1
|
Choupannejad R, Sharifnabi B, Collemare J, Gholami J, Mehrabi R. The candidate transcription factors PnAtfA, PnCrz1, and PnVf19 contribute to fungal morphogenesis, abiotic stress tolerance, and pathogenicity in the wheat pathogen Parastagonospora nodorum. Fungal Biol 2025; 129:101565. [PMID: 40222766 DOI: 10.1016/j.funbio.2025.101565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025]
Abstract
The necrotrophic fungus Parastagonospora nodorum, the causal agent of wheat glume blotch, is responsible for substantial economic losses in many wheat-growing regions. Despite the high number of transcription factor (TF)-encoding genes in the genome of P. nodorum, very little is known about their regulatory functions. Here, we assessed the role of three TFs in the regulation of P. nodorum virulence on wheat. We identified encoded in the genome of P. nodorum PnAtfA, PnCrz1, and PnVf19, homologous candidate TFs to Schizosaccharomyces pombe Atf1, Saccharomyces cerevisiae CRZ1, and S. cerevisiae Msn2, respectively. Targeted gene replacement of each gene led to reduced mycelial vegetative growth and loss of pathogenicity on wheat. Deletion of PnAtfA resulted in phenotype alteration with ΔPnCrz1 deletion mutants displayed abnormal colony morphology characterized by dense hyphal branching and loss of aerial hyphae development, showing that both PnAtfA and PnCrz1 regulate fungal morphogenesis. Additionally, deletion of PnAtfA and PnVf19 genes abolished pycnidiospore production whereas ΔPnCrz1 produced fewer pycnidiospores compared to the wild type. Furthermore, ΔPnCrz1 and ΔPnVf19 deletion mutants demonstrated increased sensitivity to hydrogen peroxide showing their involvement in oxidative stress response. The ΔPnVf19 deletion mutants exhibited increased sensitivity to sodium chloride, suggesting that PnVf19 is essential for osmotic tolerance response. Taken together, these findings suggest that the selected candidate TFs play a key role in the fungal morphogenesis, sporulation, oxidative and osmotic stress tolerance response, and full virulence in P. nodorum.
Collapse
Affiliation(s)
- Roya Choupannejad
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran; Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | - Bahram Sharifnabi
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Javad Gholami
- Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Rahim Mehrabi
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran; Keygene N.V., P.O. Box 216, Wageningen, 6700 AE, The Netherlands
| |
Collapse
|
2
|
Chen H, Su S, Yang S, Zhao T, Tang P, Luo Q, Zhong Y, Yang J. Effector MoSDT1 enhances Magnaporthe oryzae virulence and plays a dual role in regulating rice defense. PLANT PHYSIOLOGY 2024; 196:1042-1063. [PMID: 39046202 DOI: 10.1093/plphys/kiae364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/16/2024] [Indexed: 07/25/2024]
Abstract
C2H2 zinc effectors are a class of pathogen proteins that play a dual role in plant-pathogen interactions, promoting pathogenicity and enhancing plant defense. In our previous research, we identified Magnaporthe oryzae Systemic Defense Trigger 1 (MoSDT1) as a C2H2 zinc effector that activates rice (Oryza sativa) defense when overexpressed in rice. However, its regulatory roles in pathogenicity and defense require further investigation. In this study, we generated an MoSDT1 overexpressing strain and 2 knockout strains of M. oryzae to assess the impact of MoSDT1 on pathogenicity, rice defense, and phenotypic characteristics. Our analyses revealed that MoSDT1 substantially influenced vegetative growth, conidia size, and conidiation, and was crucial for the virulence of M. oryzae while suppressing rice defense. MoSDT1 localized to the nucleus and cytoplasm of rice, either dependent or independent of M. oryzae delivery. Through RNA-seq, scRNA-seq, and ChIP-seq, we identified that MoSDT1 modulates rice defense by regulating the phosphorylation and ubiquitination of various rice signaling proteins, including transcription factors, transcription repressors, kinases, phosphatases, and the ubiquitin system. These findings provide valuable insights into the regulatory mechanisms of C2H2 zinc finger effector proteins and offer important foundational information for utilizing their target genes in disease resistance breeding and the design of targets for disease management.
Collapse
Affiliation(s)
- Hongfeng Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shunyu Su
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Shumin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Tianqi Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Ping Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanyuan Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Su J, Wang J, Tang J, Yu W, Liu J, Dong X, Dong J, Chai X, Ji P, Zhang L. Zinc finger transcription factor ZFP1 is associated with growth, conidiation, osmoregulation, and virulence in the Polygonatum kingianum pathogen Fusarium oxysporum. Sci Rep 2024; 14:16061. [PMID: 38992190 PMCID: PMC11239662 DOI: 10.1038/s41598-024-67040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Rhizome rot is a destructive soil-borne disease of Polygonatum kingianum and adversely affects the yield and sustenance of the plant. Understanding how the causal fungus Fusarium oxysporum infects P. kingianum may suggest effective control measures against rhizome rot. In germinating conidia of infectious F. oxysporum, expression of the zinc finger transcription factor gene Zfp1, consisting of two C2H2 motifs, was up-regulated. To characterize the critical role of ZFP1, we generated independent deletion mutants (zfp1) and complemented one mutant with a transgenic copy of ZFP1 (zfp1 tZFP1). Mycelial growth and conidial production of zfp1 were slower than those of wild type (ZFP1) and zfp1 tZFP1. Additionally, a reduced inhibition of growth suggested zfp1 was less sensitive to conditions promoting cell wall and osmotic stresses than ZFP1 and zfp1 tZFP1. Furthermore pathogenicity tests suggested a critical role for growth of zfp1 in infected leaves and rhizomes of P. kingianum. Thus ZFP1 is important for mycelial growth, conidiation, osmoregulation, and pathogenicity in P. kingianum.
Collapse
Affiliation(s)
- Jianyun Su
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jingyi Wang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jingying Tang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Weimei Yu
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jiajia Liu
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xian Dong
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xia Chai
- Yunnan Normal University, Kunming, 650500, China.
| | - Pengzhang Ji
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, Academy of Southern Medicine, College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
4
|
Wang Y, Cui X, Xiao J, Kang X, Hu J, Huang Z, Li N, Yang C, Pan Y, Zhang S. A novel MAP kinase-interacting protein MoSmi1 regulates development and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2024; 25:e13493. [PMID: 39034619 PMCID: PMC11260997 DOI: 10.1111/mpp.13493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
The cell wall is the first barrier against external adversity and plays roles in maintaining normal physiological functions of fungi. Previously, we reported a nucleosome assembly protein, MoNap1, in Magnaporthe oryzae that plays a role in cell wall integrity (CWI), stress response, and pathogenicity. Moreover, MoNap1 negatively regulates the expression of MoSMI1 encoded by MGG_03970. Here, we demonstrated that deletion of MoSMI1 resulted in a significant defect in appressorium function, CWI, cell morphology, and pathogenicity. Further investigation revealed that MoSmi1 interacted with MoOsm1 and MoMps1 and affected the phosphorylation levels of MoOsm1, MoMps1, and MoPmk1, suggesting that MoSmi1 regulates biological functions by mediating mitogen-activated protein kinase (MAPK) signalling pathway in M. oryzae. In addition, transcriptome data revealed that MoSmi1 regulates many infection-related processes in M. oryzae, such as membrane-related pathway and oxidation reduction process. In conclusion, our study demonstrated that MoSmi1 regulates CWI by mediating the MAPK pathway to affect development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Yu Wang
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Xinyue Cui
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Junlian Xiao
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Xiaoru Kang
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Jinmei Hu
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Na Li
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Chuyu Yang
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant ProtectionAnhui Agricultural UniversityHefeiChina
- Anhui Province Key Laboratory of Crop Integrated Pest ManagementAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
5
|
Zhang Z, Wang S, Guo M. The CHY-type zinc finger protein MoChy1 is involved in polarized growth, conidiation, autophagy and pathogenicity of Magnaporthe oryzae. Int J Biol Macromol 2024; 268:131867. [PMID: 38670181 DOI: 10.1016/j.ijbiomac.2024.131867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.
Collapse
Affiliation(s)
- Zhaodi Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei 230036, PR China; College of Plant Protection, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
6
|
Chen S, Li P, Abubakar YS, Lü P, Li Y, Mao X, Zhang C, Zheng W, Wang Z, Lu GD, Zheng H. A feedback regulation of FgHtf1-FgCon7 loop in conidiogenesis and development of Fusarium graminearum. Int J Biol Macromol 2024; 261:129841. [PMID: 38309401 DOI: 10.1016/j.ijbiomac.2024.129841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.
Collapse
Affiliation(s)
- Shuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Pengfang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810281, Nigeria
| | - Peitao Lü
- College of Horticulture, Center for Plant Metabolomics, Haixia lnstitute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yulong Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Xuzhao Mao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Chengkang Zhang
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Huawei Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Xiao K, Liu L, He R, Rollins JA, Li A, Zhang G, He X, Wang R, Liu J, Zhang X, Zhang Y, Pan H. The Snf5-Hsf1 transcription module synergistically regulates stress responses and pathogenicity by maintaining ROS homeostasis in Sclerotinia sclerotiorum. THE NEW PHYTOLOGIST 2024; 241:1794-1812. [PMID: 38135652 DOI: 10.1111/nph.19484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/12/2023] [Indexed: 12/24/2023]
Abstract
The SWI/SNF complex is guided to the promoters of designated genes by its co-operator to activate transcription in a timely and appropriate manner to govern development, pathogenesis, and stress responses in fungi. Nevertheless, knowledge of the complexes and their co-operator in phytopathogenic fungi is still fragmented. We demonstrate that the heat shock transcription factor SsHsf1 guides the SWI/SNF complex to promoters of heat shock protein (hsp) genes and antioxidant enzyme genes using biochemistry and pharmacology. This is accomplished through direct interaction with the complex subunit SsSnf5 under heat shock and oxidative stress. This results in the activation of their transcription and mediates histone displacement to maintain reactive oxygen species (ROS) homeostasis. Genetic results demonstrate that the transcription module formed by SsSnf5 and SsHsf1 is responsible for regulating morphogenesis, stress tolerance, and pathogenicity in Sclerotinia sclerotiorum, especially by directly activating the transcription of hsp genes and antioxidant enzyme genes counteracting plant-derived ROS. Furthermore, we show that stress-induced phosphorylation of SsSnf5 is necessary for the formation of the transcription module. This study establishes that the SWI/SNF complex and its co-operator cooperatively regulate the transcription of hsp genes and antioxidant enzyme genes to respond to host and environmental stress in the devastating phytopathogenic fungi.
Collapse
Affiliation(s)
- Kunqin Xiao
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ling Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Ruonan He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jeffrey A Rollins
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Anmo Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Guiping Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xiaoyue He
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Rui Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jinliang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Xianghui Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yanhua Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hongyu Pan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| |
Collapse
|
8
|
Dallaire A. A conserved osmoregulation mechanism wired for mutual benefit. THE NEW PHYTOLOGIST 2023; 240:1337-1339. [PMID: 37551030 DOI: 10.1111/nph.19191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
This article is a Commentary on Fan et al. (2023), 240: 1497–1518.
Collapse
Affiliation(s)
- Alexandra Dallaire
- Royal Botanic Gardens Kew, Richmond, TW9 3DS, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| |
Collapse
|
9
|
Fan X, Xie H, Huang X, Zhang S, Nie Y, Chen H, Xie X, Tang M. A module centered on the transcription factor Msn2 from arbuscular mycorrhizal fungus Rhizophagus irregularis regulates drought stress tolerance in the host plant. THE NEW PHYTOLOGIST 2023; 240:1497-1518. [PMID: 37370253 DOI: 10.1111/nph.19077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can form mutualistic endosymbiosis with > 70% of land plants for obtaining fatty acids and sugars, in return, AM fungi promote plant nutrients and water acquisition to enhance plant fitness. However, how AM fungi orchestrate its own signaling components in response to drought stress remains elusive. Here, we identify a transcription factor containing C2H2 zinc finger domains, RiMsn2 from Rhizophagus irregularis. To characterize the RiMsn2, we combined heterologous expression, subcellular localization in yeasts, and biochemical and molecular studies with reverse genetics approaches during the in planta phase. The results indicate that RiMsn2 is highly conserved across AM fungal species and induced during the early stages of symbiosis. It is significantly upregulated in mycorrhizal roots under severe drought conditions. The nucleus-localized RiMsn2 regulates osmotic homeostasis and trehalose contents of yeasts. Importantly, gene silencing analyses indicate that RiMsn2 is essential for arbuscule formation and enhances plant tolerance to drought stress. Results from yeasts and biochemical experiments suggest that the RiHog1-RiMsn2-STREs module controls the drought stress-responsive genes in AM fungal symbiont. In conclusion, our findings reveal that a module centered on the transcriptional activator RiMsn2 from AM fungus regulates drought stress tolerance in host plant.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xinru Huang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Shuyuan Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuying Nie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
10
|
Jia W, Yu H, Fan J, Zhang J, Su L, Li D, Pan H, Zhang X. Crucial Roles of the High-Osmolarity Glycerol Pathway in the Antifungal Activity of Isothiocyanates against Cochliobolus heterostrophus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15466-15475. [PMID: 37877171 DOI: 10.1021/acs.jafc.3c04853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Isothiocyanates (ITCs) that are found in Brassicaceae exhibited obvious antifungal activity against Cochliobolus heterostrophus, which is the causal agent of southern corn leaf blight. However, the underlying antifungal mechanism of allyl-ITCs (A-ITCs) against C. heterostrophus remains largely unknown. Here, we used transcriptomic analysis to find that the high osmolarity pathway was upregulated significantly when treated with A-ITCs. To investigate the roles of the high osmolarity pathway in adaption to A-ITCs, we constructed Δssk2, Δpbs2, and Δhog1 mutant strains. Deletion of three genes (ChSSK2, ChPBS2, and ChHOG1) involved in the high osmolarity pathway resulted in significantly increased sensitivity of C. heterostrophus to ITCs. In addition, the phosphorylation level of ChHog1 was induced by A-ITC and was dependent on the presence of ChSsk2 and ChPbs2. Moreover, Δssk2, Δpbs2, and Δhog1 mutants exhibited a dramatically decreased virulence on maize leaves. Our findings demonstrated that the high osmolarity pathway played a positive role in ITC tolerance and virulence, which may provide novel insights into developing ITCs as a new fungicide against C. heterostrophus.
Collapse
Affiliation(s)
- Wantong Jia
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Huilin Yu
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jinyu Fan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Jiyue Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Longhao Su
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Dan Li
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Xianghui Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
11
|
Lu P, Wang K, Wang J, Xia C, Yang S, Ma L, Shi H. A novel zinc finger transcription factor, BcMsn2, is involved in growth, development, and virulence in Botrytis cinerea. Front Microbiol 2023; 14:1247072. [PMID: 37915851 PMCID: PMC10616473 DOI: 10.3389/fmicb.2023.1247072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Reactive oxygen species (ROS) are important for plant defense against fungal attack. As a necrotrophic fungus, Botrytis cinerea can exploit ROS that originated from both sides of the host and pathogen during interaction to facilitate its infestation. Meanwhile, B. cinerea needs to exert an efficient oxidative stress responsive system to balance the intracellular redox state when encountering deleterious ROS levels. However, the machinery applied by B. cinerea to cope with ROS remains obscure. Herein, we investigated the role of the transcription factor BcMsn2 in regulating B. cinerea redox homeostasis. Disruption of the BcMsn2 gene severely impaired vegetative growth, sclerotium formation, conidial yield, and fungal virulence. The intracellular oxidative homeostasis of the ∆bcmsn2 mutant was disrupted, leading to significantly elevated levels of ROS and reduced activities of enzymes closely associated with oxygen stress, such as catalase (CAT) and superoxide dismutase (SOD). RNA-Seq and qRT-PCR analyses showed remarkable downregulation of the expression of several genes encoding ROS scavenging factors involved in maintaining the redox homeostasis in ∆bcmsn2, suggesting that BcMsn2 functions as a transcriptional regulator of these genes. Our findings indicated that BcMsn2 plays an indispensable role in maintaining the equilibrium of the redox state in B. cinerea, and intracellular ROS serve as signaling molecules that regulate the growth, asexual reproduction, and virulence of this pathogen.
Collapse
Affiliation(s)
- Ping Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Ke Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiaqi Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Chunbo Xia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shu Yang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Liang Ma
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Haojie Shi
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
12
|
Lu K, Chen R, Yang Y, Xu H, Jiang J, Li L. Involvement of the Cell Wall-Integrity Pathway in Signal Recognition, Cell-Wall Biosynthesis, and Virulence in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:608-622. [PMID: 37140471 DOI: 10.1094/mpmi-11-22-0231-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kailun Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rangrang Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hui Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Zhang T, Wang X, Li X, Li YN, Li Y, Wu S, Xu L, Zhou R, Yang J, Li G, Liu X, Zheng X, Zhang Z, Zhang H. MoLrp1-mediated signaling induces nuclear accumulation of MoMsn2 to facilitate fatty acid oxidation for infectious growth of the rice blast fungus. PLANT COMMUNICATIONS 2023:100561. [PMID: 36774535 PMCID: PMC10363509 DOI: 10.1016/j.xplc.2023.100561] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Fatty acid β-oxidation is critical for fatty acid degradation and cellular development. In the rice blast fungus Magnaporthe oryzae, fatty acid β-oxidation is reported to be important mainly for turgor generation in the appressorium. However, the role of fatty acid β-oxidation during invasive hyphal growth is rarely documented. We demonstrated that blocking peroxisomal fatty acid β-oxidation impaired lipid droplet (LD) degradation and infectious growth of M. oryzae. We found that the key regulator of pathogenesis, MoMsn2, which we identified previously, is involved in fatty acid β-oxidation by targeting MoDCI1 (encoding dienoyl-coenzyme A [CoA] isomerase), which is also important for LD degradation and infectious growth. Cytological observations revealed that MoMsn2 accumulated from the cytosol to the nucleus during early infection or upon treatment with oleate. We determined that the low-density lipoprotein receptor-related protein MoLrp1, which is also involved in fatty acid β-oxidation and infectious growth, plays a critical role in the accumulation of MoMsn2 from the cytosol to the nucleus by activating the cyclic AMP signaling pathway. Our results provide new insights into the importance of fatty acid oxidation during invasive hyphal growth, which is modulated by MoMsn2 and its related signaling pathways in M. oryzae.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xingyu Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xue Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ya-Nan Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yuhe Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Lele Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ruiwen Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jing Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, the Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China; The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
14
|
MoMaf1 Mediates Vegetative Growth, Conidiogenesis, and Pathogenicity in the Rice Blast Fungus Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9010106. [PMID: 36675927 PMCID: PMC9861366 DOI: 10.3390/jof9010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
In eukaryotes, Maf1 is an essential and specific negative regulator of RNA polymerase (Pol) III. Pol III, which synthesizes 5S RNA and transfer RNAs (tRNAs), is suppressed by Maf1 under the conditions of nutrient starvation or environmental stress. Here, we identified M. oryzae MoMaf1, a homolog of ScMaf1 in budding yeast. A heterogeneous complementation assay revealed that MoMaf1 restored growth defects in the ΔScmaf1 mutant under SDS stress. Destruction of MoMAF1 elevated 5S rRNA content and increased sensitivity to cell wall agents. Moreover, the ΔMomaf1 mutant exhibited reduced vegetative growth, conidiogenesis, and pathogenicity. Interestingly, we found that MoMaf1 underwent nuclear-cytoplasmic shuffling, through which MoMaf1 accumulated in nuclei under nutrient deficiency or upon the interaction of M. oryzae with rice. Therefore, this study can help to elucidate the pathogenic molecular mechanism of M. oryzae.
Collapse
|
15
|
Shabbir A, Batool W, Yu D, Lin L, An Q, Xiaomin C, Guo H, Yuan S, Malota S, Wang Z, Norvienyeku J. Magnaporthe oryzae Chloroplast Targeting Endo-β-1,4-Xylanase I MoXYL1A Regulates Conidiation, Appressorium Maturation and Virulence of the Rice Blast Fungus. RICE (NEW YORK, N.Y.) 2022; 15:44. [PMID: 35960402 PMCID: PMC9374862 DOI: 10.1186/s12284-022-00584-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Endo-β-1,4-Xylanases are a group of extracellular enzymes that catalyze the hydrolysis of xylan, a principal constituent of the plant primary cell wall. The contribution of Endo-β-1,4-Xylanase I to both physiology and pathogenesis of the rice blast fungus M. oryzae is unknown. Here, we characterized the biological function of two endoxylanase I (MoXYL1A and MoXYL1B) genes in the development of M. oryzae using targeted gene deletion, biochemical analysis, and fluorescence microscopy. Phenotypic analysis of ∆Moxyl1A strains showed that MoXYL1A is required for the full virulence of M. oryzae but is dispensable for the vegetative growth of the rice blast fungus. MoXYL1B, in contrast, did not have a clear role in the infectious cycle but has a critical function in asexual reproduction of the fungus. The double deletion mutant was severely impaired in pathogenicity and virulence as well as asexual development. We found that MoXYL1A deletion compromised appressorium morphogenesis and function, leading to failure to penetrate host cells. Fluorescently tagged MoXYL1A and MoXYL1B displayed cytoplasmic localization in M. oryzae, while analysis of MoXYL1A-GFP and MoXYL1B-GFP in-planta revealed translocation and accumulation of these effector proteins into host cells. Meanwhile, sequence feature analysis showed that MoXYL1A possesses a transient chloroplast targeting signal peptide, and results from an Agrobacterium infiltration assay confirmed co-localization of MoXYL1A-GFP with ChCPN10C-RFP in the chloroplasts of host cells. MoXYL1B, accumulated to the cytoplasm of the host. Taken together, we conclude that MoXYL1A is a secreted effector protein that likely promotes the virulence of M. oryzae by interfering in the proper functioning of the host chloroplast, while the related xylanase MoXYL1B does not have a major role in virulence of M. oryzae.
Collapse
Affiliation(s)
- Ammarah Shabbir
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Wajjiha Batool
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Dan Yu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Lili Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Qiuli An
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Chen Xiaomin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shuangshuang Yuan
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Sekete Malota
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Shenyang Agriculture University, Shenyang, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
16
|
Zhao J, Sun P, Sun Q, Li R, Qin Z, Sha G, Zhou Y, Bi R, Zhang H, Zheng L, Chen X, Yang L, Li Q, Li G. The MoPah1 phosphatidate phosphatase is involved in lipid metabolism, development, and pathogenesis in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:720-732. [PMID: 35191164 PMCID: PMC8995063 DOI: 10.1111/mpp.13193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 05/23/2023]
Abstract
As with the majority of the hemibiotrophic fungal pathogens, the rice blast fungus Magnaporthe oryzae uses highly specialized infection structures called appressoria for plant penetration. Appressoria differentiated from germ tubes rely on enormous turgor pressure to directly penetrate the plant cell, in which process lipid metabolism plays a critical role. In this study, we characterized the MoPAH1 gene in M. oryzae, encoding a putative highly conserved phosphatidate phosphatase. The expression of MoPAH1 was up-regulated during plant infection. The MoPah1 protein is expressed at all developmental and infection stages, and is localized to the cytoplasm. Disruption of MoPAH1 causes pleiotropic defects in vegetative growth, sporulation, and heat tolerance. The lipid profile is significantly altered in the Mopah1 mutant. Lipidomics assays showed that the level of phosphatidic acid (PA) was increased in the mutant, which had reduced levels of diacylglycerol and triacylglycerol. Using a PA biosensor, we showed that the increased level of PA in the Mopah1 mutant was primarily accumulated in the vacuole. The Mopah1 mutant was blocked in both conidiation and the formation of appressorium-like structures at hyphal tips. It was nonpathogenic and failed to cause any blast lesions on rice and barley seedlings. RNA sequencing analysis revealed that MoPah1 regulates the expression of transcription factors critical for various developmental and infection-related processes. The Mopah1 mutant was reduced in the expression and phosphorylation of Pmk1 MAP kinase and delayed in autophagy. Our study demonstrates that MoPah1 is necessary for lipid metabolism, fungal development, and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Juan Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Peng Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiping Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Renjian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Ziting Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Gan Sha
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Yaru Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Ruiqing Bi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Haifeng Zhang
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
17
|
Zhang T, Li YN, Li X, Gu W, Moeketsi EK, Zhou R, Zheng X, Zhang Z, Zhang H. The Peroxisomal-CoA Synthetase MoPcs60 Is Important for Fatty Acid Metabolism and Infectious Growth of the Rice Blast Fungus. FRONTIERS IN PLANT SCIENCE 2022; 12:811041. [PMID: 35154208 PMCID: PMC8826238 DOI: 10.3389/fpls.2021.811041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Fatty acid metabolism is important for the maintenance of fatty acid homeostasis. Free fatty acids, which are toxic in excess, are activated by esterification with coenzyme A (CoA) and then subjected to β-oxidization. Fatty acid β-oxidation-related genes play critical roles in the development and virulence of several phytopathogens. In this study, we identified and characterized a peroxisomal-CoA synthetase in the rice blast fungus Magnaporthe oryzae, MoPCS60, which is a homolog of PCS60 in budding yeast. MoPCS60 was highly expressed during the conidial and early infectious stages and was induced under oleate treatment. Targeted deletion of MoPCS60 resulted in a significant reduction in growth rate when oleate and olive oil were used as the sole carbon sources. Compared with the wild-type strain Guy11, the ΔMopcs60 mutant exhibited fewer peroxisomes, more lipid droplets, and decreased pathogenicity. The distribution of MoPcs60 varied among developmental stages and was mainly localized to peroxisomes in the hyphae, conidia, and appressoria when treated with oleate. Our results suggest that MoPcs60 is a key peroxisomal-CoA synthetase involved in fatty acid β-oxidation and pathogenicity in rice blast fungi.
Collapse
|
18
|
The signaling pathways involved in metabolic regulation and stress responses of the yeast-like fungi Aureobasidium spp. Biotechnol Adv 2021; 55:107898. [PMID: 34974157 DOI: 10.1016/j.biotechadv.2021.107898] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022]
Abstract
Aureobasidium spp. can use a wide range of substrates and are widely distributed in different environments, suggesting that they can sense and response to various extracellular signals and be adapted to different environments. It is true that their pullulan, lipid and liamocin biosynthesis and cell growth are regulated by the cAMP-PKA signaling pathway; Polymalate (PMA) and pullulan biosynthesis is controlled by the Ca2+ and TORC1 signaling pathways; the HOG1 signaling pathway determines high osmotic tolerance and high pullulan and liamocin biosynthesis; the Snf1/Mig1 pathway controls glucose repression on pullulan and liamocin biosynthesis; DHN-melanin biosynthesis and stress resistance are regulated by the CWI signaling pathway and TORC1 signaling pathway. In addition, the HSF1 pathway may control cell growth of some novel strains of A. melanogenum at 37 °C. However, the detailed molecular mechanisms of high temperature growth and thermotolerance of some novel strains of A. melanogenum and glucose derepression in A. melanogenum TN3-1 are still unclear.
Collapse
|
19
|
Lee S, Völz R, Song H, Harris W, Lee YH. Characterization of the MYB Genes Reveals Insights Into Their Evolutionary Conservation, Structural Diversity, and Functional Roles in Magnaporthe oryzae. Front Microbiol 2021; 12:721530. [PMID: 34899620 PMCID: PMC8660761 DOI: 10.3389/fmicb.2021.721530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
The myeloblastosis (MYB) transcription factor family is evolutionarily conserved among plants, animals, and fungi, and contributes to their growth and development. We identified and analyzed 10 putative MYB genes in Magnaporthe oryzae (MoMYB) and determined their phylogenetic relationships, revealing high divergence and variability. Although MYB domains are generally defined by three tandem repeats, MoMYBs contain one or two weakly conserved repeats embedded in extensive disordered regions. We characterized the secondary domain organization, disordered segments, and functional contributions of each MoMYB. During infection, MoMYBs are distinctively expressed and can be subdivided into two clades of being either up- or down-regulated. Among these, MoMYB1 and MoMYB8 are up-regulated during infection and vegetative growth, respectively. We found MoMYB1 localized predominantly to the cytosol during the formation of infection structures. ΔMomyb1 exhibited reduced virulence on intact rice leaves corresponding to the diminished ability to form hypha-driven appressorium (HDA). We discovered that MoMYB1 regulates HDA formation on hard, hydrophobic surfaces, whereas host surfaces partially restored HDA formation in ΔMomyb1. Lipid droplet accumulation in hyphal tips and expression of HDA-associated genes were strongly perturbed in ΔMomyb1 indicating genetic interaction of MoMYB1 with downstream components critical to HDA formation. We also found that MoMYB8 is necessary for fungal growth, dark-induced melanization of hyphae, and involved in higher abiotic stress tolerance. Taken together, we revealed a multifaceted picture of the MoMYB family, wherein a low degree of conservation has led to the development of distinct structures and functions, ranging from fungal growth to virulence.
Collapse
Affiliation(s)
- Sehee Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Völz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
20
|
Song D, Cao Y, Xia Y. Transcription Factor MaMsn2 Regulates Conidiation Pattern Shift under the Control of MaH1 through Homeobox Domain in Metarhizium acridum. J Fungi (Basel) 2021; 7:jof7100840. [PMID: 34682261 PMCID: PMC8541488 DOI: 10.3390/jof7100840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022] Open
Abstract
The growth pattern of filamentous fungi can switch between hyphal radial polar growth and non-polar yeast-like cell growth depending on the environmental conditions. Asexual conidiation after radial polar growth is called normal conidiation (NC), while yeast-like cell growth is called microcycle conidiation (MC). Previous research found that the disruption of MaH1 in Metarhizium acridum led to a conidiation shift from NC to MC. However, the regulation mechanism is not clear. Here, we found MaMsn2, an Msn2 homologous gene in M. acridum, was greatly downregulated when MaH1 was disrupted (ΔMaH1). Loss of MaMsn2 also caused a conidiation shift from NC to MC on a nutrient-rich medium. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) showed that MaH1 could bind to the promoter region of the MaMsn2 gene. Disrupting the interaction between MaH1 and the promoter region of MaMsn2 significantly downregulated the transcription level of MaMsn2, and the overexpression of MaMsn2 in ΔMaH1 could restore NC from MC of ΔMaH1. Our findings demonstrated that MaMsn2 played a role in maintaining the NC pattern directly under the control of MaH1, which revealed the molecular mechanisms that regulated the conidiation pattern shift in filamentous fungi for the first time.
Collapse
Affiliation(s)
- Dongxu Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China;
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400044, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing 401331, China;
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400044, China
- Correspondence: (Y.C.); (Y.X.)
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, China;
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 400044, China
- Correspondence: (Y.C.); (Y.X.)
| |
Collapse
|
21
|
Zheng C, Zhang W, Zhang S, Yang G, Tan L, Guo M. Class I myosin mediated endocytosis and polarization growth is essential for pathogenicity of Magnaporthe oryzae. Appl Microbiol Biotechnol 2021; 105:7395-7410. [PMID: 34536105 DOI: 10.1007/s00253-021-11573-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
In eukaryotes, myosin provides the necessary impetus for a series of physiological processes, including organelle movement, cytoplasmic flow, cell division, and mitosis. Previously, three members of myosin were identified in Magnaporthe oryzae, with class II and class V myosins playing important roles in intracellular transport, fungal growth, and pathogenicity. However, limited is known about the biological function of the class I myosin protein in the rice blast fungus. Here, we found that Momyo1 is highly expressed during conidiation and infection. Functional characterization of this gene via RNA interference (RNAi) revealed that Momyo1 is required for vegetative growth, conidiation, melanin pigmentation, and pathogenicity of M. oryzae. The Momyo1 knockdown mutant is defective in formation of appressorium-like structures (ALS) at the hyphal tips. In addition, Momyo1 also displays defects on cell wall integrity, hyphal hydrophobicity, extracellular enzyme activities, endocytosis, and formation of the Spitzenkörper. Furthermore, Momyo1 was identified to physically interact with the MoShe4, a She4p/Dim1p orthologue potentially involved in endocytosis, polarization of the actin cytoskeleton. Overall, our findings provide a novel insight into the regulatory mechanism of Momyo1 that is involved in fungal growth, cell wall integrity, endocytosis, and virulence of M. oryzae. KEY POINTS: • Momyo1 is required for vegetative growth and pigmentation of M. oryzae. • Momyo1 is essential for cell wall integrity and endocytosis of M. oryzae. • Momyo1 is involved in hyphal surface hydrophobicity of M. oryzae.
Collapse
Affiliation(s)
- Chengcheng Zheng
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Weiwei Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Shulin Zhang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Guogen Yang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Leyong Tan
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China.
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China.
| |
Collapse
|
22
|
Liu X, Zhang Z. A double-edged sword: reactive oxygen species (ROS) during the rice blast fungus and host interaction. FEBS J 2021; 289:5505-5515. [PMID: 34453409 DOI: 10.1111/febs.16171] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/07/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungus that also needs host nutrients for propagation during infection. During its interaction with rice, reactive oxygen species (ROS) mediate important signaling reactions impacting both the pathogen and the host. In M. oryzae, the accumulation of ROS is important for the formation and maturation of the infectious structure appressorium. On the other hand, upon M. oryzae infection, rice generates further ROS to restrict invasive hyphae (IH) spreading. Despite ROS receptors remaining to be identified, M. oryzae recruits several strategies to respond and suppress ROS accumulation through the secretion of various effector molecules. These findings suggest that the balance between the generation and scavenging of ROS is sophisticatedly controlled during M. oryzae-rice interaction. In this review, we discuss advances to understand the regulation mechanisms for the generation, accumulation, and transduction of ROS.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, China
| |
Collapse
|
23
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
24
|
Zhou S, Liu X, Sun W, Zhang M, Yin Y, Pan S, He D, Shen M, Yang J, Zheng Q, Wang W. The COMPASS-like complex modulates fungal development and pathogenesis by regulating H3K4me3-mediated targeted gene expression in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:422-439. [PMID: 33559339 PMCID: PMC7938624 DOI: 10.1111/mpp.13035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 05/07/2023]
Abstract
Histone-3-lysine-4 (H3K4) methylation is catalysed by the multiprotein complex known as the Set1/COMPASS or MLL/COMPASS-like complex, an element that is highly evolutionarily conserved from yeast to humans. However, the components and mechanisms by which the COMPASS-like complex targets the H3K4 methylation of plant-pathogenic genes in fungi remain elusive. Here we present a comprehensive analysis combining biochemical, molecular, and genome-wide approaches to characterize the roles of the COMPASS-like family in the rice blast fungus Magnaporthe oryzae, a model plant pathogen. We purified and identified six conserved subunits of COMPASS from M. oryzae: MoBre2 (Cps60/ASH2L), MoSpp1 (Cps40/Cfp1), MoSwd2 (Cps35), MoSdc1 (Cps25/DPY30), MoSet1 (MLL/ALL), and MoRbBP5 (Cps50), using an affinity tag on MoBre2. We determined the sequence repeat in dual-specificity kinase splA and ryanodine receptors domain of MoBre2 can interact directly with the DPY30 domain of MoSdc1 in vitro. Furthermore, we found that deletion of the genes encoding COMPASS subunits of MoBre2, MoSPP1, and MoSwd2 caused similar defects regarding invasive hyphal development and pathogenicity. Genome-wide profiling of H3K4me3 revealed that it has remarkable co-occupancy at the transcription start site regions of target genes. Significantly, these target genes are often involved in spore germination and pathogenesis. Decreased gene expression caused by the deletion of MoBre2, MoSwd2, or MoSpp1 was highly correlated with a decrease in H3K4me3. These results suggest that MoBre2, MoSpp1, and MoSwd2 function as a whole COMPASS complex, contributing to fungal development and pathogenesis by regulating H3K4me3-targeted genes in M. oryzae.
Collapse
Affiliation(s)
- Sida Zhou
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Xiuying Liu
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Wanyu Sun
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Yue Yin
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| | - Song Pan
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mi Shen
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Qi Zheng
- Center for Research and CooperationNovogene Bioinformatics InstituteBeijingChina
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural ApplicationNational Demonstration Center for Experimental Plant Production EducationBeijing University of AgricultureBeijingChina
| |
Collapse
|
25
|
Liu X, Zhou Q, Guo Z, Liu P, Shen L, Chai N, Qian B, Cai Y, Wang W, Yin Z, Zhang H, Zheng X, Zhang Z. A self-balancing circuit centered on MoOsm1 kinase governs adaptive responses to host-derived ROS in Magnaporthe oryzae. eLife 2020; 9:61605. [PMID: 33275098 PMCID: PMC7717906 DOI: 10.7554/elife.61605] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
The production of reactive oxygen species (ROS) is a ubiquitous defense response in plants. Adapted pathogens evolved mechanisms to counteract the deleterious effects of host-derived ROS and promote infection. How plant pathogens regulate this elaborate response against ROS burst remains unclear. Using the rice blast fungus Magnaporthe oryzae, we uncovered a self-balancing circuit controlling response to ROS in planta and virulence. During infection, ROS induces phosphorylation of the high osmolarity glycerol pathway kinase MoOsm1 and its nuclear translocation. There, MoOsm1 phosphorylates transcription factor MoAtf1 and dissociates MoAtf1-MoTup1 complex. This releases MoTup1-mediated transcriptional repression on oxidoreduction-pathway genes and activates the transcription of MoPtp1/2 protein phosphatases. In turn, MoPtp1/2 dephosphorylate MoOsm1, restoring the circuit to its initial state. Balanced interactions among proteins centered on MoOsm1 provide a means to counter host-derived ROS. Our findings thereby reveal new insights into how M. oryzae utilizes a phosphor-regulatory circuitry to face plant immunity during infection.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Qikun Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ziqian Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Peng Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lingbo Shen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ning Chai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Bin Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yongchao Cai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenya Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Zhang M, Gao ZC, Chi Z, Liu GL, Hu Z, Chi ZM. cAMP-PKA and HOG1 signaling pathways regulate liamocin production by different ways via the transcriptional activator Msn2 in Aureobasidium melanogenum. Enzyme Microb Technol 2020; 143:109705. [PMID: 33375973 DOI: 10.1016/j.enzmictec.2020.109705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
Abstract
Liamocins, as the secondary metabolites synthesized and secreted by Aureobasidium spp., consist of a single mannitol or a single arabitol head group partially O-acylated with three 3,5-dihydroxydecanoic ester groups or directly esterified with three or four 3,5-dihydroxydecanoic ester tails. Very recently, the whole synthetic pathway of liamocins in A. melanogenum 6-1-2 has been elucidated. It was found that the promoter sequences of all the genes related to liamocin synthesis in A. melanogenum 6-1-2 had stress regulatory elements with core sequences of AGGGG or CCCCT. Therefore, expression of all the genes would be regulated by the Msn2. In this study, it was found that removal of the single one MSN2 gene in A. melanogenum 6-1-2 made the mutant decrease yield of extracellular liamocin by 92.28 %, while complementation of the MSN2 gene in the mutant rendered liamocin synthesis to be restored. When A. melanogenum 6-1-2 was cultured in the liamocin fermentation medium with high glucose and low nitrogen, the Msn2 was localized in the nucleus and positively regulated the expression of the genes related to liamocin biosynthesis. Furthermore, when the key BCY1 gene encoding regulatory subunit of the cAMP-PKA signaling pathway in A. melanogenum 6-1-2 was knocked out, the amount of extracellular liamocins synthesized by the mutant was decreased by 96.73 % and the Msn2 was localized in the cytoplasm. Similarly, when the key HOG1 gene in the HOG1 signaling pathway was deleted, liamocin biosynthesis in the knockout strain was decreased by 98.09 %. However, it was found that the Hog1 may be one part of the general transcription complex to regulate the transcription of the MSN2 gene, leading to the reduced Msn2 and liamocin synthesis in the mutant. In addition, the key TOR1 gene and SNF1 gene in the TOR1 signaling pathway and the SNF1 signaling pathway were not involved in the regulation of the Msn2 activity and liamocin synthesis. It was concluded that the transcriptional activator Msn2, the HOG1 signaling pathway and the cAMP-PKA signaling pathway were involved in the regulation of liamocin biosynthesis and production.
Collapse
Affiliation(s)
- Mei Zhang
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhi-Chao Gao
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China
| | - Zhe Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Guang-Lei Liu
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Zhen-Ming Chi
- College of Marine Life Science, Ocean University of China, Yushan Road, No. 5, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266003, Qingdao, China.
| |
Collapse
|
27
|
Kim T, Lee SH, Oh YT, Jeon J. A Histone Deacetylase, MoHDA1 Regulates Asexual Development and Virulence in the Rice Blast Fungus. THE PLANT PATHOLOGY JOURNAL 2020; 36:314-322. [PMID: 32788890 PMCID: PMC7403517 DOI: 10.5423/ppj.oa.06.2020.0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Interplay between histone acetylation and deacetylation is one of the key components in epigenetic regulation of transcription. Here we report the requirement of Mo-HDA1-mediated histone deacetylation during asexual development and pathogenesis for the rice blast fungus, Magnaporthe oryzae. Structural similarity and phylogenetic analysis suggested that MoHDA1 is an ortholog of Saccharomyces cerevisiae Hda1, which is a representative member of class II histone deacetylases. Targeted deletion of MoHDA1 caused a little decrease in radial growth and large reduction in asexual sporulation. Comparison of acetylation levels for H3K9 and H3K14 showed that lack of MoHDA1 gene led to significant increase in H3K9 and H3K14 acetylation level, compared to the wild-type and complementation strain, confirming that it is a bona fide histone deacetylase. Expression analysis on some of the key genes involved in asexual reproduction under sporulation-promoting condition showed almost no differences among strains, except for MoCON6 gene, which was up-regulated more than 6-fold in the mutant than wild-type. Although the deletion mutant displayed little defects in germination and subsequent appressorium formation, the mutant was compromised in its ability to cause disease. Woundinoculation showed that the mutant is impaired in invasive growth as well. We found that the mutant was defective in appressorium-mediated penetration of host, but did not lose the ability to grow on the media containing H2O2. Taken together, our data suggest that MoHDA1-dependent histone deacetylation is important for efficient asexual development and infection of host plants in M. oryzae.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
| | - Song Hee Lee
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Young Taek Oh
- Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea
| | - Junhyun Jeon
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
28
|
Xiao Y, Liu L, Zhang T, Zhou R, Ren Y, Li X, Shu H, Ye W, Zheng X, Zhang Z, Zhang H. Transcription factor MoMsn2 targets the putative 3-methylglutaconyl-CoA hydratase-encoding gene MoAUH1 to govern infectious growth via mitochondrial fusion/fission balance in Magnaporthe oryzae. Environ Microbiol 2020; 23:774-790. [PMID: 32431008 DOI: 10.1111/1462-2920.15088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/09/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023]
Abstract
Mitochondrial quality and quantity are essential for a cell to maintain normal cellular functions. Our previous study revealed that the transcription factor MoMsn2 plays important roles in the development and virulence of Magnaporthe oryzae. However, to date, no study has reported its underlying regulatory mechanism in phytopathogens. Here, we explored the downstream target genes of MoMsn2 using a chromatin immunoprecipitation sequencing (ChIP-Seq) approach. In total, 332 target genes and five putative MoMsn2-binding sites were identified. The 332 genes exhibited a diverse array of functions and the highly represented were genes involved in metabolic and catalytic processes. Based on the ChIP-Seq data, we found that MoMsn2 plays a role in maintaining mitochondrial morphology, likely by targeting a number of mitochondria-related genes. Further investigation revealed that MoMsn2 targets the putative 3-methylglutaconyl-CoA hydratase-encoding gene (MoAUH1) to control mitochondrial morphology and mitophagy, which are critical for the infectious growth of the pathogen. Meanwhile, the deletion of MoAUH1 resulted in phenotypes similar to the ΔMomsn2 mutant in mitochondrial morphology, mitophagy and virulence. Overall, our results provide evidence for the regulatory mechanisms of MoMsn2, which targets MoAUH1 to modulate its transcript levels, thereby disturbing the mitochondrial fusion/fission balance. This ultimately affects the development and virulence of M. oryzae.
Collapse
Affiliation(s)
- Yuhan Xiao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luping Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ting Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ruiwen Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuan Ren
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinrui Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haidong Shu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
29
|
Li Y, Liu X, Liu M, Wang Y, Zou Y, You Y, Yang L, Hu J, Zhang H, Zheng X, Wang P, Zhang Z. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity. mBio 2020; 11:e03304-19. [PMID: 32209696 PMCID: PMC7157532 DOI: 10.1128/mbio.03304-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/24/2020] [Indexed: 02/02/2023] Open
Abstract
The appressoria that are generated by the rice blast fungus Magnaporthe oryzae in response to surface cues are important for successful colonization. Previous work showed that regulators of G-protein signaling (RGS) and RGS-like proteins play critical roles in appressorium formation. However, the mechanisms by which these proteins orchestrate surface recognition for appressorium induction remain unclear. Here, we performed comparative transcriptomic studies of ΔMorgs mutant and wild-type strains and found that M. oryzae Aa91 (MoAa91), a homolog of the auxiliary activity family 9 protein (Aa9), was required for surface recognition of M. oryzae We found that MoAA91 was regulated by the MoMsn2 transcription factor and that its disruption resulted in defects in both appressorium formation on the artificial inductive surface and full virulence of the pathogen. We further showed that MoAa91 was secreted into the apoplast space and was capable of competing with the immune receptor chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immune responses. In summary, we have found that MoAa91 is a novel signaling molecule regulated by RGS and RGS-like proteins and that MoAa91 not only governs appressorium development and virulence but also functions as an effector to suppress host immunity.IMPORTANCE The rice blast fungus Magnaporthe oryzae generates infection structure appressoria in response to surface cues largely due to functions of signaling molecules, including G-proteins, regulators of G-protein signaling (RGS), mitogen-activated protein (MAP) kinase pathways, cAMP signaling, and TOR signaling pathways. M. oryzae encodes eight RGS and RGS-like proteins (MoRgs1 to MoRgs8), and MoRgs1, MoRgs3, MoRgs4, and MoRgs7 were found to be particularly important in appressorium development. To explore the mechanisms by which these proteins regulate appressorium development, we have performed a comparative in planta transcriptomic study and identified an auxiliary activity family 9 protein (Aa9) homolog that we named MoAa91. We showed that MoAa91 was secreted from appressoria and that the recombinant MoAa91 could compete with a chitin elicitor-binding protein precursor (CEBiP) for chitin binding, thereby suppressing chitin-induced plant immunity. By identifying MoAa91 as a novel signaling molecule functioning in appressorium development and an effector in suppressing host immunity, our studies revealed a novel mechanism by which RGS and RGS-like proteins regulate pathogen-host interactions.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yang Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yibin Zou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yimei You
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jiexiong Hu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
30
|
Li Y, Liu X, Yin Z, You Y, Zou Y, Liu M, He Y, Zhang H, Zheng X, Zhang Z, Wang P. MicroRNA-like milR236, regulated by transcription factor MoMsn2, targets histone acetyltransferase MoHat1 to play a role in appressorium formation and virulence of the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2020; 137:103349. [PMID: 32006681 DOI: 10.1016/j.fgb.2020.103349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) play important roles in various cellular growth and developmental processes through post-transcriptional gene regulation via mRNA cleavage and degradation and the inhibition of protein translation. To explore if miRNAs play a role in appressoria formation and virulence that are also governed by the regulators of G-protein signaling (RGS) proteins in the rice blast fungus Magnaporthe oryzae, we have compared small RNA (sRNA) production between several ΔMorgs mutant and the wild-type strains. We have identified sRNA236 as a microRNA-like milR236 that targets the encoding sequence of MoHat1, a histone acetyltransferase type B catalytic subunit involved in appressorium function and virulence. We have also found that milR236 overexpression induces delayed appressorium formation and virulence attenuation, similar to those displayed by the ΔMohat1 mutant strain. Moreover, we have shown that the transcription factor MoMsn2 binds to the promoter sequence of milR236 to further suppress MoHAT1 transcription and MoHat1-regulated appressorium formation and virulence. In summary, by identifying a novel regulatory role of sRNA in the blast fungus, our studies reveal a new paradigm in the multifaceted regulatory pathways that govern the appressorium formation and virulence of M. oryzae.
Collapse
Affiliation(s)
- Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yimei You
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yibin Zou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Yanglan He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China.
| | - Ping Wang
- Departments of Microbiology, Immunology, and Parasitology, and Pediatrics Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
31
|
Pham TA, Schwerdt JG, Shirley NJ, Xing X, Hsieh YS, Srivastava V, Bulone V, Little A. Analysis of cell wall synthesis and metabolism during early germination of Blumeria graminis f. sp. hordei conidial cells induced in vitro. Cell Surf 2019; 5:100030. [PMID: 32743146 PMCID: PMC7389524 DOI: 10.1016/j.tcsw.2019.100030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022] Open
Abstract
As an obligate biotroph, Blumeria graminis f. sp. hordei (Bgh) cannot be grown in an axenic culture, and instead must be cultivated on its host species, Hordeum vulgare (barley). In this study an in vitro system utilizing n-hexacosanal, a constituent of the barley cuticle and known inducer of Bgh germination, was used to cultivate Bgh and differentiate conidia up to the appressorial germ tube stage for analysis. Transcriptomic and proteomic profiling of the appressorial germ tube stage revealed that there was a significant shift towards energy and protein production during the pre-penetrative phase of development, with an up-regulation of enzymes associated with cellular respiration and protein synthesis, modification and transport. Glycosidic linkage analysis of the cell wall polysaccharides demonstrated that during appressorial development an increase in 1,3- and 1,4-linked glucosyl residues and xylosyl residues was detected along with a significant decrease in galactosyl residues. The use of this in vitro cultivation method demonstrates that it is possible to analyse the pre-penetrative processes of Bgh development in the absence of a plant host.
Collapse
Affiliation(s)
- Trang A.T. Pham
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Julian G. Schwerdt
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Neil J. Shirley
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Xiaohui Xing
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Yves S.Y. Hsieh
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Vaibhav Srivastava
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
- Division of Glycoscience, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 106 91 Stockholm, Sweden
| | - Alan Little
- ARC Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| |
Collapse
|
32
|
Zhang S, Yang L, Li L, Zhong K, Wang W, Liu M, Li Y, Liu X, Yu R, He J, Zhang H, Zheng X, Wang P, Zhang Z. System-Wide Characterization of MoArf GTPase Family Proteins and Adaptor Protein MoGga1 Involved in the Development and Pathogenicity of Magnaporthe oryzae. mBio 2019; 10:e02398-19. [PMID: 31615964 PMCID: PMC6794486 DOI: 10.1128/mbio.02398-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
ADP ribosylation factor (Arf) small GTPase family members are involved in vesicle trafficking and organelle maintenance in organisms ranging from Saccharomyces cerevisiae to humans. A previous study identified Magnaporthe oryzae Arf6 (MoArf6) as one of the Arf proteins that regulates growth and conidiation in the rice blast fungus M. oryzae, but the remaining family proteins remain unknown. Here, we identified six additional Arf proteins, including MoArf1, MoArl1, MoArl3, MoArl8, MoCin4, and MoSar1, as well as their sole adaptor protein, MoGga1, and determined their shared and specific functions. We showed that the majority of these proteins exhibit positive regulatory functions, most notably, in growth. Importantly, MoArl1, MoCin4, and MoGga1 are involved in pathogenicity through the regulation of host penetration and invasive hyphal growth. MoArl1 and MoCin4 also regulate normal vesicle trafficking, and MoCin4 further controls the formation of the biotrophic interfacial complex (BIC). Moreover, we showed that Golgi-cytoplasm cycling of MoArl1 is required for its function. Finally, we demonstrated that interactions between MoArf1 and MoArl1 with MoGga1 are important for Golgi localization and pathogenicity. Collectively, our findings revealed the shared and specific functions of Arf family members in M. oryzae and shed light on how these proteins function through conserved mechanisms to govern growth, transport, and virulence of the blast fungus.IMPORTANCEMagnaporthe oryzae is the causal agent of rice blast, representing the most devastating diseases of rice worldwide, which results in losses of amounts of rice that could feed more than 60 million people each year. Arf (ADP ribosylation factor) small GTPase family proteins are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. To investigate the function of Arf family proteins in M. oryzae, we systematically characterized all seven Arf proteins and found that they have shared and specific functions in governing the growth, development, and pathogenicity of the blast fungus. We have also identified the pathogenicity-related protein MoGga1 as the common adaptor of MoArf1 and MoArl1. Our findings are important because they provide the first comprehensive characterization of the Arf GTPase family proteins and their adaptor protein MoGga1 functioning in a plant-pathogenic fungus, which could help to reveal new fungicide targets to control this devastating disease.
Collapse
Affiliation(s)
- Shengpei Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lina Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Lianwei Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Kaili Zhong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Wenhao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Rui Yu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Jialiang He
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Ping Wang
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
33
|
Nozaka A, Nishiwaki A, Nagashima Y, Endo S, Kuroki M, Nakajima M, Narukawa M, Kamisuki S, Arazoe T, Taguchi H, Sugawara F, Kamakura T. Chloramphenicol inhibits eukaryotic Ser/Thr phosphatase and infection-specific cell differentiation in the rice blast fungus. Sci Rep 2019; 9:9283. [PMID: 31243315 PMCID: PMC6594944 DOI: 10.1038/s41598-019-41039-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/25/2019] [Indexed: 01/23/2023] Open
Abstract
Chloramphenicol (Cm) is a broad-spectrum classic antibiotic active against prokaryotic organisms. However, Cm has severe side effects in eukaryotes of which the cause remains unknown. The plant pathogenic fungus Magnaporthe oryzae, which causes rice blast, forms an appressorium to infect the host cell via single-cell differentiation. Chloramphenicol specifically inhibits appressorium formation, which indicates that Cm has a novel molecular target (or targets) in the rice blast fungus. Application of the T7 phage display method inferred that MoDullard, a Ser/Thr-protein phosphatase, may be a target of Cm. In animals Dullard functions in cell differentiation and protein synthesis, but in fungi its role is poorly understood. In vivo and in vitro analyses showed that MoDullard is required for appressorium formation, and that Cm can bind to and inhibit MoDullard function. Given that human phosphatase CTDSP1 complemented the MoDullard function during appressorium formation by M. oryzae, CTDSP1 may be a novel molecular target of Cm in eukaryotes.
Collapse
Affiliation(s)
- Akihito Nozaka
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayaka Nishiwaki
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuka Nagashima
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shogo Endo
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Misa Kuroki
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Nakajima
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Megumi Narukawa
- Osaka University, Research Institute for Microbial Diseases, Department of Molecular Microbiology, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Kamisuki
- Azabu University, Department of Veterinary Science, Laboratory of Basic Education, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa, 252-5201, Japan
| | - Takayuki Arazoe
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hayao Taguchi
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Fumio Sugawara
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Takashi Kamakura
- Tokyo University of Science, Department of Applied Biological Science, Faculty of Science and Technology, 2641, Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
34
|
Chen Y, Wu X, Li C, Zeng Y, Tan X, Zhang D, Liu Y. MoPer1 is required for growth, conidiogenesis, and pathogenicity in Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2018; 11:64. [PMID: 30578458 PMCID: PMC6303226 DOI: 10.1186/s12284-018-0255-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND GPI-anchoring is a prevalent Glycosylphosphatidylinositol modification process of posttranslational protein and is necessary for cell wall integrity in eukaryotes. To date, the function of GPI anchored-related protein remains unknown in phytopathogenic fungi. RESULTS We here characterized the functions of MoPer1, a homolog of Saccharomyces cerevisiae ScPer1, from the rice blast fungus Magnaporthe oryzae. Transcriptional analysis demonstrated that MoPER1 was significantly upregulated during conidiation and infection. We found that the ∆Moper1 mutant was defective in conidiation and appressoria formation, and MoPer1 was involved in osmotic stress response and maintaining the cell wall integrity. Pathogenicity assays indicated that deletion of MoPEP1 significant reduction in virulence. Microscopic examination of the lesions revealed that the invasive hyphae of ∆Moper1 mutants were mostly restricted to the primary infected leaf sheath cells. CONCLUSIONS Our results indicated that MoPer1 is necessary for growth, conidiogenesis, and pathogenicity of the fungus. Our study facilitated to deep elucidate the pathogenic molecular mechanism of M. oryzae, and also provided a very helpful reference value for developing effective fungicide pointed at as the gene for target.
Collapse
Affiliation(s)
- Yue Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, China
| | - Xiyang Wu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, China
| | - Chenggang Li
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China
| | - Yibo Zeng
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, China
| | - Xinqiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, China
| | - Deyong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125, China.
- Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, China.
| |
Collapse
|
35
|
Song Z, Yang J, Xin C, Xing X, Yuan Q, Yin Y, Wang Z. A transcription factor, MrMsn2, in the dimorphic fungus Metarhizium rileyi is essential for dimorphism transition, aggravated pigmentation, conidiation and microsclerotia formation. Microb Biotechnol 2018; 11:1157-1169. [PMID: 30160031 PMCID: PMC6196401 DOI: 10.1111/1751-7915.13302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
Microsclerotia (MS) are pseudoparenchymatous aggregations of hyphae of fungi that can be induced in liquid culture for biocontrol applications. Previously, we determined that the high-osmolarity glycerol (HOG) signalling pathway was involved in regulating MS development in the dimorphic insect pathogen Metarhizium rileyi. To further investigate the mechanisms by which the signalling pathway is regulated, we characterized the transcriptional factor MrMsn2, a homologue of the yeast C2 H2 transcriptional factor Msn2, which is predicted to function downstream of the HOG pathway in M. rileyi. Compared with wild-type and complemented strains, disruption of MrMsn2 increased the yeast-to-hypha transition rate, enhanced conidiation capacity and aggravated pigmentation in M. rileyi. The ▵MrMsn2 mutants were sensitive to stress, produced morphologically abnormal clones and had significantly reduced MS formation and decreased virulence levels. Digital expression profiling revealed that genes involved in antioxidation, pigment biosynthesis and ion transport and storage were regulated by MrMsn2 during conidia and MS development. Taken together, our findings confirm that MrMsn2 controlled the yeast-to-hypha transition, conidia and MS formation, and virulence.
Collapse
Affiliation(s)
- Zhangyong Song
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Jie Yang
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Caiyan Xin
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Xiaorui Xing
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Qing Yuan
- School of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000China
| | - Youping Yin
- Chongqing Engineering Research Center for Fungal InsecticideSchool of Life ScienceChongqing UniversityChongqing400030China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal InsecticideSchool of Life ScienceChongqing UniversityChongqing400030China
| |
Collapse
|
36
|
Anjago WM, Zhou T, Zhang H, Shi M, Yang T, Zheng H, Wang Z. Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae. Mycology 2018; 9:211-222. [PMID: 30181927 PMCID: PMC6115909 DOI: 10.1080/21501203.2018.1492981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
Rice blast caused by Magnaporthe oryzae is the most destructive disease affecting the rice production (Oryza sativa), with an average global loss of 10-30% per annum. Recent reports have indicated that the fungus also inflicts blast disease on wheat (Triticum aestivum) posing a serious threat to the wheat production. Due to its easily detected infectious process and manoeuvrable genetic manipulation, M. oryzae is considered a model organism for exploring the molecular mechanism underlying fungal pathogenicity during the pathogen-host interaction. M. oryzae utilises an infectious structure called appressorium to breach the host surface by generating high turgor pressure. The appressorium development is induced by physical and chemical cues which are coordinated by the highly conserved cAMP/PKA, MAPK and calcium signalling cascades. Genes involved in the appressorium development have been identified and well studied in M. oryzae, a summary of the working gene network linking stimuli sensing and physiological transformation of appressorium is needed. This review provides a comprehensive discussion regarding the regulatory networks underlying appressorium development with particular emphasis on sensing of appressorium inducing stimuli, signal transduction, transcriptional regulation and the corresponding developmental and physiological responses. We also discussed the crosstalk and interaction of various pathways during the appressorium development.
Collapse
Affiliation(s)
- Wilfred Mabeche Anjago
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengshen Zhou
- Institute of oceanography, Minjian University, FuzhouChina
| | - Honghong Zhang
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Shi
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huakun Zheng
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of oceanography, Minjian University, FuzhouChina
| |
Collapse
|
37
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
38
|
The C 2 H 2 transcription factor VdMsn2 controls hyphal growth, microsclerotia formation, and virulence of Verticillium dahliae. Fungal Biol 2017; 121:1001-1010. [DOI: 10.1016/j.funbio.2017.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/22/2022]
|
39
|
Norvienyeku J, Zhong Z, Lin L, Dang X, Chen M, Lin X, Zhang H, Anjago WM, Lin L, Abdul W, Wang Z. Methylmalonate-semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in Magnaporthe oryzae. Environ Microbiol 2017; 19:4256-4277. [PMID: 28799697 DOI: 10.1111/1462-2920.13888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/22/2017] [Accepted: 08/05/2017] [Indexed: 11/28/2022]
Abstract
Plants generate multitude of aldehydes under abiotic and biotic stress conditions. Ample demonstrations have shown that rice-derived aldehydes enhance the resistance of rice against the rice-blast fungus Magnaporthe oryzae. However, how the fungal pathogen nullifies the inhibitory effects of host aldehydes to establish compatible interaction remains unknown. Here we identified and evaluated the in vivo transcriptional activities of M. oryzae aldehyde dehydrogenase (ALDH) genes. Transcriptional analysis of M. oryzae ALDH genes revealed that the acetylating enzyme Methylmalonate-Semialdehyde Dehydrogenase (MoMsdh/MoMmsdh) elevated activities during host invasion and colonization of the fungus. We further examined the pathophysiological importance of MoMSDH by deploying integrated functional genetics, and biochemical approaches. MoMSDH deletion mutant ΔMomsdh exhibited germination defect, hyper-branching of germ tube and failed to form appressoria on hydrophobic and hydrophilic surface. The MoMSDH disruption caused accumulation of small branch-chain amino acids, pyridoxine and AMP/cAMP in the ΔMomsdh mutant and altered Spitzenkörper organization in the conidia. We concluded that MoMSDH contribute significantly to the pathogenesis of M. oryzae by regulating the mobilization of Spitzenkörper during germ tube morphogenesis, appressoria formation by acting as metabolic switch regulating small branch-chain amino acids, inositol, pyridoxine and AMP/cAMP homeostasis.
Collapse
Affiliation(s)
- Justice Norvienyeku
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhui Zhong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lili Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xie Dang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meilian Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaolian Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Honghong Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wilfred M Anjago
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianyu Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Waheed Abdul
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Ocean Science Minjiang University, Fuzhou 350108, China
| |
Collapse
|
40
|
Chen Y, Le X, Sun Y, Li M, Zhang H, Tan X, Zhang D, Liu Y, Zhang Z. MoYcp4 is required for growth, conidiogenesis and pathogenicity in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2017; 18:1001-1011. [PMID: 27377363 PMCID: PMC6638285 DOI: 10.1111/mpp.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 05/21/2023]
Abstract
The transcription factor MoAP1 has been shown previously to be required for pathogenicity in Magnaporthe oryzae via mediation of the oxidative stress response. In the serial analysis gene expression database, it was found that expression of MoYcp4, a homologue of the Saccharomyces cerevisiae flavodoxin-like protein ScYcp4, was affected by MoAP1. Transcriptional analysis demonstrated that MoYCP4 was significantly up-regulated during conidiation, appressorium formation and infection. The growth rate of a ΔMoycp4 mutant was reduced slightly, but conidial production was increased significantly (more than 10-fold), compared with the wild-type strain. Although the rate of appressorium formation was unaffected, the appressorial turgor was abnormal and the ability to infect rice and barley was reduced, resulting in decreased pathogenicity. In summary, MoYcp4, a target of MoAP1, is involved in the growth, conidiogenesis and pathogenicity of M. oryzae. Our studies provide a comprehensive analysis of flavodoxin-like proteins and will aid in the study of pathogen-related molecular mechanisms.
Collapse
Affiliation(s)
- Yue Chen
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinyi Le
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Yi Sun
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Mengying Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xinqiu Tan
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
| | - Deyong Zhang
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
| | - Yong Liu
- Hunan Academy of Agricultural Sciences, Institute of Plant ProtectionChangshaHunan410125China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
41
|
MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog 2017. [PMID: 28628655 PMCID: PMC5491321 DOI: 10.1371/journal.ppat.1006449] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Eukaryotic cells respond to environmental stimuli when cell surface receptors are bound by environmental ligands. The binding initiates a signal transduction cascade that results in the appropriate intracellular responses. Studies have shown that endocytosis is critical for receptor internalization and signaling activation. In the rice blast fungus Magnaporthe oryzae, a non-canonical G-protein coupled receptor, Pth11, and membrane sensors MoMsb2 and MoSho1 are thought to function upstream of G-protein/cAMP signaling and the Pmk1 MAPK pathway to regulate appressorium formation and pathogenesis. However, little is known about how these receptors or sensors are internalized and transported into intracellular compartments. We found that the MoEnd3 protein is important for endocytic transport and that the ΔMoend3 mutant exhibited defects in efficient internalization of Pth11 and MoSho1. The ΔMoend3 mutant was also defective in Pmk1 phosphorylation, autophagy, appressorium formation and function. Intriguingly, restoring Pmk1 phosphorylation levels in ΔMoend3 suppressed most of these defects. Moreover, we demonstrated that MoEnd3 is subject to regulation by MoArk1 through protein phosphorylation. We also found that MoEnd3 has additional functions in facilitating the secretion of effectors, including Avr-Pia and AvrPiz-t that suppress rice immunity. Taken together, our findings suggest that MoEnd3 plays a critical role in mediating receptor endocytosis that is critical for the signal transduction-regulated development and virulence of M. oryzae.
Collapse
|
42
|
Zhang H, Zheng X, Zhang Z. The Magnaporthe grisea species complex and plant pathogenesis. MOLECULAR PLANT PATHOLOGY 2016; 17:796-804. [PMID: 26575082 PMCID: PMC6638432 DOI: 10.1111/mpp.12342] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
TAXONOMY Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Magnaporthales; Family Pyriculariaceae (anamorph)/Magnaporthaceae (teleomorph); Genus Pyricularia (anamorph)/Magnaporthe (teleomorph); Species P. grisea (anamorph)/M. grisea (teleomorph). HOST RANGE Very broad at the species level, including rice, wheat, barley, millet and other species of the Poaceae (Gramineae). DISEASE SYMPTOMS Can be found on all parts of the plant, including leaves, leaf collars, necks, panicles, pedicels, seeds and even the roots. Initial symptoms are white to grey-green lesions or spots with darker borders, whereas older lesions are elliptical or spindle-shaped and whitish to grey with necrotic borders. Lesions may enlarge and coalesce to eventually destroy the entire leaf. DISEASE CONTROL Includes cultural strategies, genetic resistance and the application of chemical fungicides. GEOGRAPHICAL DISTRIBUTION Widespread throughout the rice-growing regions of the globe and has been reported in more than 85 countries. GENOMIC STRUCTURE Different isolates possess similar genomic sizes and overall genomic structures. For the laboratory strain 70-15: assembly size, 40.98 Mb; number of chromosomes, seven; number of predicted genes, 13 032; G + C composition, 51.6%; average gene contains 451.6 amino acids; mitochondrion genome size, 34.87 kb. USEFUL WEBSITE http://www.broadinstitute.org/annotation/genome/magnaporthe_comparative/MultiHome.html.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
43
|
Cao H, Huang P, Zhang L, Shi Y, Sun D, Yan Y, Liu X, Dong B, Chen G, Snyder JH, Lin F, Lu J. Characterization of 47 Cys2 -His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2016; 211:1035-51. [PMID: 27041000 DOI: 10.1111/nph.13948] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/24/2016] [Indexed: 05/21/2023]
Abstract
The Cys2 -His2 (C2H2) zinc finger protein family is the second-largest family of transcription factors (TFs) in Magnaporthe oryzae, the causal fungus responsible for the destructive rice blast disease. However, little is known about the roles of most C2H2 TFs in the development and pathogenicity of M. oryzae. The roles of 47 C2H2 genes in development and pathogenicity were investigated by gene deletion in M. oryzae. The TF-dependent genes in mycelia or appressoria were analyzed with RNA sequencing and quantitative PCR (qPCR). Forty-four C2H2 genes are involved in growth (20 genes), conidiation (28 genes), appressorium formation (four genes) and pathogenicity (22 genes) in M. oryzae. Of these, MGG_14931, named as VRF1, is required for pathogenicity, specifically controlling appressorium maturation by affecting the expression of genes related to appressorial structure and function, including melanin biosynthesis, chitin catabolism, lipid metabolism, proteolysis, transmembrane transport, and response to oxidative stress; MGG_01776, named as VRF2, is required for plant penetration and invasive growth; conidiation-related gene CON7 is required for conidial differentiation; and MoCREA, encoding a carbon catabolite repression protein, is a novel repressor of lipid catabolism when glucose obtainable in M. oryzae. This study provides many insights into the regulation of growth, asexual development, appressorium formation, and pathogenicity by C2H2 TFs in M. oryzae.
Collapse
Affiliation(s)
- Huijuan Cao
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Pengyun Huang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Lilin Zhang
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yongkai Shi
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dandan Sun
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuxin Yan
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Xiaohong Liu
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Bo Dong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang Province, 310021, China
| | - Guoqing Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang Province, 31006, China
| | - John Hugh Snyder
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, 450001, China
| | - Fucheng Lin
- State Key Laboratory for Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jianping Lu
- State Key Laboratory for Rice Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| |
Collapse
|
44
|
Harata K, Nishiuchi T, Kubo Y. Colletotrichum orbiculare WHI2, a Yeast Stress-Response Regulator Homolog, Controls the Biotrophic Stage of Hemibiotrophic Infection Through TOR Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:468-483. [PMID: 27018615 DOI: 10.1094/mpmi-02-16-0030-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The hemibiotrophic fungus Colletotrichum orbiculare first establishes a biotrophic infection stage in cucumber (Cucumber sativus) epidermal cells and subsequently transitions to a necrotrophic stage. Here, we found that C. orbiculare established hemibiotrophic infection via C. orbiculare WHI2, a yeast stress regulator homolog, and TOR (target of rapamycin) signaling. Plant defense responses such as callose deposition, H2O2, and antimicrobial proteins were strongly induced by the C. orbiculare whi2Δ mutant, resulting in defective pathogenesis. Expression analysis of biotrophy-specific genes evaluated by the promoter VENUS fusion gene indicated weaker VENUS signal intensity in the whi2Δ mutant, thereby suggesting that C. orbiculare WHI2 plays a key role in regulating biotrophic infection of C. orbiculare. The involvement of CoWHI2 in biotrophic infection was further explored with a DNA microarray. In the Cowhi2Δ mutant, TOR-dependent ribosomal protein-related genes were strikingly upregulated compared with the wild type. Moreover, callose deposition in the host plant after inoculation with the Cowhi2Δ mutant treated with rapamycin, which inhibits TOR activity, was reduced, and the mutant remained biotrophic in contrast to the untreated mutant. Thus, regulation of TOR by Whi2 is apparently crucial to the biotrophic stage of hemibiotrophic infection in C. orbiculare.
Collapse
Affiliation(s)
- Ken Harata
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| | - Takumi Nishiuchi
- 2 Division of Functional Genomics, Advanced Science Research Centre, Kanazawa University, Kanazawa, Japan
| | - Yasuyuki Kubo
- 1 Laboratory of Plant Pathology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; and
| |
Collapse
|
45
|
Cui X, Wei Y, Wang YH, Li J, Wong FL, Zheng YJ, Yan H, Liu SS, Liu JL, Jia BL, Zhang SH. Proteins interacting with mitochondrial ATP-dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease. MOLECULAR PLANT PATHOLOGY 2015; 16:847-59. [PMID: 25605006 PMCID: PMC6638408 DOI: 10.1111/mpp.12242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ATP-dependent Lon protease is involved in many physiological processes. In bacteria, Lon regulates pathogenesis and, in yeast, Lon protects mitochondia from oxidative damage. However, little is known about Lon in fungal phytopathogens. MAP1, a homologue of Lon in Magnaporthe oryzae, was recently identified to be important for stress resistance and pathogenesis. Here, we focus on a novel pathogenic pathway mediated by MAP1. Based on an interaction system between rice and a tandem affinity purification (TAP)-tagged MAP1 complementation strain, we identified 23 novel fungal proteins from infected leaves using a TAP approach with mass spectrometry, and confirmed that 14 of these proteins physically interact with MAP1 in vivo. Among these 14 proteins, 11 candidates, presumably localized to the mitochondria, were biochemically determined to be substrates of MAP1 hydrolysis. Deletion mutants were created and functionally analysed to further confirm the involvement of these proteins in pathogenesis. The results indicated that all mutants showed reduced conidiation and sensitivity to hydrogen peroxide. Appressorial formations were not affected, although conidia from certain mutants were morphologically altered. In addition, virulence was reduced in four mutants, enhanced (with lesions forming earlier) in two mutants and remained unchanged in one mutant. Together with the known virulence-related proteins alternative oxidase and enoyl-CoA hydratase, we propose that most of the Lon-interacting proteins are involved in the pathogenic regulation pathway mediated by MAP1 in M. oryzae. Perturbation of this pathway may represent an effective approach for the inhibition of rice blast disease.
Collapse
Affiliation(s)
- Xiao Cui
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Yu-Han Wang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jian Li
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Fuk-Ling Wong
- Department of Biology, The Chinese University of Hong Kong, 999077, Hong Kong SAR
| | - Ya-Jie Zheng
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Hai Yan
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Shao-Shuai Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Jin-Liang Liu
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Bao-Lei Jia
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, 130062, China
| |
Collapse
|
46
|
Chen Y, Zhai S, Sun Y, Li M, Dong Y, Wang X, Zhang H, Zheng X, Wang P, Zhang Z. MoTup1 is required for growth, conidiogenesis and pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2015; 16:799-810. [PMID: 25583028 PMCID: PMC6638498 DOI: 10.1111/mpp.12235] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The general transcriptional repressor Tup1 proteins play important regulatory roles in the growth and development of fungi. In this report, we characterized MoTup1, a protein homologous to Tup1 of Saccharomyces cerevisiae, from M. oryzae. Disruption of MoTUP1 resulted in severe mycelial growth reduction and a defect in conidiogenesis. We found that MoTup1 is required for the maintenance of cell wall integrity by regulating the expression of the genes involved in cell wall biosynthesis. Pathogenicity assays indicated that the ΔMotup1 mutants lost the ability to invade both rice and barley hosts. Moreover, observation of rice epidermis penetration showed that the hyphal tips of the mutants could still form appressorium-like structures, but were unable to invade host cells. Taken together, our results demonstrate that M. oryzae MoTup1 is an important regulatory factor in fungal growth, development and pathogenesis on hosts.
Collapse
Affiliation(s)
- Yue Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Su Zhai
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yi Sun
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Mengying Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Ping Wang
- Department of Pediatrics and the Research Institute for Children, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| |
Collapse
|
47
|
Phylogenic analysis revealed an expanded C₂H₂-homeobox subfamily and expression profiles of C₂H₂ zinc finger gene family in Verticillium dahliae. Gene 2015; 562:169-79. [PMID: 25725127 DOI: 10.1016/j.gene.2015.02.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/23/2015] [Indexed: 01/26/2023]
Abstract
C2H2 zinc finger (CZF) proteins are a major class of transcription factors that play crucial roles in fungal growth, development, various stress responses, and virulence. Little genome-wide data is available regarding the roles of CZF proteins in Verticillium dahliae, a destructive pathogen that causes vascular wilt disease in more than 200 plant species. We identified a total of 79 typical CZF genes in V. dahliae. Comparative analysis revealed that four plant pathogenic fungi, V. dahliae, Fusarium oxysporum, Magnaporthe oryzae, and Botrytis cinerea, have comparable numbers of predicted CZF genes with similar characteristics. Phylogenetic analysis identified a C2H2-homeobox subfamily in V. dahliae containing seven genes with similar gene structures. V. dahliae and F. oxysporum (Hypocreomycetidae) have more genes of this subfamily than M. oryzae (Sordariomycetidae) and B. cinerea (Leotiomycetes). Furthermore, gene-expression analysis of the smoke tree wilt fungus V. dahliae strain XS11 using digital gene-expression profiling and RT-qPCR revealed that a number of CZF genes were differentially expressed during microsclerotia formation, nutritional starvation, and simulated in planta conditions. Furthermore, the expression profiles revealed that some CZF genes were overrepresented during multiple stages, indicating that they might play diverse roles. Our results provide useful information concerning the functions of CZF genes in microsclerotia formation, nutritional stress responses, and pathogenicity in V. dahliae, and form a basis for future functional studies of these genes.
Collapse
|
48
|
Dong Y, Zhao Q, Liu X, Zhang X, Qi Z, Zhang H, Zheng X, Zhang Z. MoMyb1 is required for asexual development and tissue-specific infection in the rice blast fungus Magnaporthe oryzae. BMC Microbiol 2015; 15:37. [PMID: 25885817 PMCID: PMC4336695 DOI: 10.1186/s12866-015-0375-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/04/2015] [Indexed: 11/28/2022] Open
Abstract
Background The Myb super-family of proteins contain a group of functionally diverse transcriptional activators found in plant, animal and fungus. Myb proteins are involved in cell proliferation, differentiation and apoptosis, and have crucial roles in telomeres. The purpose of this study was to characterize the biological function of Myb1 protein in the rice blast fungus Magnaporthe oryzae. Results We identified the Saccharomyces cerevisiae BAS1 homolog MYB1 in M. oryzae, named MoMyb1. MoMyb1 encodes a protein of 322 amino acids and has two SANT domains and is well conserved in various organisms. Targeted gene deletion of MoMYB1 resulted in a significant reduction in vegetative growth and showed defects in conidiation and conidiophore development. Quantitative RT-PCR analysis revealed that the transcription levels of several conidiophore-related genes were apparently decreased in the ΔMomyb1 mutant. Inoculation with mycelia mats displayed that the virulence of the ΔMomyb1 mutant was not changed on rice leaves but was non-pathogenic on rice roots in comparison to the wild type Guy11. In addition, ∆Momyb1 mutants showed increased resistance to osmotic stresses but more sensitive to cell wall stressor calcofluor white (CFW). Further analysis revealed that MoMyb1 has an important role in the cell wall biosynthesis pathway. Conclusion This study provides the evidence that MoMyb1 is a key regulator involved in conidiogenesis, stress response, cell wall integrity and pathogenesis on rice roots in the filamentous phytopathogen M. oryzae. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0375-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Qian Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xiaofang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| |
Collapse
|
49
|
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the rice blast fungus. PLoS Pathog 2014; 10:e1004432. [PMID: 25299517 PMCID: PMC4192604 DOI: 10.1371/journal.ppat.1004432] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/28/2014] [Indexed: 11/18/2022] Open
Abstract
Because of great challenges and workload in deleting genes on a large scale, the functions of most genes in pathogenic fungi are still unclear. In this study, we developed a high-throughput gene knockout system using a novel yeast-Escherichia-Agrobacterium shuttle vector, pKO1B, in the rice blast fungus Magnaporthe oryzae. Using this method, we deleted 104 fungal-specific Zn(2)Cys(6) transcription factor (TF) genes in M. oryzae. We then analyzed the phenotypes of these mutants with regard to growth, asexual and infection-related development, pathogenesis, and 9 abiotic stresses. The resulting data provide new insights into how this rice pathogen of global significance regulates important traits in the infection cycle through Zn(2)Cys(6)TF genes. A large variation in biological functions of Zn(2)Cys(6)TF genes was observed under the conditions tested. Sixty-one of 104 Zn(2)Cys(6) TF genes were found to be required for fungal development. In-depth analysis of TF genes revealed that TF genes involved in pathogenicity frequently tend to function in multiple development stages, and disclosed many highly conserved but unidentified functional TF genes of importance in the fungal kingdom. We further found that the virulence-required TF genes GPF1 and CNF2 have similar regulation mechanisms in the gene expression involved in pathogenicity. These experimental validations clearly demonstrated the value of a high-throughput gene knockout system in understanding the biological functions of genes on a genome scale in fungi, and provided a solid foundation for elucidating the gene expression network that regulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Jianping Lu
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
- * E-mail:
| | - Huijuan Cao
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lilin Zhang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Pengyun Huang
- School of Life Sciences Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fucheng Lin
- Biotechnology Institute, Zhejiang University, Hangzhou, Zhejiang Province, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, Henan Province, China
| |
Collapse
|