in nonadhesive Saccharomyces cerevisiae strains. To uncover its role, we employed a combination of bioinformatics, genetics, and morphological analyses. Our findings underscore the importance of VdPBP1 in fungal growth and pathogenesis. Bioinformatic analysis revealed that the VdPBP1 gene consists of four exons and three introns, encoding a 952-codon reading frame. The protein features a 9aaTAD domain, LsmAD, and PAB1 DNA-binding sites, as well as potential nuclear localization and transmembrane helix signals. Notably, the deletion of a 1.1 kb fragment at the gene's third end impedes microsclerotia formation and reduces pathogenicity. Mutants exhibit reduced growth and slower aerial mycelial development compared to the wild type. The VdPBP1 deletion strain does not induce disease symptoms in tomato plants. Furthermore, VdPBP1 deletion correlates with downregulated microsclerotia formation-related genes, and promoter analysis reveals regulatory elements, including sites for Rfx1, Mig1, and Ste12 proteins. Understanding the regulation and target genes of VdPBP1 holds promise for managing Verticillium wilt disease and related fungal pathogens.
Collapse
Affiliation(s)
- Huong Thi Nguyen
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen 24000, Vietnam;
| | - Thanh Thi Duong
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam; (T.T.D.); (V.X.N.); (T.-D.N.)
| | - Vu Xuan Nguyen
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam; (T.T.D.); (V.X.N.); (T.-D.N.)
| | - Tien-Dung Nguyen
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam; (T.T.D.); (V.X.N.); (T.-D.N.)
| | - Thuc Tri Bui
- Faculty of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam; (T.T.D.); (V.X.N.); (T.-D.N.)
| | - Dung Thuy Nguyen Pham
- NTT Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
5
|
Wang Z, Chen J, Ding J, Han J, Shi L. GlMPC activated by GCN4 regulates secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. mBio 2023; 14:e0135623. [PMID: 37732773 PMCID: PMC10653791 DOI: 10.1128/mbio.01356-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/26/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Mitochondrial pyruvate carrier (MPC) is a pyruvate transporter that plays a crucial role in regulating the carbon metabolic flow and is considered an essential mechanism for microorganisms to adapt to environmental changes. However, it remains unclear how MPC responds to environmental stress in organisms. General control non-derepressible 4 (GCN4), a key regulator of nitrogen metabolism, plays a pivotal role in the growth and development of fungi. In this study, we report that GCN4 can directly bind to the promoter region and activate the expression of GlMPC, thereby regulating the tricarboxylic acid cycle and secondary metabolism under nitrogen limitation conditions in Ganoderma lucidum. These findings provide significant insights into the regulation of carbon and nitrogen metabolism in fungi, highlighting the critical role of GCN4 in coordinating metabolic adaptation to environmental stresses.
Collapse
Affiliation(s)
- Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juhong Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juan Ding
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Kwon G, Yu J, Kim KH. Identifying transcription factors associated with Fusarium graminearum virus 2 accumulation in Fusarium graminearum by phenome-based investigation. Virus Res 2023; 326:199061. [PMID: 36738934 DOI: 10.1016/j.virusres.2023.199061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Fusarium graminearum virus 2 (FgV2) infection induces phenotypic changes like reduction of growth rate and virulence with an alteration of the transcriptome, including various transcription factor (TFs) gene transcripts in Fusarium graminearum. Transcription factors are the primary regulator in many cellular processes and are significant in virus-host interactions. However, a detailed study about specific TFs to understand interactions between FgV2 and F. graminearum has yet to be conducted. We transferred FgV2 to a F. graminearum TF gene deletion mutant library to identify host TFs related to FgV2 infection. FgV2-infected TF mutants were classified into three groups depending on colony growth. The FgV2 accumulation level was generally higher in TF mutants showing more reduced growth. Among these FgV2-infected TF mutants, we found several possible TFs that might be involved in FgV2 accumulation, generation of defective interfering RNAs, and transcriptional regulation of FgDICER-2 and FgAGO-1 in response to virus infection. We also investigated the relation between FgV2 accumulation and production of reactive oxygen species (ROS) and DNA damage in fungal host cells by using DNA damage- or ROS-responsive TF deletion mutants. Our studies provide insights into the host factors related to FgV2 infection and bases for further investigation to understand interactions between FgV2 and F. graminearum.
Collapse
Affiliation(s)
- Gudam Kwon
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea.
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
7
|
Tomato Xylem Sap Hydrophobins Vdh4 and Vdh5 Are Important for Late Stages of Verticillium dahliae Plant Infection. J Fungi (Basel) 2022; 8:jof8121252. [PMID: 36547586 PMCID: PMC9783231 DOI: 10.3390/jof8121252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Verticillium dahliae causes economic losses to a wide range of crops as a vascular fungal pathogen. This filamentous ascomycete spends long periods of its life cycle in the plant xylem, a unique environment that requires adaptive processes. Specifically, fungal proteins produced in the xylem sap of the plant host may play important roles in colonizing the plant vasculature and in inducing disease symptoms. RNA sequencing revealed over 1500 fungal transcripts that are significantly more abundant in cells grown in tomato xylem sap compared with pectin-rich medium. Of the 85 genes that are strongly induced in the xylem sap, four genes encode the hydrophobins Vdh1, Vdh2, Vdh4 and Vdh5. Vdh4 and Vhd5 are structurally distinct from each other and from the three other hydrophobins (Vdh1-3) annotated in V. dahliae JR2. Their functions in the life cycle and virulence of V. dahliae were explored using genetics, cell biology and plant infection experiments. Our data revealed that Vdh4 and Vdh5 are dispensable for V. dahliae development and stress response, while both contribute to full disease development in tomato plants by acting at later colonization stages. We conclude that Vdh4 and Vdh5 are functionally specialized fungal hydrophobins that support pathogenicity against plants.
Collapse
|
8
|
De La Fuente L, Merfa MV, Cobine PA, Coleman JJ. Pathogen Adaptation to the Xylem Environment. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:163-186. [PMID: 35472277 DOI: 10.1146/annurev-phyto-021021-041716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A group of aggressive pathogens have evolved to colonize the plant xylem. In this vascular tissue, where water and nutrients are transported from the roots to the rest of the plant, pathogens must be able to thrive under acropetal xylem sap flow and scarcity of nutrients while having direct contact only with predominantly dead cells. Nevertheless, a few bacteria have adapted to exclusively live in the xylem, and various pathogens may colonize other plant niches without causing symptoms unless they reach the xylem. Once established, the pathogens modulate its physicochemical conditions to enhance their growth and virulence. Adaptation to the restrictive lifestyle of the xylem leads to genome reduction in xylem-restricted bacteria, as they have a higher proportion of pseudogenes in their genome. The basis of xylem adaptation is not completely understood; therefore, a need still exists for model systems to advance the knowledge on this topic.
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA;
| |
Collapse
|
9
|
Shao S, Li B, Sun Q, Guo P, Du Y, Huang J. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae. Fungal Genet Biol 2022; 159:103667. [PMID: 35041986 DOI: 10.1016/j.fgb.2022.103667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation. The growth of single catalytic subunit gene knockout mutants were significantly inhibited by leucine at higher concentration and single catalytic subunit gene knockout mutants showed significantly reduced virulence to cotton. VdILV2B knockout also led to obviously reduced microscletotial formation and conidial production, VdILV2C knockout led to reduced conidial production. Further studies suggested that both feedback inhibition by leucine and the inhibition by AHAS inhibiting herbicides of tribenuron and bispyribac resulted in significantly down-regulated expression of the four subunit VdILVs genes (VdILV2A, VdILV2B, VdILV2C and VdILV6). Any single catalytic subunit gene knockout led to reduced expression of the other three subunit genes, whereas VdILV6 knckout induced increased expression of the three catalytic subunit genes. VdILV2B, VdILV2C and VdILV6 knockout resulted in increased expression of VdCPC1 regulator gene of the cross-pathway control of amino acid biosynthesis. Taken together, these results indicate multiple roles of four VdILVs genes in the biosynthesis of BCAAs, virulence, fungal growth and development in the filamentous fungi V. dahliae.
Collapse
Affiliation(s)
- ShengNan Shao
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Biao Li
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Qi Sun
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - PeiRu Guo
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - YeJuan Du
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| | - JiaFeng Huang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| |
Collapse
|
10
|
Tang C, Li W, Klosterman SJ, Wang Y. Transcriptome Variations in Verticillium dahliae in Response to Two Different Inorganic Nitrogen Sources. Front Microbiol 2021; 12:712701. [PMID: 34394062 PMCID: PMC8355529 DOI: 10.3389/fmicb.2021.712701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. The main focus of the research to control this fungus has been aimed at infection processes such as penetration peg formation and effector secretion, but the ability of the fungus to acquire and utilize nutrients are often overlooked and may hold additional potential to formulate new disease control approaches. Little is known about the molecular mechanisms of nitrogen acquisition and assimilation processes in V. dahliae. In this present study, RNA sequencing and gene expression analysis were used to examine differentially expressed genes in response to the different nitrogen sources, nitrate and ammonium, in V. dahliae. A total of 3244 and 2528 differentially expressed genes were identified in response to nitrate and ammonium treatments, respectively. The data indicated nitrate metabolism requires additional energy input while ammonium metabolism is accompanied by reductions in particular cellular processes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of DEGs during nitrate metabolism revealed that many of the genes encoded those involved in protein biosynthetic and metabolic processes, especially ribosome and RNA polymerase biosynthesis, but also other processes including transport and organonitrogen compound metabolism. Analysis of DEGs in the ammonium treatment indicated that cell cycle, oxidoreductase, and certain metabolic activities were reduced. In addition, DEGs participating in the utilization of both nitrate and ammonium were related to L-serine biosynthesis, energy-dependent multidrug efflux pump activity, and glycerol transport. We further showed that the mutants of three differentially expressed transcription factors (VdMcm1, VdHapX, and VDAG_08640) exhibited abnormal phenotypes under nitrate and ammonium treatment compared with the wild type strain. Deletion of VdMcm1 displayed slower growth when utilizing both nitrogen sources, while deletion of VdHapX and VDAG_08640 only affected nitrate metabolism, inferring that nitrogen assimilation required regulation of bZIP transcription factor family and participation of cell cycle. Taken together, our findings illustrate the convergent and distinctive regulatory mechanisms between preferred (ammonium) and alternative nitrogen (nitrate) metabolism at the transcriptome level, leading to better understanding of inorganic nitrogen metabolism in V. dahliae.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wenwen Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, CA, United States
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
12
|
Starke J, Harting R, Maurus I, Leonard M, Bremenkamp R, Heimel K, Kronstad JW, Braus GH. Unfolded Protein Response and Scaffold Independent Pheromone MAP Kinase Signaling Control Verticillium dahliae Growth, Development, and Plant Pathogenesis. J Fungi (Basel) 2021; 7:jof7040305. [PMID: 33921172 PMCID: PMC8071499 DOI: 10.3390/jof7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiation, growth, and virulence of the vascular plant pathogen Verticillium dahliae depend on a network of interconnected cellular signaling cascades. The transcription factor Hac1 of the endoplasmic reticulum-associated unfolded protein response (UPR) is required for initial root colonization, fungal growth, and vascular propagation by conidiation. Hac1 is essential for the formation of microsclerotia as long-time survival resting structures in the field. Single endoplasmic reticulum-associated enzymes for linoleic acid production as precursors for oxylipin signal molecules support fungal growth but not pathogenicity. Microsclerotia development, growth, and virulence further require the pheromone response mitogen-activated protein kinase (MAPK) pathway, but without the Ham5 scaffold function. The MAPK phosphatase Rok1 limits resting structure development of V.dahliae, but promotes growth, conidiation, and virulence. The interplay between UPR and MAPK signaling cascades includes several potential targets for fungal growth control for supporting disease management of the vascular pathogen V.dahliae.
Collapse
Affiliation(s)
- Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rica Bremenkamp
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
- Correspondence: ; Tel.: +49-(0)551-39-33771
| |
Collapse
|
13
|
Leonard M, Kühn A, Harting R, Maurus I, Nagel A, Starke J, Kusch H, Valerius O, Feussner K, Feussner I, Kaever A, Landesfeind M, Morgenstern B, Becher D, Hecker M, Braus-Stromeyer SA, Kronstad JW, Braus GH. Verticillium longisporum Elicits Media-Dependent Secretome Responses With Capacity to Distinguish Between Plant-Related Environments. Front Microbiol 2020; 11:1876. [PMID: 32849460 PMCID: PMC7423881 DOI: 10.3389/fmicb.2020.01876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillia cause a vascular wilt disease affecting a broad range of economically valuable crops. The fungus enters its host plants through the roots and colonizes the vascular system. It requires extracellular proteins for a successful plant colonization. The exoproteomes of the allodiploid Verticillium longisporum upon cultivation in different media or xylem sap extracted from its host plant Brassica napus were compared. Secreted fungal proteins were identified by label free liquid chromatography-tandem mass spectrometry screening. V. longisporum induced two main secretion patterns. One response pattern was elicited in various non-plant related environments. The second pattern includes the exoprotein responses to the plant-related media, pectin-rich simulated xylem medium and pure xylem sap, which exhibited similar but additional distinct features. These exoproteomes include a shared core set of 221 secreted and similarly enriched fungal proteins. The pectin-rich medium significantly induced the secretion of 143 proteins including a number of pectin degrading enzymes, whereas xylem sap triggered a smaller but unique fungal exoproteome pattern with 32 enriched proteins. The latter pattern included proteins with domains of known pathogenicity factors, metallopeptidases and carbohydrate-active enzymes. The most abundant proteins of these different groups are the necrosis and ethylene inducing-like proteins Nlp2 and Nlp3, the cerato-platanin proteins Cp1 and Cp2, the metallopeptidases Mep1 and Mep2 and the carbohydrate-active enzymes Gla1, Amy1 and Cbd1. Their pathogenicity contribution was analyzed in the haploid parental strain V. dahliae. Deletion of the majority of the corresponding genes caused no phenotypic changes during ex planta growth or invasion and colonization of tomato plants. However, we discovered that the MEP1, NLP2, and NLP3 deletion strains were compromised in plant infections. Overall, our exoproteome approach revealed that the fungus induces specific secretion responses in different environments. The fungus has a general response to non-plant related media whereas it is able to fine-tune its exoproteome in the presence of plant material. Importantly, the xylem sap-specific exoproteome pinpointed Nlp2 and Nlp3 as single effectors required for successful V. dahliae colonization.
Collapse
Affiliation(s)
- Miriam Leonard
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Alexandra Nagel
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Jessica Starke
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Kirstin Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ivo Feussner
- Department for Plant Biochemistry, Göttingen Center for Molecular Biosciences, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Burkhard Morgenstern
- Department of Bioinformatics, Göttingen Center for Molecular Biosciences, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Dörte Becher
- Department Microbial Proteomics, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Hecker
- Department of Microbial Physiology, Institute for Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanna A. Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Göttingen Center for Molecular Biosciences, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Deng S, Yao C, Zhang X, Jia Z, Shan C, Luo X, Lin L. Involvement of UDP-glucose pyrophosphorylase from Verticillium dahliae in cell morphogenesis, stress responses, and host infection. Fungal Biol 2020; 124:648-660. [PMID: 32540188 DOI: 10.1016/j.funbio.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/15/2019] [Accepted: 03/19/2020] [Indexed: 01/08/2023]
Abstract
UDP-glucose pyrophosphorylase (UGP, EC 2.7.7.9) is an essential enzyme involved in carbohydrate metabolism. In Saccharomyces cerevisiae and other fungi, the UGP gene is indispensable for normal cell development, polysaccharide synthesis, and stress response. However, the function of the UGP homolog in plant pathogenic fungi has been rarely explored during pathogenesis. In this study, we characterize a UGP homolog named VdUGP from Verticillium dahliae, a soil-borne fungus that causes plant vascular wilt. In comparison with wild-type strain V07DF2 and complementation strains, the VdUGP knocked down mutant 24C9 exhibited sensitivity to sodium dodecyl sulfate (perturbing membrane integrity) and high sodium chloride concentration (high osmotic pressure stress). More than 25 % of the conidia of the mutant developed into short and swollen hypha and formed hyperbranching and compact colonies. The mutant exhibited decreased virulence on cotton and tobacco seedlings. Further investigation determined that the germination of the mutant spores was significantly delayed compared with the wild-type strain on the host roots. RNA-seq analysis revealed that a considerable number of genes encoding secreted proteins and carbohydrate-active enzymes were significantly downregulated in the mutant at an early stage of infection compared with those of the wild-type strain. RNA-seq data indicated that mutation affected many Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways both in the pathogen and in the inoculated plants at the infection stage. These alterations of the mutant in cultural phenotypes, virulence, and gene expression profiles clearly indicated that VdUGP played important roles in fungal cell morphogenesis, stress responses, and host infection.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Chuanfei Yao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Zhaozhao Jia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| | - Chenyang Shan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaoyu Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling street NO.50, Nanjing, 210014, China.
| |
Collapse
|
15
|
Tang C, Li T, Klosterman SJ, Tian C, Wang Y. The bZIP transcription factor VdAtf1 regulates virulence by mediating nitrogen metabolism in Verticillium dahliae. THE NEW PHYTOLOGIST 2020; 226:1461-1479. [PMID: 32040203 DOI: 10.1111/nph.16481] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. Homologs of the bZIP transcription factor Atf1 are required for virulence in most pathogenic fungi, but the molecular basis for their involvement is largely unknown. We performed targeted gene deletion, expression analysis, biochemistry and pathogenicity assays to demonstrate that VdAtf1 governs pathogenesis via the regulation of nitrosative resistance and nitrogen metabolism in V. dahliae. VdAtf1 controls pathogenesis via the regulation of nitric oxide (NO) resistance and inorganic nitrogen metabolism rather than oxidative resistance and is important for penetration peg formation in V. dahliae. VdAtf1 affects ammonium and nitrate assimilation in response to various nitrogen sources. VdAtf1 may be involved in regulating the expression of VdNut1. VdAtf1 responds to NO stress by strengthening the fungal cell wall, and by causing over-accumulation of methylglyoxal and glycerol, which in turn impacts NO detoxification. We also verified that the VdAtf1 ortholog in Fusarium graminearum mediates nitrogen metabolism, suggesting conservation of this function in related plant pathogenic fungi. Our findings revealed new functions of VdAtf1 in pathogenesis, response to nitrosative stress and nitrogen metabolism in V. dahliae. The results provide novel insights into the regulatory mechanisms of the transcription factor VdAtf1 in virulence.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Tianyu Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
16
|
Transcriptome analysis reveals downregulation of virulence-associated genes expression in a low virulence Verticillium dahliae strain. Arch Microbiol 2019; 201:927-941. [PMID: 31020345 DOI: 10.1007/s00203-019-01663-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
Abstract
Verticillium dahliae causes wilt diseases and early senescence in numerous plants, including agricultural crops such as cotton. In this study, we studied two closely related V. dahliae strains, and found that V991w showed significantly reduced virulence on cotton than V991b. Comprehensive transcriptome analysis revealed various differentially expressed genes between the two strains, with more genes repressed in V991w. The downregulated genes in V991w were involved in production of hydrophobins, melanin, predicted aflatoxin, and membrane proteins, most of which are related to pathogenesis and multidrug resistance. Consistently, melanin production in V991w in vitro was compromised. We next obtained genomic variations between the two strains, demonstrating that transcription factor genes containing fungi specific transcription factor domain and fungal Zn2-Cys6 binuclear cluster domain were enriched in V991w, which might be related to pathogenicity-related genes downregulation. Thus, this study supports a model in which some virulence factors involved in V. dahliae pathogenicity were pre-expressed during in vitro growth before host interaction.
Collapse
|
17
|
Bui TT, Harting R, Braus-Stromeyer SA, Tran VT, Leonard M, Höfer A, Abelmann A, Bakti F, Valerius O, Schlüter R, Stanley CE, Ambrósio A, Braus GH. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. THE NEW PHYTOLOGIST 2019; 221:2138-2159. [PMID: 30290010 DOI: 10.1111/nph.15514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Verticillium dahliae nuclear transcription factors Som1 and Vta3 can rescue adhesion in a FLO8-deficient Saccharomyces cerevisiae strain. Som1 and Vta3 induce the expression of the yeast FLO1 and FLO11 genes encoding adhesins. Som1 and Vta3 are sequentially required for root penetration and colonisation of the plant host by V. dahliae. The SOM1 and VTA3 genes were deleted and their functions in fungus-induced plant pathogenesis were studied using genetic, cell biology, proteomic and plant pathogenicity experiments. Som1 supports fungal adhesion and root penetration and is required earlier than Vta3 in the colonisation of plant root surfaces and tomato plant infection. Som1 controls septa positioning and the size of vacuoles, and subsequently hyphal development including aerial hyphae formation and normal hyphal branching. Som1 and Vta3 control conidiation, microsclerotia formation, and antagonise in oxidative stress responses. The molecular function of Som1 is conserved between the plant pathogen V. dahliae and the opportunistic human pathogen Aspergillus fumigatus. Som1 controls genes for initial steps of plant root penetration, adhesion, oxidative stress response and VTA3 expression to allow subsequent root colonisation. Both Som1 and Vta3 regulate developmental genetic networks required for conidiation, microsclerotia formation and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Tri-Thuc Bui
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Susanna A Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
- Department of Microbiology, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, 100000, Hanoi, Vietnam
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Annalena Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Anja Abelmann
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, D-17489, Greifswald, Germany
| | - Claire E Stanley
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Alinne Ambrósio
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| |
Collapse
|
18
|
Wang Y, Deng C, Tian L, Xiong D, Tian C, Klosterman SJ. The Transcription Factor VdHapX Controls Iron Homeostasis and Is Crucial for Virulence in the Vascular Pathogen Verticillium dahliae. mSphere 2018; 3:e00400-18. [PMID: 30185514 PMCID: PMC6126142 DOI: 10.1128/msphere.00400-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 08/14/2018] [Indexed: 11/20/2022] Open
Abstract
Iron homeostasis is essential for full virulence and viability in many pathogenic fungi. Here, we showed that the bZip transcription factor VdHapX functions as a key regulator of iron homeostasis for adaptation to iron-depleted and iron-excess conditions and is required for full virulence in the vascular wilt fungus, Verticillium dahliae Deletion of VdHapX impaired mycelial growth and conidiation under both iron starvation and iron sufficiency. Furthermore, disruption of VdHapX led to decreased formation of the long-lived survival structures of V. dahliae, known as microsclerotia. Expression of genes involved in iron utilization pathways and siderophore biosynthesis was misregulated in the ΔVdHapX strain under the iron-depleted condition. Additionally, the ΔVdHapX strain exhibited increased sensitivity to high iron concentrations and H2O2, indicating that VdHapX also contributes to iron or H2O2 detoxification. The ΔVdHapX strain showed a strong reduction in virulence on smoke tree seedlings (Cotinus coggygria) and was delayed in its ability to penetrate plant epidermal tissue.IMPORTANCE This study demonstrated that VdHapX is a conserved protein that mediates adaptation to iron starvation and excesses, affects microsclerotium formation, and is crucial for virulence of V. dahliae.
Collapse
Affiliation(s)
- Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chenglin Deng
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Longyan Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, California, USA
| |
Collapse
|
19
|
Sun ZB, Wang Q, Zhang J, Jiang WZ, Wang Q, Li SD, Ma GZ, Sun MH. The transcription factor-encoding gene crtf is involved in Clonostachys chloroleuca mycoparasitism on Sclerotinia sclerotiorum. Microbiol Res 2018; 210:6-11. [PMID: 29625660 DOI: 10.1016/j.micres.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/28/2018] [Accepted: 03/03/2018] [Indexed: 10/17/2022]
Abstract
Clonostachys chloroleuca 67-1 (formerly C. rosea 67-1) is a potential biocontrol fungus active against various fungal plant pathogens. From transcriptome sequencing of 67-1 parasitizing sclerotia of Sclerotinia sclerotiorum, we identified the transcription factor-encoding gene crtf that is significantly up-regulated during mycoparasitism. Transcription factors are widely distributed in fungi and involved in multiple biological processes. However, their role and regulatory mechanisms in mycoparasitism remain poorly understood. In this study, the function of crtf during 67-1 mycoparasitism was verified through gene knockout and complementation. The results showed that deletion of crtf did not influence fungal morphological characteristics, but the ability of the Δcrtf mutant to parasitize sclerotia and suppress soybean Sclerotinia white mold in the greenhouse was markedly diminished compared with the wild type strain. The biocontrol activity of Δcrtf recovered wild type levels when complemented with a plasmid expressing the crtf gene. These findings suggest that crtf plays a crucial role in C. chloroleuca mycoparasitism and provide insight into the molecular mechanisms underlying C. chloroleuca mycoparasitism on plant pathogenic fungi.
Collapse
Affiliation(s)
- Zhan-Bin Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qi Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Jun Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei-Zhi Jiang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qi Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shi-Dong Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Gui-Zhen Ma
- School of Marine Science and Technology, Huaihai Institute of Technology, Lianyungang, 222005, China
| | - Man-Hong Sun
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
20
|
Xu J, Wang X, Li Y, Zeng J, Wang G, Deng C, Guo W. Host-induced gene silencing of a regulator of G protein signalling gene (VdRGS1) confers resistance to Verticillium wilt in cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1629-1643. [PMID: 29431919 PMCID: PMC6096726 DOI: 10.1111/pbi.12900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/03/2018] [Indexed: 05/20/2023]
Abstract
Verticillium wilt (VW), caused by soil-borne fungi of the genus Verticillium, is a serious disease affecting a wide range of plants and leading to a constant and major challenge to agriculture worldwide. Cotton (Gossypium hirsutum) is the world's most important natural textile fibre and oil crop. VW of cotton is a highly devastating vascular disease; however, few resistant germplasms have been reported in cotton. An increasing number of studies have shown that RNA interference (RNAi)-based host-induced gene silencing (HIGS) is an effective strategy for improving plant resistance to pathogens by silencing genes essential for the pathogenicity of these pathogens. Here, we have identified and characterized multifunctional regulators of G protein signalling (RGS) in the Verticillium dahliae virulence strain, Vd8. Of eight VdRGS genes, VdRGS1 showed the most significant increase in expression in V. dahliae after treating with the roots of cotton seedlings. Based on the phenotype detection of VdRGS1 deletion and complementation mutants, we found that VdRGS1 played crucial roles in spore production, hyphal development, microsclerotia formation and pathogenicity. Tobacco rattle virus-mediated HIGS in cotton plants silenced VdRGS1 transcripts in invaded V. dahliae strains and enhanced broad-spectrum resistance to cotton VW. Our data demonstrate that VdRGS1 is a conserved and essential gene for V. dahliae virulence. HIGS of VdRGS1 provides effective control against V. dahliae infection and could obtain the durable disease resistance in cotton and in other VW-susceptible host crops by developing the stable transformants.
Collapse
Affiliation(s)
- Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsuChina
| | - Yongqing Li
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Jianguo Zeng
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsuChina
| | - Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Chaoyang Deng
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsuChina
| |
Collapse
|
21
|
Fluorescent pseudomonads pursue media-dependent strategies to inhibit growth of pathogenic Verticillium fungi. Appl Microbiol Biotechnol 2017; 102:817-831. [PMID: 29151161 DOI: 10.1007/s00253-017-8618-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 10/24/2022]
Abstract
Verticillium species represent economically important phytopathogenic fungi with bacteria as natural rhizosphere antagonists. Growth inhibition patterns of Verticillium in different media were compared to saprophytic Aspergillus strains and were significantly more pronounced in various co-cultivations with different Pseudomonas strains. The Brassica napus rhizosphere bacterium Pseudomonas fluorescens DSM8569 is able to inhibit growth of rapeseed (Verticillium longisporum) or tomato (Verticillium dahliae) pathogens without the potential for phenazine or 2,4-diacetylphloroglucinol (DAPG) mycotoxin biosynthesis. Bacterial inhibition of Verticillium growth remained even after the removal of pseudomonads from co-cultures. Fungal growth response in the presence of the bacterium is independent of the fungal control genes of secondary metabolism LAE1 and CSN5. The phenazine producer P. fluorescens 2-79 (P_phen) inhibits Verticillium growth especially on high glucose solid agar surfaces. Additional phenazine-independent mechanisms in the same strain are able to reduce fungal surface growth in the presence of pectin and amino acids. The DAPG-producing Pseudomonas protegens CHA0 (P_DAPG), which can also produce hydrogen cyanide or pyoluteorin, has an additional inhibitory potential on fungal growth, which is independent of these antifungal compounds, but which requires the bacterial GacA/GacS control system. This translational two-component system is present in many Gram-negative bacteria and coordinates the production of multiple secondary metabolites. Our data suggest that pseudomonads pursue different media-dependent strategies that inhibit fungal growth. Metabolites such as phenazines are able to completely inhibit fungal surface growth in the presence of glucose, whereas GacA/GacS controlled inhibitors provide the same fungal growth effect on pectin/amino acid agar.
Collapse
|
22
|
Wang D, Akhberdi O, Hao X, Yu X, Chen L, Liu Y, Zhu X. Amino Acid Sensor Kinase Gcn2 Is Required for Conidiation, Secondary Metabolism, and Cell Wall Integrity in the Taxol-Producer Pestalotiopsis microspora. Front Microbiol 2017; 8:1879. [PMID: 29021785 PMCID: PMC5623678 DOI: 10.3389/fmicb.2017.01879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
The canonical Gcn2/Cpc1 kinase in fungi coordinates the expression of target genes in response to amino acid starvation. To investigate its possible role in secondary metabolism, we characterized a gcn2 homolog in the taxol-producing fungus Pestalotiopsis microspora. Deletion of the gene led to severe physiological defects under amino acid starvation, suggesting a conserved function of gcn2 in amino acid sensing. The mutant strain Δgcn2 displayed retardation in vegetative growth. It generated dramatically fewer conidia, suggesting a connection between amino acid metabolism and conidiation in this fungus. Importantly, disruption of the gene altered the production of secondary metabolites by HPLC profiling. For instance, under amino acid starvation, the deletion strain Δgcn2 barely produced secondary metabolites including the known natural product pestalotiollide B. Even more, we showed that gcn2 played critical roles in the tolerance to several stress conditions. Δgcn2 exhibited a hypersensitivity to Calcofluor white and Congo red, implying a role of Gcn2 in maintaining the integrity of the cell wall. This study suggests that Gcn2 kinase is an important global regulator in the growth and development of filamentous fungi and will provide knowledge for the manipulation of secondary metabolism in P. microspora.
Collapse
Affiliation(s)
- Dan Wang
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Oren Akhberdi
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoran Hao
- National Experimental Teaching Demonstrating Center, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Xi Yu
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Longfei Chen
- National Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and Biotechnology, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
23
|
van der Does HC, Rep M. Adaptation to the Host Environment by Plant-Pathogenic Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:427-450. [PMID: 28645233 DOI: 10.1146/annurev-phyto-080516-035551] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Many fungi can live both saprophytically and as endophyte or pathogen inside a living plant. In both environments, complex organic polymers are used as sources of nutrients. Propagation inside a living host also requires the ability to respond to immune responses of the host. We review current knowledge of how plant-pathogenic fungi do this. First, we look at how fungi change their global gene expression upon recognition of the host environment, leading to secretion of effectors, enzymes, and secondary metabolites; changes in metabolism; and defense against toxic compounds. Second, we look at what is known about the various cues that enable fungi to sense the presence of living plant cells. Finally, we review literature on transcription factors that participate in gene expression in planta or are suspected to be involved in that process because they are required for the ability to cause disease.
Collapse
Affiliation(s)
| | - Martijn Rep
- Molecular Plant Pathology, University of Amsterdam, 1098XH Amsterdam, The Netherlands;
| |
Collapse
|
24
|
Santhanam P, Boshoven JC, Salas O, Bowler K, Islam MT, Saber MK, van den Berg GCM, Bar‐Peled M, Thomma BPHJ. Rhamnose synthase activity is required for pathogenicity of the vascular wilt fungus Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2017; 18:347-362. [PMID: 26996832 PMCID: PMC6638212 DOI: 10.1111/mpp.12401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 05/05/2023]
Abstract
The initial interaction of a pathogenic fungus with its host is complex and involves numerous metabolic pathways and regulatory proteins. Considerable attention has been devoted to proteins that play a crucial role in these interactions, with an emphasis on so-called effector molecules that are secreted by the invading microbe to establish the symbiosis. However, the contribution of other types of molecules, such as glycans, is less well appreciated. Here, we present a random genetic screen that enabled us to identify 58 novel candidate genes that are involved in the pathogenic potential of the fungal pathogen Verticillium dahliae, which causes vascular wilt diseases in over 200 dicotyledonous plant species, including economically important crops. One of the candidate genes that was identified concerns a putative biosynthetic gene involved in nucleotide sugar precursor formation, as it encodes a putative nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER). This enzyme has homology to bacterial enzymes involved in the biosynthesis of the nucleotide sugar deoxy-thymidine diphosphate (dTDP)-rhamnose, a precursor of L-rhamnose, which has been shown to be required for virulence in several human pathogenic bacteria. Rhamnose is known to be a minor cell wall glycan in fungi and has therefore not been suspected as a crucial molecule in fungal-host interactions. Nevertheless, our study shows that deletion of the VdNRS/ER gene from the V. dahliae genome results in complete loss of pathogenicity on tomato and Nicotiana benthamiana plants, whereas vegetative growth and sporulation are not affected. We demonstrate that VdNRS/ER is a functional enzyme in the biosynthesis of uridine diphosphate (UDP)-rhamnose, and further analysis has revealed that VdNRS/ER deletion strains are impaired in the colonization of tomato roots. Collectively, our results demonstrate that rhamnose, although only a minor cell wall component, is essential for the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Parthasarathy Santhanam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Jordi C. Boshoven
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Omar Salas
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Kyle Bowler
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Md Tohidul Islam
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Mojtaba Keykha Saber
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Grardy C. M. van den Berg
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Maor Bar‐Peled
- Complex Carbohydrate Research Center, University of GeorgiaAthensGA30602USA
| | - Bart P. H. J. Thomma
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
25
|
Luo X, Mao H, Wei Y, Cai J, Xie C, Sui A, Yang X, Dong J. The fungal-specific transcription factor Vdpf influences conidia production, melanized microsclerotia formation and pathogenicity in Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2016; 17:1364-1381. [PMID: 26857810 PMCID: PMC6638448 DOI: 10.1111/mpp.12367] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 05/05/2023]
Abstract
Verticillium dahliae is a soil-borne, hemibiotrophic phytopathogenic fungus that causes wilting in crop plants. Here, we constructed a random insertional mutant library using Agrobacterium tumefaciens-mediated transformation to study the pathogenicity and regulatory mechanisms of V. dahliae. The fungal-specific transcription factor-encoding gene Vdpf was shown to be associated with vegetative growth and virulence, with the highest transcript expression occurring during conidia formation in the V991 strain. The deletion mutants (ΔVdpf) and insertion mutants (IMΔVdpf) produced fewer conidia than did the wild-type (WT) fungi, which contributed to the reduced virulence. Unlike the WT, the complemented strains and IMΔVdpf, ΔVdpf formed swollen, thick-walled and hyaline mycelium rather than melanized microsclerotia. The ΔVdpf mutants were melanin deficient, with undetectable expression of melanin biosynthesis-related genes (Brn1, Brn2 and Scd1). The melanin deficiency was related to cyclic adenosine monophosphate (cAMP) and the G-protein-coupled signalling pathways in this study. Similar to the WT and complemented strains, the ΔVdpf and IMΔVdpf mutants could also successfully penetrate into cotton and tobacco roots, but displayed reduced virulence because of lower biomass in the plant roots and significantly reduced expression of pathogenicity-related genes in V. dahliae. In conclusion, these results provide insights into the role of Vdpf in melanized microsclerotia formation, conidia production and pathogenicity.
Collapse
Affiliation(s)
- Xiumei Luo
- The School of Life ScienceSouthwest UniversityChongqing400715China
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Hongqiang Mao
- The School of Life ScienceSouthwest UniversityChongqing400715China
| | - Yunming Wei
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Jie Cai
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Anping Sui
- The School of Life ScienceSouthwest UniversityChongqing400715China
| | - Xingyong Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations and the College of Life ScienceChongqing Normal UniversityChongqing401331China
| | - Jinyan Dong
- The School of Life ScienceSouthwest UniversityChongqing400715China
| |
Collapse
|
26
|
Häffner E, Diederichsen E. Belowground Defence Strategies Against Verticillium Pathogens. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42319-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Depotter JRL, Deketelaere S, Inderbitzin P, Tiedemann AV, Höfte M, Subbarao KV, Wood TA, Thomma BPHJ. Verticillium longisporum, the invisible threat to oilseed rape and other brassicaceous plant hosts. MOLECULAR PLANT PATHOLOGY 2016; 17:1004-16. [PMID: 26663851 PMCID: PMC6638321 DOI: 10.1111/mpp.12350] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 05/21/2023]
Abstract
INTRODUCTION The causal agents of Verticillium wilts are globally distributed pathogens that cause significant crop losses every year. Most Verticillium wilts are caused by V. dahliae, which is pathogenic on a broad range of plant hosts, whereas other pathogenic Verticillium species have more restricted host ranges. In contrast, V. longisporum appears to prefer brassicaceous plants and poses an increasing problem to oilseed rape production. TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Subclass Hypocreomycetida; Family Plectosphaerellaceae; genus Verticillium. DISEASE SYMPTOMS Dark unilateral stripes appear on the stems of apparently healthy looking oilseed rape plants at the end of the growing season. Microsclerotia are subsequently formed in the stem cortex beneath the epidermis. GENOME Verticillium longisporum is the only non-haploid species in the Verticillium genus, as it is an amphidiploid hybrid that carries almost twice as much genetic material as the other Verticillium species as a result of interspecific hybridization. DISEASE MANAGEMENT There is no effective fungicide treatment to control Verticillium diseases, and resistance breeding is the preferred strategy for disease management. However, only a few Verticillium wilt resistance genes have been identified, and monogenic resistance against V. longisporum has not yet been found. Quantitative resistance exists mainly in the Brassica C-genome of parental cabbage lines and may be introgressed in oilseed rape breeding lines. COMMON NAME Oilseed rape colonized by V. longisporum does not develop wilting symptoms, and therefore the common name of Verticillium wilt is unsuitable for this crop. Therefore, we propose 'Verticillium stem striping' as the common name for Verticillium infections of oilseed rape.
Collapse
Affiliation(s)
- Jasper R L Depotter
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
- Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Silke Deketelaere
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, B-9000, Ghent, Belgium
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Andreas Von Tiedemann
- Department of Crop Sciences, Plant Pathology and Crop Protection Division, Georg-August University Göttingen, Grisebachstrasse 6, 37077, Göttingen, Germany
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, B-9000, Ghent, Belgium
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thomas A Wood
- Department of Crops and Agronomy, National Institute of Agricultural Botany, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, the Netherlands
| |
Collapse
|
28
|
Qi X, Su X, Guo H, Qi J, Cheng H. VdThit, a Thiamine Transport Protein, Is Required for Pathogenicity of the Vascular Pathogen Verticillium dahliae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:545-559. [PMID: 27089469 DOI: 10.1094/mpmi-03-16-0057-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Verticillium dahliae causes a serious wilt disease of important crops and is difficult to control. Few plasma-membrane transport proteins for nutrient acquisition have been identified for this fungus, and their involvement in the disease process is unknown. Here, a plasma-membrane protein, the V. dahliae thiamine transporter protein VdThit, was characterized functionally by deletion of the VdThit gene in V. dahliae. Disruption strains were viable, but growth and conidial germination and production were reduced and virulence was impaired. Interestingly, by supplementing exogenous thiamine, growth, conidiation, and virulence of the VdΔThit mutants were partially restored. Stress-tolerance assays showed that the VdΔThit mutant strains were markedly more susceptible to oxidative stress and UV damage. High-pressure liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) analyses showed low levels of pyruvate metabolism intermediates acetoin and acetyl coenzyme A (acetyl-CoA) in the VdΔThit mutant strains, suggesting that pyruvate metabolism was suppressed. Expression analysis of VdThit confirmed the importance of VdThit in vegetative growth, reproduction, and invasive hyphal growth. Furthermore, a green fluorescent protein (GFP)-labeled VdΔThit mutant (VdΔThit-7-GFP) was suppressed in initial infection and root colonization, as viewed with light microscopy. Together, these results showed that VdThit plays an indispensable role in the pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Xiliang Qi
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Xiaofeng Su
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Huiming Guo
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| | - Juncang Qi
- 2 Agriculture College of Shihezi University, Shihezi 832000, China
| | - Hongmei Cheng
- 1 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; and
| |
Collapse
|
29
|
Quantitative real-time PCR normalization for gene expression studies in the plant pathogenic fungi Lasiodiplodia theobromae. J Microbiol Methods 2016; 127:82-88. [PMID: 27237774 DOI: 10.1016/j.mimet.2016.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
Lasiodiplodia theobromae is a highly virulent plant pathogen. It has been suggested that heat stress increases its virulence. The aim of this work was to evaluate, compare, and recommend normalization strategies for gene expression analysis of the fungus growing with grapevine wood under heat stress. Using RT-qPCR-derived data, reference gene stability was evaluated through geNorm, NormFinder and Bestkeeper applications. Based on the geometric mean using the ranking position obtained for each independent analysis, genes were ranked from least to most stable as follows: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), β-tubulin (TUB) and elongation factor-1α (EF1α). Using RNAseq-derived data based on the calculated tagwise dispersion these genes were ordered by increasing stability as follows: GAPDH, ACT, TUB, and EF1α. The correlation between RNAseq and RTqPCR results was used as criteria to identify the best RT-qPCR normalization approach. The gene TUB is recommended as the best option for normalization among the commonly used reference genes, but alternative fungal reference genes are also suggested.
Collapse
|
30
|
Flajsman M, Mandelc S, Radisek S, Stajner N, Jakse J, Kosmelj K, Javornik B. Identification of Novel Virulence-Associated Proteins Secreted to Xylem by Verticillium nonalfalfae During Colonization of Hop Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:362-373. [PMID: 26883488 DOI: 10.1094/mpmi-01-16-0016-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Plant pathogens employ various secreted proteins to suppress host immunity for their successful host colonization. Identification and characterization of pathogen-secreted proteins can contribute to an understanding of the pathogenicity mechanism and help in disease control. We used proteomics to search for proteins secreted to xylem by the vascular pathogen Verticillium nonalfalfae during colonization of hop plants. Three highly abundant fungal proteins were identified: two enzymes, α-N-arabinofuranosidase (VnaAbf4.216) and peroxidase (VnaPRX1.1277), and one small secreted hypothetical protein (VnaSSP4.2). These are the first secreted proteins so far identified in xylem sap following infection with Verticillium spp. VnaPRX1.1277, classified as a heme-containing peroxidase from Class II, similar to other Verticillium spp. lignin-degrading peroxidases, and VnaSSP4.2, a 14-kDa cysteine-containing protein with unknown function and with a close homolog in related V. alfalfae strains, were further examined. The in planta expression of VnaPRX1.1277 and VnaSSP4.2 genes increased with the progression of colonization, implicating their role in fungal virulence. Indeed, V. nonalfalfae deletion mutants of both genes exhibited attenuated virulence on hop plants, which returned to the level of the wild-type pathogenicity in the knockout complementation lines, supporting VnaPRX1.1277 and VnaSSP4.2 as virulence factors required to promote V. nonalfalfae colonization of hop plants.
Collapse
Affiliation(s)
- Marko Flajsman
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Stanislav Mandelc
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Sebastjan Radisek
- 2 Slovenian Institute of Hop Research and Brewing, Cesta Zalskega Tabora 2, SI-3310 Zalec, Slovenia
| | - Natasa Stajner
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Jernej Jakse
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Katarina Kosmelj
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| | - Branka Javornik
- 1 Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia; and
| |
Collapse
|
31
|
Deng S, Wang CY, Zhang X, Wang Q, Lin L. VdNUC-2, the Key Regulator of Phosphate Responsive Signaling Pathway, Is Required for Verticillium dahliae Infection. PLoS One 2015; 10:e0145190. [PMID: 26670613 PMCID: PMC4682923 DOI: 10.1371/journal.pone.0145190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
Abstract
In fungal cells, a phosphate (Pi) responsive signaling and metabolism (PHO) pathway regulates Pi-homeostasis. NUC-2/PHO81 and its homologs are one of the most important components in the regulation pathway. In soil-borne phytopathogenic fungus Verticillium dahliae, we identified a Neurospora crassa nuc-2 homolog gene VdNUC-2. VdNUC-2 is composed of 1,018 amino acids, and is highly conserved in tested filamentous fungi. Under conditions of Pi-starvation, compared with the wild-type strain and ectopic complementation strains, the VdNUC-2 knocked out mutants exhibited reduced radial growth, decreased production of conidia and microsclerotia, and were more sensitive to hydrogen peroxide stress. The virulence of VdNUC-2 defective mutants was significantly compromised, and that was unable to be restored by exogenous application of extra Pi. Additionally, the deletion mutants of VdNUC-1, a key transcription factor gene positively controlled by VdNUC-2 in the PHO pathway, showed the similar cultural phenotypes as VdNUC-2 mutants when both of them grew in Pi-limited conditions. However, the virulence of VdNUC-1 mutants was comparable to the wild-type strain. These evidences indicated that the virulence reduction in VdNUC-2 mutants is not due to the interruptions in the PHO pathway or the disturbance of Pi-homeostasis in V. dahliae cytoplasm. VdNUC-2 is not only a crucial gene in the PHO pathway in V. dahliae, but also is required for the full virulence during host-infection.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Cai-yue Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qing Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
32
|
Klimes A, Dobinson KF, Thomma BPHJ, Klosterman SJ. Genomics spurs rapid advances in our understanding of the biology of vascular wilt pathogens in the genus Verticillium. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:181-98. [PMID: 26047557 DOI: 10.1146/annurev-phyto-080614-120224] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The availability of genomic sequences of several Verticillium species triggered an explosion of genome-scale investigations of mechanisms fundamental to the Verticillium life cycle and disease process. Comparative genomics studies have revealed evolutionary mechanisms, such as hybridization and interchromosomal rearrangements, that have shaped these genomes. Functional analyses of a diverse group of genes encoding virulence factors indicate that successful host xylem colonization relies on specific Verticillium responses to various stresses, including nutrient deficiency and host defense-derived oxidative stress. Regulatory pathways that control responses to changes in nutrient availability also appear to positively control resting structure development. Conversely, resting structure development seems to be repressed by pathways, such as those involving effector secretion, which promote responses to host defenses. The genomics-enabled functional characterization of responses to the challenges presented by the xylem environment, accompanied by identification of novel virulence factors, has rapidly expanded our understanding of niche adaptation in Verticillium species.
Collapse
Affiliation(s)
- Anna Klimes
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119;
| | | | | | | |
Collapse
|
33
|
Malavazi I, Goldman GH, Brown NA. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Brief Funct Genomics 2014; 13:456-70. [PMID: 25060881 DOI: 10.1093/bfgp/elu027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the external environment, or within a host organism, filamentous fungi experience sudden changes in nutrient availability, osmolality, pH, temperature and the exposure to toxic compounds. The fungal cell wall represents the first line of defense, while also performing essential roles in morphology, development and virulence. A polarized secretion system is paramount for cell wall biosynthesis, filamentous growth, nutrient acquisition and interactions with the environment. The unique ability of filamentous fungi to secrete has resulted in their industrial adoption as fungal cell factories. Protein maturation and secretion commences in the endoplasmic reticulum (ER). The unfolded protein response (UPR) maintains ER functionality during exposure to secretion and cell wall stress. UPR, therefore, influences secretion and cell wall homeostasis, which in turn impacts upon numerous fungal traits important to pathogenesis and biotechnology. Subsequently, this review describes the relevance of the cell wall and UPR systems to filamentous fungal pathogens or industrial microbes and then highlights interconnections between the two systems. Ultimately, the possible biotechnological applications of an enhanced understanding of such regulatory systems in combating fungal disease, or the removal of natural bottlenecks in protein secretion in an industrial setting, are discussed.
Collapse
|
34
|
Deng S, Wang CY, Zhang X, Lin L. Bidirectional promoter trapping T-DNA for insertional mutagenesis in Verticillium dahliae. Can J Microbiol 2014; 60:445-54. [DOI: 10.1139/cjm-2014-0081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transfer DNA (T-DNA)-based random insertional mutagenesis is a universal forward genetic approach for gene identification and cloning in many phytopathogenic fungi. In a large number of randomly selected transformants, screening for mutants with a specific phenotype is laborious, especially for pathogenicity-defective mutants. To accelerate mutant screening and gene identification, a bidirectional promoter-trapping Ti binary vector, 1300-bisGFP-hyg, was constructed and deployed in this study. More than 6000 Verticillium dahliae transformants were obtained by the mediation of Agrobacterium tumefaciens carrying the vector. One thousand randomly selected transformants were cultured on Czapek–Dox and on Czapek–Dox plus cotton root extract media plates. The cultured transformants with green fluorescent protein (GFP) expression or changes in phenotype were selected and used in virulence or promoter-trapping assays. Based on the virulence assay of 60 transformants, the pathogenicity of 17 of these mutants was compromised. Ten pathogenicity-defective mutants were found with GFP expression, and 6 with expression in Czapek–Dox plus cotton root extract media specifically. Using TAIL-PCR (thermal asymmetric interlaced polymerase chain reaction), the T-DNA insertion sites were identified in 8 GFP-expressing transformants, including 5 pathogenicity-defective mutants and 3 unaffected transformants. Promoters of 6 genes were successfully trapped using the T-DNA method in this study. The nonpathogenic transformant 24C9 was the subject of additional investigation. It displayed strong GFP expression on water agar medium supplemented with cotton root extracts and on cotton seedling stems. The results obtained by Southern blot and quantitative real-time PCR confirmed that the transcription level of VdUGPU (encoding UTP-glucose-1-phosphate uridylyltransferase) was significantly reduced owing to T-DNA insertion in the gene promoter region. These results indicate that the bidirectional promoter-trapping Ti vector, combined with induction medium that contains root exudates, can be useful for identification of pathogenicity-related and functional genes in V. dahliae.
Collapse
Affiliation(s)
- Sheng Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling Street No. 50, Nanjing 210014, People’s Republic of China
| | - Cai-yue Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling Street No. 50, Nanjing 210014, People’s Republic of China
| | - Xin Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling Street No. 50, Nanjing 210014, People’s Republic of China
| | - Ling Lin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Zhongling Street No. 50, Nanjing 210014, People’s Republic of China
| |
Collapse
|
35
|
Luo X, Xie C, Dong J, Yang X, Sui A. Interactions between Verticillium dahliae and its host: vegetative growth, pathogenicity, plant immunity. Appl Microbiol Biotechnol 2014; 98:6921-32. [DOI: 10.1007/s00253-014-5863-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/30/2022]
|
36
|
Tran VT, Braus-Stromeyer SA, Kusch H, Reusche M, Kaever A, Kühn A, Valerius O, Landesfeind M, Aßhauer K, Tech M, Hoff K, Pena-Centeno T, Stanke M, Lipka V, Braus GH. Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots. THE NEW PHYTOLOGIST 2014; 202:565-581. [PMID: 24433459 DOI: 10.1111/nph.12671] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/03/2013] [Indexed: 05/05/2023]
Abstract
Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection. Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2 O2 detoxification. Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens.
Collapse
Affiliation(s)
- Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
- Department of Microbiology, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
| | - Susanna A Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Harald Kusch
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Michael Reusche
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Alexander Kaever
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Anika Kühn
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Manuel Landesfeind
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Kathrin Aßhauer
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Maike Tech
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Goldschmidtstr. 1, D-37077, Göttingen, Germany
| | - Katharina Hoff
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Tonatiuh Pena-Centeno
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Mario Stanke
- Institute for Mathematics and Computer Science, Ernst-Moritz-Arndt-University Greifswald, Walther-Rathenau-Straße 47, D-17487, Greifswald, Germany
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, D-37077, Göttingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| |
Collapse
|