1
|
Man X, You H, Cheng Z, Li J, Yao D, Wang H, Diao Z, Yu X, Wu W, Zhou C, Huang Y, Shen J, Zhuang X, Cai Y. Engineering and application of multiepitope recombinant proteins to enhance resistance to Botrytis cinerea in tomatoes: a new paradigm for creating plant immune activators. FRONTIERS IN PLANT SCIENCE 2025; 16:1499777. [PMID: 40034157 PMCID: PMC11873852 DOI: 10.3389/fpls.2025.1499777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Plant elicitors have emerged as key agents in effectively invoking immune responses across various plant species, gaining attention for their role in sustainable agricultural protection strategies. However, the economic utility of peptide elicitors such as flg22, flgII-28, and systemin is limited when considering broader agricultural applications. This study introduces a novel recombinant protein, SlRP5, which integrates five active epitopes-flg22, csp22, flgII-28, SIPIP1, and systemin-to activate immune responses and significantly enhance resistance to Botrytis cinerea in tomatoes (Solanum lycopersicum). SIRP5 significantly induced reactive oxygen species (ROS), MAPK activation, and callose deposition in tomato leaves during in vitro experiments. Transcriptomic analysis revealed that SlRP5 more effectively activated key immune-related pathways compared to traditional peptides, upregulating critical genes involved in calcium-binding proteins and phenylpropanoid biosynthesis. In further in vivo experiments, SlRP5 alleviated B. cinerea-induced membrane damage by reducing MDA and REC levels, while simultaneously enhancing the activities of antioxidant enzymes such as SOD, CAT, and POD, thereby mitigating the excess ROS generated by infection. Additionally, SlRP5 elicited significant immunological effects in tobacco and eggplant, characterized by ROS bursts and callose deposition. It amplified tobacco's resistance to TMV and mitigated B. cinerea-induced damage in eggplant. These findings underscore the substantial potential of SlRP5 as a plant immune activator, integrating multiple immune-eliciting peptides, and offering a novel strategy for cultivating new biopesticides that can induce immune responses and heighten disease resistance in various crops.
Collapse
Affiliation(s)
- Xiaxia Man
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Huang You
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhiqiang Cheng
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Junhao Li
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Dunchao Yao
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Haofeng Wang
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhihong Diao
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Xiaosong Yu
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Wei Wu
- Chengdu Lusyno Biotechnology Co., Ltd, Chengdu, Sichuan, China
| | - Cheng Zhou
- Chengdu Lusyno Biotechnology Co., Ltd, Chengdu, Sichuan, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yi Cai
- College of Life Sciences, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
2
|
van Dieren A, Schwarzenbacher RE, Sonnewald S, Bittner A, Vothknecht UC. Analysis of abiotic and biotic stress-induced Ca 2+ transients in the crop species Solanum tuberosum. Sci Rep 2024; 14:27625. [PMID: 39528594 PMCID: PMC11555376 DOI: 10.1038/s41598-024-79134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Secondary messengers, such as calcium ions (Ca2+), are integral parts of a system that transduces environmental stimuli into appropriate cellular responses. Different abiotic and biotic stresses as well as developmental processes trigger temporal increases in cytosolic free Ca2+ levels by an influx from external and internal stores. Stimulus-specificity is obtained by a certain amplitude, duration, oscillation and localisation of the response. Most knowledge on stress-specific Ca2+ transient, called calcium signatures, has been gained in the model plant Arabidopsis thaliana, while reports about stress-related Ca2+ signalling in crop plants are comparatively scarce. In this study, we introduced the Ca2+ biosensor apoaequorin into potato (Solanum tuberosum, Lcv. Désirée). We observed dose-dependent calcium signatures in response to a series of stress stimuli, including H2O2, NaCl, mannitol and pathogen-associated molecular patterns (PAMPs) with stimuli-specific kinetics. Direct comparison with Arabidopsis revealed differences in the kinetics and amplitude of Ca2+ transients between both species, implying species-specific sensitivity for different stress conditions. The potato line generated in this work provides a useful tool for further investigations on stress-induced signalling pathways, which could contribute to the generation of novel, stress-tolerant potato varieties.
Collapse
Affiliation(s)
- Annelotte van Dieren
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | | | - Sophia Sonnewald
- Department of Biology, Chair of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstraße 5, Erlangen, 91058, Germany
| | - Andras Bittner
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ute C Vothknecht
- Institute for Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
3
|
Leuschen-Kohl R, Roberts R, Stevens DM, Zhang N, Buchanan S, Pilkey B, Coaker G, Iyer-Pascuzzi AS. Tomato roots exhibit distinct, development-specific responses to bacterial-derived peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621969. [PMID: 39574743 PMCID: PMC11580956 DOI: 10.1101/2024.11.04.621969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Plants possess cell-surface recognition receptors that detect molecular patterns from microbial invaders and initiate an immune response. Understanding the conservation of pattern-triggered immunity within different plant organs and across species is crucial to its sustainable and effective use in plant disease management but is currently unclear. We examined the activation and immune response patterns of three pattern recognition receptors (PRRs: Sl FLS2, Sl FLS3, and Sl CORE) in different developmental regions of roots and in leaves of multiple accessions of domesticated and wild tomato ( Solanum lycopersicum and S. pimpinellifolium ) using biochemical and genetic assays. Roots from different tomato accessions differed in the amplitude and dynamics of their immune response, but all exhibited developmental-specific PTI responses in which the root early differentiation zone was the most sensitive to molecular patterns. PRR signaling pathways also showed distinct but occasionally overlapping responses downstream of each immune receptor in tomato roots.These results reveal that each PRR initiates a unique PTI pathway and suggest that the specificity and complexity of tomato root immunity are tightly linked to the developmental stage, emphasizing the importance of spatial and temporal regulation in PTI.
Collapse
Affiliation(s)
- Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Robyn Roberts
- Department of Agricultural Biology, Colorado State University, 200 W Lake St, Fort Collins, CO 80523, U. S. A
| | - Danielle M. Stevens
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
- Current Address: Plant and Microbial Biology, University of California, Berkeley, Berkeley CA 94720 USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
- Current Address: Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA
| | - Silas Buchanan
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Brooke Pilkey
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616 USA
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, U. S. A
| |
Collapse
|
4
|
Moroz N, Colvin B, Jayasinghe S, Gleason C, Tanaka K. Phytocytokine StPep1-Secreting Bacteria Suppress Potato Powdery Scab Disease. PHYTOPATHOLOGY 2024; 114:2055-2063. [PMID: 38970808 DOI: 10.1094/phyto-01-24-0019-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Powdery scab is an important potato disease caused by the soilborne pathogen Spongospora subterranea f. sp. subterranea. Currently, reliable chemical control and resistant cultivars for powdery scab are unavailable. As an alternative control strategy, we propose a novel approach involving the effective delivery of a phytocytokine to plant roots by the rhizobacterium Bacillus subtilis. The modified strain is designed to secrete the plant elicitor peptide StPep1. In our experiments employing a hairy root system, we observed a significant reduction in powdery scab pathogen infection when we directly applied the StPep1 peptide. Furthermore, our pot assay, which involved pretreating potato roots with StPep1-secreting B. subtilis, demonstrated a substantial decrease in disease symptoms, including reduced root galling and fewer tuber lesions. These findings underscore the potential of engineered bacteria as a promising strategy for safeguarding plants against powdery scab.
Collapse
Affiliation(s)
- Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Benjamin Colvin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Samodya Jayasinghe
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Cynthia Gleason
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| |
Collapse
|
5
|
Kopecká R, Černý M. Xylem Sap Proteome Analysis Provides Insight into Root-Shoot Communication in Response to flg22. PLANTS (BASEL, SWITZERLAND) 2024; 13:1983. [PMID: 39065510 PMCID: PMC11281318 DOI: 10.3390/plants13141983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Xylem sap proteomics provides crucial insights into plant defense and root-to-shoot communication. This study highlights the sensitivity and reproducibility of xylem sap proteome analyses, using a single plant per sample to track over 3000 proteins in two model crop plants, Solanum tuberosum and Hordeum vulgare. By analyzing the flg22 response, we identified immune response components not detectable through root or shoot analyses. Notably, we discovered previously unknown elements of the plant immune system, including calcium/calmodulin-dependent kinases and G-type lectin receptor kinases. Despite similarities in the metabolic pathways identified in the xylem sap of both plants, the flg22 response differed significantly: S. tuberosum exhibited 78 differentially abundant proteins, whereas H. vulgare had over 450. However, an evolutionarily conserved overlap in the flg22 response proteins was evident, particularly in the CAZymes and lipid metabolism pathways, where lipid transfer proteins and lipases showed a similar response to flg22. Additionally, many proteins without conserved signal sequences for extracellular targeting were found, such as members of the HSP70 family. Interestingly, the HSP70 response to flg22 was specific to the xylem sap proteome, suggesting a unique regulatory role in the extracellular space similar to that reported in mammalians.
Collapse
Affiliation(s)
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
6
|
Kamal H, Lynch-Holm V, Pappu HR, Tanaka K. Starch Plays a Key Role in Sporosorus Formation by the Powdery Scab Pathogen Spongospora subterranea. PHYTOPATHOLOGY 2024; 114:568-579. [PMID: 37856690 DOI: 10.1094/phyto-07-23-0224-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Powdery scab disease, caused by the soilborne protist Spongospora subterranea f. sp. subterranea, poses a major constraint to potato production worldwide. Disease symptoms include damage to the tuber skin and the formation of root galls. This study aimed to investigate the potential mechanism behind the formation of sporosori, which are aggregates of resting spores, within root galls. Scanning electron microscopy analysis revealed that the early stage of gall formation, characterized by a white color, involved the accumulation of starch grains, which later disappeared as the gall matured and turned brown. The mature brown galls were found to contain fully formed sporosori. Light microscopy examination of ultramicrotome sections of the root galls showed that the high-amylopectin starches were surrounded by a plasmodium, a precursor to sporosorus. These findings suggest that starch grains contribute to the formation of a sponge-like structure within the sporosori. A significant reduction in total starch levels in both the root galls and their associated roots was observed compared with healthy roots. These findings indicate starch consumption by sporosori during the maturation of root galls. Interestingly, analysis of the transcript levels of starch-related genes showed downregulation of genes encoding starch degrading enzymes and an amylopectin-debranching enzyme, whereas genes encoding a starch synthase and a protein facilitating starch synthesis were upregulated in the infected roots. Overall, our results demonstrate that starch is consumed during sporosorus formation, and the pathogen likely manipulates starch homeostasis to its advantage for sporosorus development within the root galls.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Valerie Lynch-Holm
- School of Biological Sciences, Washington State University, Pullman, WA 99164
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| |
Collapse
|
7
|
Fang Y, Zhou B, Guo Y, Jiang J, Li X, Xie X. Comparative transcriptome analysis reveals the core molecular network in pattern-triggered immunity in Sorghum bicolor. Int J Biol Macromol 2023:124834. [PMID: 37207754 DOI: 10.1016/j.ijbiomac.2023.124834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) is the first line of defense in plant disease resistance. However, the molecular mechanisms of plant PTI vary across species, making it challenging to identify a core set of trait-associated genes. This study aimed to investigate key factors that influence PTI and identify the core molecular network in Sorghum bicolor, a C4 plant. We performed comprehensive weighted gene co-expression network analysis and temporal expression analysis of large-scale transcriptome data from various sorghum cultivars under different PAMP treatments. Our results revealed that the type of PAMP had a stronger influence on the PTI network than did the sorghum cultivar. Following PAMP treatment, 30 genes with stable downregulated expression and 158 genes with stable upregulated expression were identified, including genes encoding potential pattern recognition receptors whose expression was upregulated within 1 h of treatment. PAMP treatment altered the expression of resistance-related, signaling, salt-sensitive, heavy metal-related, and transporter genes. These findings provide novel insights into the core genes involved in plant PTI and are expected to facilitate the identification and application of resistance genes in plant breeding studies.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Bingqian Zhou
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yushan Guo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Junmei Jiang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
8
|
Toyota M, Betsuyaku S. In vivo Imaging Enables Understanding of Seamless Plant Defense Responses to Wounding and Pathogen Attack. PLANT & CELL PHYSIOLOGY 2022; 63:1391-1404. [PMID: 36165346 DOI: 10.1093/pcp/pcac135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Plants are exposed to varied biotic stresses, including sequential or simultaneous attack by insects and pathogens. To overcome these complex stresses, plants must perceive each of the stresses, then integrate and relay the information throughout the plant body and eventually activate local and systemic resistance responses. Previous molecular genetic studies identified jasmonic acid and salicylic acid as key plant hormones of wound and immune responses. These hormones, combined with their antagonistic interaction, play critical roles in the initiation and regulation of defense responses against insects and pathogens. Aside from molecular and genetic information, the latest in vivo imaging technology has revealed that plant defense responses are regulated spatially and temporally. In this review, we summarize the current knowledge of local and systemic defense responses against wounding and diseases with a focus on past and recent advances in imaging technologies. We discuss how imaging-based multiparametric analysis has improved our understanding of the spatiotemporal regulation of dynamic plant stress responses. We also emphasize the importance of compiling the knowledge generated from individual studies on plant wounding and immune responses for a more seamless understanding of plant defense responses in the natural environment.
Collapse
Affiliation(s)
- Masatsugu Toyota
- Department of Biochemistry and Molecular Biology, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284 Japan
- Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Shigeyuki Betsuyaku
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194 Japan
| |
Collapse
|
9
|
Murakami T, Katsuragi Y, Hirai H, Wataya K, Kondo M, Che FS. Distribution of flagellin CD2-1, flg22, and flgII-28 recognition systems in plant species and regulation of plant immune responses through these recognition systems. Biosci Biotechnol Biochem 2022; 86:490-501. [PMID: 35040954 DOI: 10.1093/bbb/zbac007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/12/2022]
Abstract
The first layer of active plant immunity relies upon the recognition of pathogen-associated molecular patterns (PAMPs), and the induction of PTI. Flagellin is the major protein component of the bacterial flagellum. Flagellin-derived peptide fragments such as CD2-1, flg22, and flgII-28 function as PAMPs in most higher plants. To determine the distribution of CD2-1, flg22, and flgII-28 recognition systems within plant species, the inducibility of PTI by CD2-1, flg22, and flgII-28 in 8 plant species, including monocotyledonous and dicotyledonous plants, was investigated. CD2-1 caused PTI responses in Oryza sativa, Brachypodium distachyon, and Asparagus persicus; flg22 caused PTI responses in Phyllostachys nigra, A. persicus, Arabidopsis thaliana, Nicotiana tabacum, Solanum lycopersicum, and Lotus japonicus; and flgII-28 caused PTI responses only in S. lycopersicum. Furthermore, quantitative analysis of FLS2 receptor revealed that the responsiveness of flg22 in plants was dependent on the expression level of the receptor.
Collapse
Affiliation(s)
- Takahiko Murakami
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Yuya Katsuragi
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Hiroyuki Hirai
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Koki Wataya
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Machiko Kondo
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| | - Fang-Sik Che
- Graduate School of Biosciences, N a gahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.,Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan.,Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan
| |
Collapse
|
10
|
Malvino ML, Bott AJ, Green CE, Majumdar T, Hind SR. Influence of Flagellin Polymorphisms, Gene Regulation, and Responsive Memory on the Motility of Xanthomonas Species That Cause Bacterial Spot Disease of Solanaceous Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:157-169. [PMID: 34732057 DOI: 10.1094/mpmi-08-21-0211-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasingly, new evidence has demonstrated variability in the epitope regions of bacterial flagellin, including in regions harboring the microbe-associated molecular patterns flg22 and flgII-28 that are recognized by the pattern recognition receptors FLS2 and FLS3, respectively. Additionally, because bacterial motility is known to contribute to pathogen virulence and chemotaxis, reductions in or loss of motility can significantly reduce bacterial fitness. In this study, we determined that variations in flg22 and flgII-28 epitopes allow some but not all Xanthomonas spp. to evade both FLS2- and FLS3-mediated oxidative burst responses. We observed variation in the motility for many isolates, regardless of their flagellin sequence. Instead, we determined that past growth conditions may have a significant impact on the motility status of isolates, because we could minimize this variability by inducing motility using chemoattractant assays. Additionally, motility could be significantly suppressed under nutrient-limited conditions, and bacteria could "remember" its prior motility status after storage at ultracold temperatures. Finally, we observed larger bacterial populations of strains with flagellin variants predicted not to be recognized by either FLS2 or FLS3, suggesting that these bacteria can evade flagellin recognition in tomato plants. Although some flagellin variants may impart altered motility and differential recognition by the host immune system, external growth parameters and gene expression regulation appear to have more significant impacts on the motility phenotypes for these Xanthomonas spp.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maria L Malvino
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Amie J Bott
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Cory E Green
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Tanvi Majumdar
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| |
Collapse
|
11
|
Marcec MJ, Tanaka K. Crosstalk between Calcium and ROS Signaling during Flg22-Triggered Immune Response in Arabidopsis Leaves. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010014. [PMID: 35009017 PMCID: PMC8747291 DOI: 10.3390/plants11010014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Calcium and reactive oxygen species (ROS) are two of the earliest second messengers in response to environmental stresses in plants. The rise and sequestration of these messengers in the cytosol and apoplast are formed by various channels, transporters, and enzymes that are required for proper defense responses. It remains unclear how calcium and ROS signals regulate each other during pattern-triggered immunity (PTI). In the present study, we examined the effects of perturbing one signal on the other in Arabidopsis leaves upon the addition of flg22, a well-studied microbe-associated molecular pattern (MAMP). To this end, a variety of pharmacological agents were used to suppress either calcium or ROS signaling. Our data suggest that cytosolic calcium elevation is required to initiate and regulate apoplastic ROS production generated by respiratory burst oxidase homologs (RBOHs). In contrast, ROS has no effect on the initiation of the calcium signal, but is required for forming a sufficient amplitude of the calcium signal. This finding using pharmacological agents is corroborated by the result of using a genetic double mutant, rbohd rbohf. Our study provides an insight into the mutual interplay of calcium and ROS signals during the MAMP-induced PTI response in plants.
Collapse
Affiliation(s)
- Matthew J. Marcec
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA;
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA;
- Molecular Plant Sciences Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Biotechnological advances with applicability in potatoes for resistance against root-knot nematodes. Curr Opin Biotechnol 2021; 70:226-233. [PMID: 34217954 DOI: 10.1016/j.copbio.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Potato production is negatively affected by root-knot nematodes (Meloidogyne spp.). There are no commercially available potato cultivars that are resistant to root-knot nematodes. To reduce the reliance on chemical controls, genetic engineering for nematode resistance in potato shows promise. Genetically modified potatoes that silence a parasitism gene or that express toxic protease inhibitors display reduced nematode infections. Modifying potato immune responses may also offer new opportunities for nematode resistance in potato. Plant defense elicitors, including those secreted by modified bacteria, enhanced resistance against root-knot nematodes in potato. The use of transgenic bacteria as delivery vehicles of defense-related molecules presents several possibilities for sophisticated nematode management and because this does not involve transgenic plants, it may garner greater public acceptance.
Collapse
|
13
|
Yu TY, Sun MK, Liang LK. Receptors in the Induction of the Plant Innate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:587-601. [PMID: 33512246 DOI: 10.1094/mpmi-07-20-0173-cr] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plants adjust amplitude and duration of immune responses via different strategies to maintain growth, development, and resistance to pathogens. Pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) play vital roles. Pattern recognition receptors, comprising a large number of receptor-like protein kinases and receptor-like proteins, recognize related ligands and trigger immunity. PTI is the first layer of the innate immune system, and it recognizes PAMPs at the plasma membrane to prevent infection. However, pathogens exploit effector proteins to bypass or directly inhibit the PTI immune pathway. Consistently, plants have evolved intracellular nucleotide-binding domain and leucine-rich repeat-containing proteins to detect pathogenic effectors and trigger a hypersensitive response to activate ETI. PTI and ETI work together to protect plants from infection by viruses and other pathogens. Diverse receptors and the corresponding ligands, especially several pairs of well-studied receptors and ligands in PTI immunity, are reviewed to illustrate the dynamic process of PTI response here.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tian-Ying Yu
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Meng-Kun Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Li-Kun Liang
- College of Life Sciences, Yantai University, Yantai 264005, China
| |
Collapse
|
14
|
Combest MM, Moroz N, Tanaka K, Rogan CJ, Anderson JC, Thura L, Rakotondrafara AM, Goyer A. StPIP1, a PAMP-induced peptide in potato, elicits plant defenses and is associated with disease symptom severity in a compatible interaction with Potato virus Y. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4472-4488. [PMID: 33681961 DOI: 10.1093/jxb/erab078] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The role of small secreted peptides in plant defense responses to viruses has seldom been investigated. Here, we report a role for potato (Solanum tuberosum) PIP1, a gene predicted to encode a member of the pathogen-associated molecular pattern (PAMP)-induced peptide (PIP) family, in the response of potato to Potato virus Y (PVY) infection. We show that exogenous application of synthetic StPIP1 to potato leaves and nodes increased the production of reactive oxygen species and the expression of plant defense-related genes, revealing that StPIP1 triggers early defense responses. In support of this hypothesis, transgenic potato plants that constitutively overexpress StPIP1 had higher levels of leaf callose deposition and, based on measurements of viral RNA titers, were less susceptible to infection by a compatible PVY strain. Interestingly, systemic infection of StPIP1-overexpressing lines with PVY resulted in clear rugose mosaic symptoms that were absent or very mild in infected non-transgenic plants. A transcriptomics analysis revealed that marker genes associated with both pattern-triggered immunity and effector-triggered immunity were induced in infected StPIP1 overexpressors but not in non-transgenic plants. Together, our results reveal a role for StPIP1 in eliciting plant defense responses and in regulating plant antiviral immunity.
Collapse
Affiliation(s)
- Max M Combest
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | - Natalia Moroz
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Lin Thura
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| | | | - Aymeric Goyer
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
- Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR, USA
| |
Collapse
|
15
|
Biosensors: A Sneak Peek into Plant Cell's Immunity. Life (Basel) 2021; 11:life11030209. [PMID: 33800034 PMCID: PMC7999283 DOI: 10.3390/life11030209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biosensors are indispensable tools to understand a plant’s immunity as its spatiotemporal dimension is key in withstanding complex plant immune signaling. The diversity of genetically encoded biosensors in plants is expanding, covering new analytes with ever higher sensitivity and robustness, but their assortment is limited in some respects, such as their use in following biotic stress response, employing more than one biosensor in the same chassis, and their implementation into crops. In this review, we focused on the available biosensors that encompass these aspects. We show that in vivo imaging of calcium and reactive oxygen species is satisfactorily covered with the available genetically encoded biosensors, while on the other hand they are still underrepresented when it comes to imaging of the main three hormonal players in the immune response: salicylic acid, ethylene and jasmonic acid. Following more than one analyte in the same chassis, upon one or more conditions, has so far been possible by using the most advanced genetically encoded biosensors in plants which allow the monitoring of calcium and the two main hormonal pathways involved in plant development, auxin and cytokinin. These kinds of biosensor are also the most evolved in crops. In the last section, we examine the challenges in the use of biosensors and demonstrate some strategies to overcome them.
Collapse
|
16
|
Krasitskaya VV, Bashmakova EE, Frank LA. Coelenterazine-Dependent Luciferases as a Powerful Analytical Tool for Research and Biomedical Applications. Int J Mol Sci 2020; 21:E7465. [PMID: 33050422 PMCID: PMC7590018 DOI: 10.3390/ijms21207465] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022] Open
Abstract
: The functioning of bioluminescent systems in most of the known marine organisms is based on the oxidation reaction of the same substrate-coelenterazine (CTZ), catalyzed by luciferase. Despite the diversity in structures and the functioning mechanisms, these enzymes can be united into a common group called CTZ-dependent luciferases. Among these, there are two sharply different types of the system organization-Ca2+-regulated photoproteins and luciferases themselves that function in accordance with the classical enzyme-substrate kinetics. Along with deep and comprehensive fundamental research on these systems, approaches and methods of their practical use as highly sensitive reporters in analytics have been developed. The research aiming at the creation of artificial luciferases and synthetic CTZ analogues with new unique properties has led to the development of new experimental analytical methods based on them. The commercial availability of many ready-to-use assay systems based on CTZ-dependent luciferases is also important when choosing them by first-time-users. The development of analytical methods based on these bioluminescent systems is currently booming. The bioluminescent systems under consideration were successfully applied in various biological research areas, which confirms them to be a powerful analytical tool. In this review, we consider the main directions, results, and achievements in research involving these luciferases.
Collapse
Affiliation(s)
- Vasilisa V. Krasitskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Eugenia E. Bashmakova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
| | - Ludmila A. Frank
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 660036 Krasnoyarsk, Russia; (V.V.K.); (E.E.B.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia
| |
Collapse
|