1
|
Dan-Dan W, Jia-Jun N, Rui-Bian Z, Jie L, Yuan-Xu W, Liu Y, Fei-Fei C, Yue-Min P. A novel Burkholderia pyrrocinia strain effectively inhibits Fusarium graminearum growth and deoxynivalenol (DON) production. PEST MANAGEMENT SCIENCE 2024; 80:4883-4896. [PMID: 38817082 DOI: 10.1002/ps.8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/13/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Fusarium graminearum is a devastating fungal pathogen that poses a significant threat to global wheat production and quality. Control of this toxin-producing pathogen remains a major challenge. This study aimed to isolate strains with antagonistic activity against F. graminearum and at the same time to analyze the synthesis of deoxynivalenol (DON), in order to provide a new basis for the biological control of FHB. RESULTS Total of 69 microorganisms were isolated from the soil of a wheat-corn crop rotation field, and an antagonistic bacterial strain F12 was identified as Burkholderia pyrrocinia by molecular biology and carbon source utilization. F. graminearum control by strain F12 showed excellent biological activities under laboratory conditions (95.8%) and field testing (63.09%). Meanwhile, the DON content of field-treated wheat grains was detected the results showed that F12 have significantly inhibited of DON, which was further verified by qPCR that F12 produces secondary metabolites that inhibit the expression of DON and pigment-related genes. In addition, the sterile fermentation broth of F12 not only inhibited mycelial growth and spore germination, but also prevented mycelia from producing spores. CONCLUSION In this study B. pyrrocinia was reported to have good control of FHB and inhibition of DON synthesis. This novel B. pyrrocinia F12 is a promising biological inoculant, providing possibilities for controlling FHB, and a theoretical basis for the development of potential biocontrol agents and biofertilizers for agricultural use. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wang Dan-Dan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Nie Jia-Jun
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhao Rui-Bian
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lu Jie
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Yuan-Xu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yu Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Chen Fei-Fei
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Pan Yue-Min
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Laboratory of Mycology and Plant Fungal Diseases, School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Zhang Y, Gao Z, Lei Y, Song L, He W, Liu J, Song M, Dai Y, Yang G, Gong A. FgFAD12 Regulates Vegetative Growth, Pathogenicity and Linoleic Acid Biosynthesis in Fusarium graminearum. J Fungi (Basel) 2024; 10:288. [PMID: 38667959 PMCID: PMC11051453 DOI: 10.3390/jof10040288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Polyunsaturated fatty acids (PUFAs), as important components of lipids, play indispensable roles in the development of all organisms. ∆12 fatty acid desaturase (FAD12) is a speed-determining step in the biosynthesis of PUFAs. Here, we report the characterization of FAD12 in Fusarium graminearum, which is the prevalent agent of Fusarium head blight, a destructive plant disease worldwide. The results demonstrated that deletion of the FgFAD12 gene resulted in defects in vegetative growth, conidial germination and plant pathogenesis but not sexual reproduction. A fatty acid analysis further proved that the deletion of FgFAD12 restrained the reaction of oleic acid to linoleic acid, and a large amount of oleic acid was detected in the cells. Moreover, the ∆Fgfad12 mutant showed increased resistance to osmotic stress and reduced tolerance to oxidative stress. The expression of FgFAD12 did show a temperature-dependent manner, which was not affected at a low temperature of 10 °C when compared to 25 °C. RNA-seq analysis further demonstrated that most genes enriched in fatty acid metabolism, the biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, fatty acid degradation, steroid biosynthesis and fatty acid elongation pathways were significantly up-regulated in the ∆Fgfad12 mutants. Overall, our results indicate that FgFAD12 is essential for linoleic acid biosynthesis and plays an important role in the infection process of F. graminearum.
Collapse
Affiliation(s)
- Yimei Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| | - Zhen Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yinyu Lei
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Liuye Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Weijie He
- College of Plant Science and Technology, Huazhong Agricultura University, Wuhan 430070, China;
| | - Jingrong Liu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Mengge Song
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Yafeng Dai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Guang Yang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
| | - Andong Gong
- College of Life Science, Xinyang Normal University, Xinyang 464000, China; (Z.G.); (Y.L.); (L.S.); (J.L.); (M.S.); (Y.D.); (G.Y.)
- Henan Key Laboratory of Tea Plant Biology, Xinyang 464000, China
| |
Collapse
|
3
|
Niu G, Yang Q, Liao Y, Sun D, Tang Z, Wang G, Xu M, Wang C, Kang J. Advances in Understanding Fusarium graminearum: Genes Involved in the Regulation of Sexual Development, Pathogenesis, and Deoxynivalenol Biosynthesis. Genes (Basel) 2024; 15:475. [PMID: 38674409 PMCID: PMC11050156 DOI: 10.3390/genes15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.
Collapse
Affiliation(s)
- Gang Niu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Qing Yang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Yihui Liao
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Daiyuan Sun
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Zhe Tang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Guanghui Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Ming Xu
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiangang Kang
- College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (G.N.); (Q.Y.); (Y.L.); (D.S.); (Z.T.); (G.W.); (M.X.)
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Gyawali B, Rahimi R, Alizadeh H, Mohammadi M. Graphene Quantum Dots (GQD)-Mediated dsRNA Delivery for the Control of Fusarium Head Blight Disease in Wheat. ACS APPLIED BIO MATERIALS 2024; 7:1526-1535. [PMID: 38422985 DOI: 10.1021/acsabm.3c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Graphene quantum dots (GQDs), a class of fluorescent carbon materials, have displayed significant potential in various fields such as energy devices, catalysis, sensing, bioimaging, and drug delivery. Because of their extremely small size, generally less than 100 nm, they also have tremendous potential in plant science research, especially for the delivery of nucleic acids, breaking the barrier of cell walls. In this study, we synthesized GQDs with a size range of 2-5 nm, characterized them, and surface-functionalized them with branched polyethylenimine (bPEI). We then used the surface-functionalized GQDs as carriers to deliver double-stranded RNA (dsRNA) that target two growth-and-development-related genes in Fusarium graminearum─the causative organism of the Fusarium head blight disease of wheat. The successful binding of dsRNA to GQDs-bPEIs was demonstrated through gel-shifting assays, showcasing the potential for efficient dsRNA delivery. We designed dsRNAs targeting the MGV1 and RAS1 genes of F. graminearum by using the pssRNAit pipeline, ensuring high specificity and no off-target effects. The coding sequences of the designed dsRAS1 and dsMGV1 were cloned into the L4440 vector and transformed into the Escherichia coli HT115 strain for dsRNA production. Fungal culture analysis revealed that the inclusion of dsRNAs in potato dextrose agar (PDA) media effectively slowed down the growth. Exogenous spraying experiments both in plate cultures and in intact wheat spikes demonstrated that the dsRNA:GQDs-bPEIs treatment was more effective in restricting fungal mycelium growth or the number of infected spikelets compared to naked dsRNA treatment. Our study demonstrates the promising potential of graphene quantum dots as carriers for dsRNA-based fungal disease management in wheat and other crops.
Collapse
Affiliation(s)
- Binod Gyawali
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Rahim Rahimi
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Houshang Alizadeh
- Campus of Agriculture and Natural Resources, University of Tehran, Tehran 11366, Iran
| | - Mohsen Mohammadi
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Cao H, Gong H, Yu M, Pan X, Song T, Yu J, Qi Z, Du Y, Zhang R, Liu Y. The Ras GTPase-activating protein UvGap1 orchestrates conidiogenesis and pathogenesis in the rice false smut fungus Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13448. [PMID: 38502297 PMCID: PMC10950028 DOI: 10.1111/mpp.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/27/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024]
Abstract
Ras GTPase-activating proteins (Ras GAPs) act as negative regulators for Ras proteins and are involved in various signalling processes that influence cellular functions. Here, the function of four Ras GAPs, UvGap1 to UvGap4, was identified and analysed in Ustilaginoidea virens, the causal agent of rice false smut disease. Disruption of UvGAP1 or UvGAP2 resulted in reduced mycelial growth and an increased percentage of larger or dumbbell-shaped conidia. Notably, the mutant ΔUvgap1 completely lost its pathogenicity. Compared to the wild-type strain, the mutants ΔUvgap1, ΔUvgap2 and ΔUvgap3 exhibited reduced tolerance to H2 O2 oxidative stress. In particular, the ΔUvgap1 mutant was barely able to grow on the H2 O2 plate, and UvGAP1 was found to influence the expression level of genes involved in reactive oxygen species synthesis and scavenging. The intracellular cAMP level in the ΔUvgap1 mutant was elevated, as UvGap1 plays an important role in maintaining the intracellular cAMP level by affecting the expression of phosphodiesterases, which are linked to cAMP degradation in U. virens. In a yeast two-hybrid assay, UvRas1 and UvRasGef (Ras guanyl nucleotide exchange factor) physically interacted with UvGap1. UvRas2 was identified as an interacting partner of UvGap1 through a bimolecular fluorescence complementation assay and affinity capture-mass spectrometry analysis. Taken together, these findings suggest that the UvGAP1-mediated Ras pathway is essential for the development and pathogenicity of U. virens.
Collapse
Affiliation(s)
- Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Hao Gong
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Mina Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xiayan Pan
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Tianqiao Song
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Zhongqiang Qi
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yan Du
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Rongsheng Zhang
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
6
|
Gujjar RS, Kumar R, Goswami SK, Srivastava S, Kumar S. MAPK signaling pathway orchestrates and fine-tunes the pathogenicity of Colletotrichum falcatum. J Proteomics 2024; 292:105056. [PMID: 38043863 DOI: 10.1016/j.jprot.2023.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Colletotrichum falcatum is the causal organism of red rot, the most devastating disease of sugarcane. Mitogen-activated protein kinase (MAPK) signaling pathway plays pivotal role in coordinating the process of pathogenesis. We identified eighteen proteins implicated in MAPK signaling pathway in C. falcatum, through nanoLCMS/MS based proteomics approach. Twelve of these proteins were the part of core MAPK signaling pathway, whereas remaining proteins were indirectly implicated in MAPK signaling. Majority of these proteins had enhanced abundance in C. falcatum samples cultured with host sugarcane stalks. To validate the findings, core MAPK pathway genes (MAPKKK-NSY1, MAPK 17-MAPK17, MAPKKK 5-MAPKKK5, MAPK-HOG1B, MAPKKK-MCK1/STE11, MAPK-MST50/STE50, MAPKK-SEK1, MAPKK-MEK1/MST7/STE7, MAPKK-MKK2/STE7, MAPKKK-MST11/STE11, MAPK 5-MPK5, and MAPK-MPK-C) were analyzed by qPCR to confirm the real-time expression in C. falcatum samples cultured with host sugarcane stalks. The results of qPCR-based expression of genes were largely in agreement with the findings of proteomics. String association networks of MAPKK- MEK1/MST7/STE7, and MAPK- MPK-C revealed strong association with plenty of assorted proteins implicated in the process of pathogenesis/virulence. This is the novel and first large scale study of MAPK proteins in C. falcatum, responsible for red rot epidemics of sugarcane various countries. KEY MESSAGE: Our findings demonstrate the pivotal role of MAPK proteins in orchestrating the pathogenicity of Colletotrichum falcatum, responsible devastating red rot disease of sugarcane. SIGNIFICANCE: Our findings are novel and the first large scale study demonstrating the pivotal role of MAPK proteins in C. falcatum, responsible devastating red rot disease of sugarcane. The study will be useful for future researchers in terms of manipulating the fungal pathogenicity through genome editing.
Collapse
Affiliation(s)
- Ranjit Singh Gujjar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India.
| | - Rajeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | | | - Sangeeta Srivastava
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| | - Sanjeev Kumar
- Indian Institute of Sugarcane Research, Raibareli Road, Lucknow 226002, India
| |
Collapse
|
7
|
Liu J, Wang C, Kong L, Yang Y, Cui X, Li K, Nian H. Rho2 involved in development, stress response and pathogenicity of Fusarium oxysporum. World J Microbiol Biotechnol 2023; 39:272. [PMID: 37548840 DOI: 10.1007/s11274-023-03720-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Rho GTPases regulate the activity of cell wall biosynthesis, actin assembly and polar cell secretion. However, the function of Rho GTPase in filamentous fungi is poorly understood. To understand the role of Rho2 GTPase in Fusarium oxysporum, which is one of root rot pathogens of Panax notoginseng, △rho2 mutant was constructed. Phenotypes of △rho2, including conidiation, germination of spores, stresses (osmotic-, cell membrane-, cell wall disturbing-, metal-, and high temperature-) tolerance and pathogenicity were analyzed. The results showed that the growth of △rho2 was destroyed under cell wall disturbing stress and high temperature stress, suggesting that Rho2 regulated the response of F. oxysporum to cell wall synthesis inhibitors and high temperature stress. Germination of spores and pathogenicity to P. notoginseng were reduced in △rho2 mutant. Western blot results showed that rho2 deletion increased the phosphorylation level of Mpk1. To identify genes regulated by Rho2, transcriptome sequencing was carried out. 2477 genes were identified as upregulated genes and 2177 genes were identified as downregulated genes after rho2 was deleted. These genes provide clues for further study of rho2 function.
Collapse
Affiliation(s)
- Jia Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chengsong Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Lei Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongjuan Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
8
|
Yang C, Sun J, Wu Z, Jiang M, Li D, Wang X, Zhou C, Liu X, Ren Z, Wang J, Sun M, Sun W, Gao J. FoRSR1 Is Important for Conidiation, Fusaric Acid Production, and Pathogenicity in Fusarium oxysporum f. sp. ginseng. PHYTOPATHOLOGY 2023; 113:1244-1253. [PMID: 36706002 DOI: 10.1094/phyto-10-22-0372-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The root rot disease caused by Fusarium oxysporum f. sp. ginseng is one of the most destructive diseases of ginseng, an economically important herb. However, little is known about the pathogen's toxin biosynthesis or the molecular mechanisms regulating infection of ginseng. In this study we identified and functionally characterized the FoRSR1 gene that encodes a Ras-related (RSR) small GTPase homologous to yeast Rsr1 in F. oxysporum f. sp. ginseng. Disruption of FoRSR1 resulted in a significant reduction in mycelial dry weight in liquid cultures, although vegetative growth rate was not affected on culture plates. Notably, the Forsr1 mutant exhibited blunted and swollen hyphae with multi-nucleated compartments. It produced fewer and morphologically abnormal conidia and was defective in chlamydospore formation. In infection assays with ginseng roots, the Forsr1 mutant was significantly less virulent and caused only limited necrosis at the wounding sites. Deletion of FoRSR1 also affected pigmentation, autophagy, and production of fusaric acid. Furthermore, the expression of many candidate genes involved in secondary metabolism was significantly downregulated in the mutant, suggesting that FoRSR1 is also important for secondary metabolism. Overall, our results indicated that FoRSR1 plays important roles in conidiation, vacuolar morphology, secondary metabolism, and pathogenesis in F. oxysporum f. sp. ginseng.
Collapse
Affiliation(s)
- Cui Yang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jing Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Zhaoqun Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Maozhu Jiang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xinjie Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Chunxiang Zhou
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xuecheng Liu
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiguo Ren
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jun Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Jie Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
- State-Local Joint Engineering Research Center of Ginseng Breeding and Application, Changchun, 130118, China
| |
Collapse
|
9
|
UDP-Galactopyranose Mutase Mediates Cell Wall Integrity, Polarity Growth, and Virulence in Fusarium graminearum. Appl Environ Microbiol 2023; 89:e0123522. [PMID: 36656025 PMCID: PMC9972967 DOI: 10.1128/aem.01235-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CHY1 is a zinc finger protein unique to microorganisms that was found to regulate polarized tip growth in Fusarium graminearum, an important pathogen of wheat and barley. To further characterize its functions, in this study we identified CHY1-interacting proteins by affinity purification and selected UDP-galactofuranose (Galf) mutase (UGMA) for detailed characterization, because UGMA and UDP-Galf are unique to fungi and bacteria and absent in plants and animals. The interaction between CHY1 and UGMA was confirmed by yeast two-hybrid assays. Deletion of UGMA in F. graminearum resulted in significant defects in vegetative growth, reproduction, cell wall integrity, and pathogenicity. Infection with the ΔugmA mutant was restricted to the inoculated floret, and no vomitoxin was detected in kernels inoculated with the ΔugmA strain. Compared to the wild type, the ΔugmA mutant produced wide, highly branched hyphae with thick walls, as visualized by transmission electron microscopy. UGMA tagged with green fluorescent protein (GFP) mainly localized to the cytoplasm, consistent with the synthesis of Galf in the cytoplasm. The Δchy1 mutant was more sensitive, while the ΔugmA mutant was more tolerant, to cell wall-degrading enzymes. The growth of the ΔugmA mutant nearly ceased upon caspofungin treatment. More interestingly, nocodazole treatment of the ΔugmA strain attenuated its highly branched morphology, while caspofungin inhibited the degree of the twisted Δchy1 mycelia, indicating that CHY1 and UGMA probably have opposite effects on cell wall architecture. In conclusion, UGMA is an important pathogenic factor that is specific to fungi and bacteria and required for cell wall architecture, radial growth, and caspofungin tolerance, and it appears to be a promising target for antifungal agent development. IMPORTANCE The long-term use of chemical pesticides has had increasingly negative impacts on the ecological environment and human health. Low-toxicity, high-efficiency and environmentally friendly alternative pesticides are of great significance for maintaining the sustainable development of agriculture and human and environmental health. Using fungus- or microbe-specific genes as candidate targets provides a good foundation for the development of low-toxicity, environmentally friendly pesticides. In this study, we characterized a fungus- and bacterium-specific UDP-galactopyranose mutase gene, ugmA, that contributes to the synthesis of the cell wall component Galf and is required for vegetative growth, cell wall integrity, deoxynivalenol (DON) production, and pathogenicity in F. graminearum. The ugmA deletion mutant exhibited increased sensitivity to caspofungin. These results demonstrate the functional importance of UGMA in F. graminearum, and its absence from mammals and higher plants constitutes a considerable advantage as a low-toxicity target for the development of new anti-Fusarium agents.
Collapse
|
10
|
Zhou D, Liu Q, Su X, Zhou X. Transcriptomic analysis of the fungus Graphilbum sp. in response to the pine wood nematode. J Basic Microbiol 2023. [PMID: 36808634 DOI: 10.1002/jobm.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/20/2023]
Abstract
Graphilbum species are important blue stain fungi associated with pine trees and are widely distributed throughout Asia, Australia, and North Africa. Pine wood nematode (PWN) primarily feed on ophiostomatoid fungi such as Graphilbum sp. in wood, the population of PWNs was increased, and incomplete organelle structures were observed in Graphilbum sp. hyphal cells following exposure to PWNs. In this study, we showed that Rho and Ras were involved in the MAPK pathway, SNARE binding and small GTPase-mediated signal transduction, and their expression was upregulated in the treatment group. However, the expression of the Rab7 involved in MAPK and small GTPase-mediated signal pathway was downregulated in the treatment group. Thus, further research is needed to study the MAPK pathway and related Ras and Rho genes in Graphilbum sp. associated with the PWN population. Overall, transcriptomic analysis clarified the basic mechanisms of mycelial growth in Graphilbum sp. fungus used as a food source by PWNs.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Qinge Liu
- College of Ecology, Lishui University, Lishui, China
| | - Xiu Su
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xudong Zhou
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
11
|
Jiang H, Zhang Y, Wang W, Cao X, Xu H, Liu H, Qi J, Jiang C, Wang C. FgCsn12 Is Involved in the Regulation of Ascosporogenesis in the Wheat Scab Fungus Fusarium graminearum. Int J Mol Sci 2022; 23:10445. [PMID: 36142356 PMCID: PMC9499528 DOI: 10.3390/ijms231810445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fusarium head blight (FHB), caused by the fungal pathogen Fusarium graminearum, is a destructive disease worldwide. Ascospores are the primary inoculum of F. graminearum, and sexual reproduction is a critical step in its infection cycle. In this study, we characterized the functions of FgCsn12. Although the ortholog of FgCsn12 in budding yeast was reported to have a direct interaction with Csn5, which served as the core subunit of the COP9 signalosome, the interaction between FgCsn12 and FgCsn5 was not detected through the yeast two-hybrid assay. The deletion of FgCSN12 resulted in slight defects in the growth rate, conidial morphology, and pathogenicity. Instead of forming four-celled, uninucleate ascospores, the Fgcsn12 deletion mutant produced oval ascospores with only one or two cells and was significantly defective in ascospore discharge. The 3'UTR of FgCsn12 was dispensable for vegetative growth but essential for sexual reproductive functions. Compared with those of the wild type, 1204 genes and 2240 genes were up- and downregulated over twofold, respectively, in the Fgcsn12 mutant. Taken together, FgCsn12 demonstrated an important function in the regulation of ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Wanshan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Xinyu Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huaijian Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwestern A&F University, Yangling, Xianyang 712100, China
| |
Collapse
|
12
|
Ji W, Zhao M, Fei N, Yang L, Qiao P, Walcott R, Yang Y, Zhao T. Essential Acidovorax citrulli Virulence Gene hrpE Activates Host Immune Response against Pathogen. Int J Mol Sci 2022; 23:ijms23169144. [PMID: 36012409 PMCID: PMC9409176 DOI: 10.3390/ijms23169144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 12/25/2022] Open
Abstract
Bacterial fruit blotch (BFB) caused by Acidovorax citrulli (Ac) is a devastating watermelon disease that severely impacts the global watermelon industry. Like other Gram-negative bacteria, the type three secretion system (T3SS) is the main pathogenicity factor of A. citrulli. The T3SS apparatus gene hrpE codes for the Hrp pilus and serves as a conduit to secret effector proteins into host cells. In this study, we found that the deletion of hrpE in A. citrulli results in the loss of pathogenicity on hosts and the hypersensitive response on non-hosts. In addition, the A. citrulli hrpE mutant showed a reduction in in vitro growth, in planta colonization, swimming and twitching motility, and displayed increases in biofilm formation ability compared to the wild type. However, when HrpE was transiently expressed in hosts, the defense responses, including reactive oxygen species bursts, callose deposition, and expression of defense-related genes, were activated. Thus, the A. Citrulli growth in HrpE-pretreated hosts was suppressed. These results indicated that HrpE is essential for A. citrulli virulence but can also be used by hosts to help resist A. citrulli. Our findings provide a better understanding of the T3SS pathogenesis in A. citrulli, thus providing a molecular basis for biopesticide development, and facilitating the effective control of BFB.
Collapse
Affiliation(s)
- Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mei Zhao
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Nuoya Fei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ron Walcott
- Department of Plant Pathology, University of Georgia, Athens, GA 30602, USA
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (Y.Y.); (T.Z.)
| |
Collapse
|
13
|
Hu C, Chen P, Zhou X, Li Y, Ma K, Li S, Liu H, Li L. Arms Race between the Host and Pathogen Associated with Fusarium Head Blight of Wheat. Cells 2022; 11:2275. [PMID: 35892572 PMCID: PMC9332245 DOI: 10.3390/cells11152275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium head blight (FHB), or scab, caused by Fusarium species, is an extremely destructive fungal disease in wheat worldwide. In recent decades, researchers have made unremitting efforts in genetic breeding and control technology related to FHB and have made great progress, especially in the exploration of germplasm resources resistant to FHB; identification and pathogenesis of pathogenic strains; discovery and identification of disease-resistant genes; biochemical control, and so on. However, FHB burst have not been effectively controlled and thereby pose increasingly severe threats to wheat productivity. This review focuses on recent advances in pathogenesis, resistance quantitative trait loci (QTLs)/genes, resistance mechanism, and signaling pathways. We identify two primary pathogenetic patterns of Fusarium species and three significant signaling pathways mediated by UGT, WRKY, and SnRK1, respectively; many publicly approved superstar QTLs and genes are fully summarized to illustrate the pathogenetic patterns of Fusarium species, signaling behavior of the major genes, and their sophisticated and dexterous crosstalk. Besides the research status of FHB resistance, breeding bottlenecks in resistant germplasm resources are also analyzed deeply. Finally, this review proposes that the maintenance of intracellular ROS (reactive oxygen species) homeostasis, regulated by several TaCERK-mediated theoretical patterns, may play an important role in plant response to FHB and puts forward some suggestions on resistant QTL/gene mining and molecular breeding in order to provide a valuable reference to contain FHB outbreaks in agricultural production and promote the sustainable development of green agriculture.
Collapse
Affiliation(s)
- Chunhong Hu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Peng Chen
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Xinhui Zhou
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Yangchen Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Shumei Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Huaipan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China; (C.H.); (P.C.); (X.Z.); (Y.L.); (K.M.); (S.L.)
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466000, China
| |
Collapse
|
14
|
Effect of Compactin on the Mycotoxin Production and Expression of Related Biosynthetic and Regulatory Genes in Toxigenic Fusarium culmorum. Microorganisms 2022; 10:microorganisms10071347. [PMID: 35889066 PMCID: PMC9318162 DOI: 10.3390/microorganisms10071347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Zearalenone (ZEN) and deoxynivalenol (DON) are mycotoxins produced by various species of Fusarium fungi. They contaminate agricultural products and negatively influence human and animal health, thus representing a serious problem of the agricultural industry. Earlier we showed that compactin, a secondary metabolite of Penicillium citrinum, is able to completely suppress the aflatoxin B1 biosynthesis by Aspergillus flavus. Using the F. culmorum strain FC-19 able to produce DON and ZEN, we demonstrated that compactin also significantly suppressed both DON (99.3%) and ZEN (100%) biosynthesis. The possible mechanisms of this suppression were elucidated by qPCR-based analysis of expression levels of 48 biosynthetic and regulatory genes. Expression of eight of 13 TRI genes, including TRI4, TRI5, and TRI101, was completely suppressed. A significant down-regulation was revealed for the TRI10, TRI9, and TRI14 genes. TRI15 was the only up-regulated gene from the TRI cluster. In the case of the ZEN cluster, almost complete suppression was observed for PKS4, PKS13, and ZEB1 genes, and the balance between two ZEB2 isoforms was altered. Among regulatory genes, an increased expression of GPA1 and GPA2 genes encoding α- and β-subunits of a G-protein was shown, whereas eight genes were down-regulated. The obtained results suggest that the main pathway for a compactin-related inhibition of the DON and ZEN biosynthesis affects the transcription of genes involved in the G-protein-cAMP-PKA signaling pathway. The revealed gene expression data may provide a better understanding of genetic mechanisms underlying mycotoxin production and its regulation.
Collapse
|
15
|
Cai X, Xiang S, He W, Tang M, Zhang S, Chen D, Zhang X, Liu C, Li G, Xing J, Li Y, Chen X, Nie Y. Deubiquitinase Ubp3 regulates ribophagy and deubiquitinates Smo1 for appressorium-mediated infection by Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:832-844. [PMID: 35220670 PMCID: PMC9104258 DOI: 10.1111/mpp.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The Ubp family of deubiquitinating enzymes has been found to play important roles in plant-pathogenic fungi, but their regulatory mechanisms are still largely unknown. In this study, we revealed the regulatory mechanism of the deubiquitinating enzyme Ubp3 during the infection process of Magnaporthe oryzae. AUBP3 deletion mutant was severely defective in appressorium turgor accumulation, leading to the impairment of appressorial penetration. During appressorium formation, the mutant was also defective in glycogen and lipid metabolism. Interestingly, we found that nitrogen starvation and rapamycin treatment induced the ribophagy process in M. oryzae, which is closely dependent on Ubp3. In the ∆ubp3 mutant, the ribosome proteins and rRNAs were not well degraded on nitrogen starvation and rapamycin treatment. We also found that Ubp3 interacted with the GTPase-activating protein Smo1 and regulated its de-ubiquitination. Ubp3-dependent de-ubiquitination of Smo1 may be required for Smo1 to coordinate Ras signalling. Taken together, our results showed at least two roles of Ubp3 in M. oryzae: it regulates the ribophagy process and it regulates de-ubiquitination of GTPase-activating protein Smo1 for appressorium-mediated infection.
Collapse
Affiliation(s)
- Xuan Cai
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shikun Xiang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenhui He
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mengxi Tang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shimei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deng Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yunfeng Li
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanfang Nie
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- College of Materials and EnergySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
16
|
Wang J, Zeng W, Cheng J, Xie J, Fu Y, Jiang D, Lin Y. lncRsp1, a long noncoding RNA, influences Fgsp1 expression and sexual reproduction in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2022; 23:265-277. [PMID: 34841640 PMCID: PMC8743023 DOI: 10.1111/mpp.13160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/05/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) are crucial regulators of gene expression in many biological processes, but their biological functions remain largely unknown, especially in fungi. Fusarium graminearum is an important pathogen that causes the destructive disease Fusarium head blight (FHB) or head scab disease on wheat and barley. In our previous RNA sequencing (RNA-Seq) study, we discovered that lncRsp1 is an lncRNA that is located +99 bp upstream of a putative sugar transporter gene, Fgsp1, with the same transcription direction. Functional studies revealed that ΔlncRsp1 and ΔFgsp1 were normal in growth and conidiation but had defects in ascospore discharge and virulence on wheat coleoptiles. Moreover, lncRsp1 and Fgsp1 were shown to negatively regulate the expression of several deoxynivalenol (DON) biosynthesis genes, TRI4, TRI5, TRI6, and TRI13, as well as DON production. Further analysis showed that the overexpression of lncRsp1 enhanced the ability of ascospore release and increased the mRNA expression level of the Fgsp1 gene, while lncRsp1-silenced strains reduced ascospore discharge and inhibited Fgsp1 expression during the sexual reproduction stage. In addition, the lncRsp1 complementary strains lncRsp1-LC-1 and lncRsp1-LC-2 restored ascospore discharge to the level of the wild-type strain PH-1. Taken together, our results reveal the distinct and specific functions of lncRsp1 and Fgsp1 in F. graminearum and principally demonstrate that lncRsp1 can affect the release of ascospores by regulating the expression of Fgsp1.
Collapse
Affiliation(s)
- Jie Wang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Wenping Zeng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Environment Change and Resources Use in Beibu GulfMinistry of EducationNanning Normal UniversityNanningChina
| | - Jiasen Cheng
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Jiatao Xie
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yanping Fu
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Daohong Jiang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| | - Yang Lin
- Hubei Key Laboratory of Plant PathologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
17
|
FgSfl1 and Its Conserved PKA Phosphorylation Sites Are Important for Conidiation, Sexual Reproduction, and Pathogenesis in Fusarium graminearum. J Fungi (Basel) 2021; 7:jof7090755. [PMID: 34575793 PMCID: PMC8466192 DOI: 10.3390/jof7090755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
The fungal plant pathogen, Fusarium graminearum, contains two genes, FgCPK1 and FgCPK2, encoding the catalytic subunits of cAMP-dependent protein kinase A. FgCPK1 and FgCPK2 are responsible for most of the PKA activities and have overlapping functions in various cellular processes in F. graminearum. The cpk1 cpk2 double mutant was significantly reduced in growth, rarely produced conidia, and was non-pathogenic. In this study, we found that the cpk1 cpk2 double mutant was unstable and produced fast-growing spontaneous sectors that were defective in plant infection. All spontaneous suppressor strains had mutations in FgSFL1, a transcription factor gene orthologous to SFL1 in yeast. Thirteen suppressor strains had non-sense mutations at Q501, three suppressor strains had frameshift mutations at W198, and five suppressor strains had mutations in the HSF binding domain of FgSfl1. Only one suppressor strain had both a non-synonymous mutation at H225 and a non-sense mutation at R490. We generated the SFL1 deletion mutant and found that it produced less than 2% of conidia than that of the wild-type strain PH-1. The sfl1 mutant was significantly reduced in the number of perithecia on carrot agar plates at 7 days post-fertilization (dpf). When incubated for more than 12 days, ascospore cirrhi were observed on the sfl1 mutant perithecia. The infection ability of the sfl1 deletion mutant was also obviously defective. Furthermore, we found that in addition to the S223 and S559 phosphorylation sites, FgSFL1 had another predicted phosphorylation site: T452. Interestingly, the S223 phosphorylation site was responsible for sexual reproduction, and the T452 phosphorylation site was responsible for growth and sexual reproduction. Only the S559 phosphorylation site was found to play an important role in conidiation, sexual reproduction, and infection. Overall, our results indicate that FgSFL1 and its conserved PKA phosphorylation sites are important for vegetative growth, conidiation, sexual reproduction, and pathogenesis in F. graminearum.
Collapse
|
18
|
Karunarathna A, Tibpromma S, Jayawardena RS, Nanayakkara C, Asad S, Xu J, Hyde KD, Karunarathna SC, Stephenson SL, Lumyong S, Kumla J. Fungal Pathogens in Grasslands. Front Cell Infect Microbiol 2021; 11:695087. [PMID: 34434901 PMCID: PMC8381356 DOI: 10.3389/fcimb.2021.695087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 01/02/2023] Open
Abstract
Grasslands are major primary producers and function as major components of important watersheds. Although a concise definition of grasslands cannot be given using a physiognomic or structural approach, grasslands can be described as vegetation communities experiencing periodical droughts and with canopies dominated by grasses and grass-like plants. Grasslands have a cosmopolitan distribution except for the Antarctic region. Fungal interactions with grasses can be pathogenic or symbiotic. Herbivorous mammals, insects, other grassland animals, and fungal pathogens are known to play important roles in maintaining the biomass and biodiversity of grasslands. Although most pathogenicity studies on the members of Poaceae have been focused on economically important crops, the plant-fungal pathogenic interactions involved can extend to the full range of ecological circumstances that exist in nature. Hence, it is important to delineate the fungal pathogen communities and their interactions in man-made monoculture systems and highly diverse natural ecosystems. A better understanding of the key fungal players can be achieved by combining modern techniques such as next-generation sequencing (NGS) together with studies involving classic phytopathology, taxonomy, and phylogeny. It is of utmost importance to develop experimental designs that account for the ecological complexity of the relationships between grasses and fungi, both above and below ground. In grasslands, loss in species diversity increases interactions such as herbivory, mutualism, predation or infectious disease transmission. Host species density and the presence of heterospecific host species, also affect the disease dynamics in grasslands. Many studies have shown that lower species diversity increases the severity as well as the transmission rate of fungal diseases. Moreover, communities that were once highly diverse but have experienced decreased species richness and dominancy have also shown higher pathogenicity load due to the relaxed competition, although this effect is lower in natural communities. This review addresses the taxonomy, phylogeny, and ecology of grassland fungal pathogens and their interactions in grassland ecosystems.
Collapse
Affiliation(s)
- Anuruddha Karunarathna
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Saowaluck Tibpromma
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, China
| | - Ruvishika S Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | | | - Suhail Asad
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianchu Xu
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Samantha C Karunarathna
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming, China
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
19
|
Pleiotropic roles of Ras GTPases in the nematode-trapping fungus Arthrobotrys oligospora identified through multi-omics analyses. iScience 2021; 24:102820. [PMID: 34337364 PMCID: PMC8313493 DOI: 10.1016/j.isci.2021.102820] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The nematode-trapping fungi are ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a representative species of the same, producing traps for nematode predation. Here, three orthologous Ras GTPases (Ras2, Ras3, and Rheb) were characterized in A. oligospora. Our results indicate that they play pleiotropic roles in regulating the mycelial growth, conidiation, stress resistance, and pathogenicity of A. oligospora. Furthermore, deletion of Aoras2 and Aorheb significantly affected the mitochondrial activity, reactive oxygen species levels, lipid storage, and autophagy. Transcriptome analyses of ΔAoras2 mutant revealed that many repressed genes were associated with signal transduction, energy production, and carbohydrate transport and metabolism. Moreover, metabolic profile analyses showed that AoRas2 and AoRheb affect the biosynthesis of secondary metabolites in A. oligospora. Collectively, these findings provide an in-depth insight into the essential roles of Ras GTPases in vegetative growth, development, and pathogenicity and highlight their importance in the lifestyle switch of the nematode-trapping fungi. Ras GTPases play a multifunctional role in the lifestyle switch of A. oligospora Ras GTPases affect multiple cellular processes, including mitochondrial activity AoRas2 plays a key role in regulating global gene expression and nematode predation AoRas2 and AoRheb significantly affect the biosynthesis of secondary metabolites
Collapse
|
20
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
21
|
Gene Expression of Putative Pathogenicity-Related Genes in Verticillium dahliae in Response to Elicitation with Potato Extracts and during Infection Using Quantitative Real-Time PCR. Pathogens 2021; 10:pathogens10050510. [PMID: 33922492 PMCID: PMC8146963 DOI: 10.3390/pathogens10050510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Quantitative real-time PCR was used to monitor the expression of 15 Verticillium dahliae's genes, putatively involved in pathogenicity, highly (HAV) and weakly aggressive (WAV) V. dahliae isolates after either (i) elicitation with potato leaf, stem, or root extracts, or (ii) inoculation of potato detached petioles. These genes, i.e., coding for Ras-GAP-like protein, serine/threonine protein kinase, Ubiquitin-conjugating enzyme variant-MMS2, NADH-ubiquinone oxidoreductase, Thioredoxin, Pyruvate dehydrogenase E1 VdPDHB, myo-inositol 2-dehydrogenase, and HAD-superfamily hydrolase, showed differential upregulation in the HAV versus WAV isolate in response to plant extracts or after inoculation of potato leaf petioles. This suggests their potential involvement in the observed differential aggressiveness between isolates. However, other genes like glucan endo-1,3-alpha-glucosidase and nuc-1 negative regulatory protein VdPREG showed higher activity in the WAV than in the HAV in response to potato extracts and/or during infection. This, in contrast, may suggest a role in their lower aggressiveness. These findings, along with future functional analysis of selected genes, will contribute to improving our understanding of V. dahliae's pathogenesis. For example, expression of VdPREG negatively regulates phosphorus-acquisition enzymes, which may indicate a lower phosphorus acquisition activity in the WAV. Therefore, integrating the knowledge about the activity of both genes enhancing pathogenicity and those restraining it will provide a guild line for further functional characterization of the most critical genes, thus driving new ideas towards better Verticillium wilt management.
Collapse
|
22
|
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:362-375. [PMID: 33369502 DOI: 10.1094/mpmi-07-20-0206-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiang Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
23
|
Stępień Ł, Lalak-Kańczugowska J. Signaling pathways involved in virulence and stress response of plant-pathogenic Fusarium species. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ras2 is important for growth and pathogenicity in Fusarium circinatum. Fungal Genet Biol 2021; 150:103541. [PMID: 33639303 DOI: 10.1016/j.fgb.2021.103541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
In this study, we investigated to possible role of Ras2 in Fusarium circinatum- a fungus that causes pine pitch canker disease on many different pine species and has a wide geographic distribution. This protein is encoded by the RAS2 gene and has been shown to control growth and pathogenicity in a number of fungi in a mitogen-activated protein kinase- and/or cyclic adenosyl monophosphate pathway-dependent manner. The aim was therefore to characterize the phenotypes of RAS2 gene knockout and complementation mutants of F. circinatum. These mutants were generated by transforming protoplasts of the fungus with suitable split-marker constructs. The mutant strains, together with the wild type strain, were used in growth studies as well as pathogenicity assays on Pinus patula seedlings. Results showed that the knockout mutant strain produced significantly smaller lesions compared to the complementation mutant and wild type strains. Growth studies also showed significantly smaller colonies and delayed conidial germination in the knockout mutant strain compared to the complement mutant and wild type strains. Interestingly, the knockout mutant strain produced more macroconidia than the wild type strain. Collectively, these results showed that Ras2 plays an important role in both growth and pathogenicity of F. circinatum. Future studies will seek to determine the pathway(s) through which Ras2 controls these traits in F. circinatum.
Collapse
|
25
|
Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum. PLoS Genet 2020; 16:e1009185. [PMID: 33137093 PMCID: PMC7660929 DOI: 10.1371/journal.pgen.1009185] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 11/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Histone acetylation, balanced by histone acetyltransferase (HAT) and histone deacetylase (HDAC) complexes, affects dynamic transitions of chromatin structure to regulate transcriptional accessibility. However, little is known about the interplay between HAT and HDAC complexes in Fusarium graminearum, a causal agent of Fusarium Head Blight (FHB) that uniquely contains chromosomal regions enriched for house-keeping or infection-related genes. In this study, we identified the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and found that it specifically interacts with the FgEsa1 HAT of the NuA4 complex. Deletion of FNG1 led to severe growth defects and blocked conidiation, sexual reproduction, DON production, and plant infection. The fng1 mutant was normal in H3 acetylation but significantly reduced in H4 acetylation. A total of 34 spontaneous suppressors of fng1 with faster growth rate were isolated. Most of them were still defective in sexual reproduction and plant infection. Thirty two of them had mutations in orthologs of yeast RPD3, SIN3, and SDS3, three key components of the yeast Rpd3L HDAC complex. Four mutations in these three genes were verified to suppress the defects of fng1 mutant in growth and H4 acetylation. The rest two suppressor strains had a frameshift or nonsense mutation in a glutamine-rich hypothetical protein that may be a novel component of the FgRpd3 HDAC complex in filamentous fungi. FgRpd3, like Fng1, localized in euchromatin. Deletion of FgRPD3 resulted in severe growth defects and elevated H4 acetylation. In contract, the Fgsds3 deletion mutant had only a minor reduction in growth rate but FgSIN3 appeared to be an essential gene. RNA-seq analysis revealed that 48.1% and 54.2% of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3, respectively. Taken together, our data showed that Fng1 is important for H4 acetylation as a component of the NuA4 complex and functionally related to the FgRpd3 HDAC complex for transcriptional regulation of genes important for growth, conidiation, sexual reproduction, and plant infection in F. graminearum. Fusarium graminearum is the major causal agent of Fusarium Head Blight, a devastating disease of wheat and barley worldwide. Epigenetic regulation related to histone acetylation is involved in fungal development and invasive growth. Here, we functionally characterized the ortholog of the human inhibitor of growth (ING1) gene in F. graminearum (FNG1) and revealed its role in histone acetylation. By interacting with the FgEsa1 HAT of the NuA4 complex, Fng1 mediated H4 acetylation and was important for growth, conidiation, sexual development and pathogenicity. The fng1 mutant was unstable and a total of 34 spontaneous suppressors were isolated. Suppressor mutations were identified in four genes. While three of them, FgRPD3, FgSIN3, and FgSDS3, are key components of the Rpd3 HDAC complex, the other one encodes a glutamine-rich protein appeared to be a novel component of the Rpd3 HDAC complex in filamentous ascomycetes. Nevertheless, none of the mutation occurred in components of other HDAC complexes. Most of spontaneous suppressors were still defective in sexual reproduction and plant infection, indicating a stage-specific relationship between Fng1 and the Rpd3 HDAC complex. FgRpd3 and FgSds3 likely co-localized with Fng1 in euchromatin and played a critical role in vegetative growth. Approximately half of the genes with altered expression levels in the fng1 mutant were recovered to normal expression levels in two suppressor strains with mutations in FgRPD3 and FgSDS3. Most of these genes had no homologs in yeast, suggesting Fng1 and Rpd3 HDAC complex likely regulates genes unique to F. graminearum and filamentous fungi and with high genetic variations. Taken together, our data showed the functional relationship between Fng1 and the Rpd3 HDAC complex in H4 acetylation and hyphal growth, which has not been reported in other fungi.
Collapse
|
26
|
Teli B, Purohit J, Rashid MM, Jailani AAK, Chattopadhyay A. Omics Insight on Fusarium Head Blight of Wheat for Translational Research Perspective. Curr Genomics 2020; 21:411-428. [PMID: 33093804 PMCID: PMC7536796 DOI: 10.2174/1389202921999200620222631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
In the scenario of global warming and climate change, an outbreak of new pests and pathogens has become a serious concern owing to the rapid emergence of arms races, their epidemic infection, and the ability to break down host resistance, etc. Fusarium head blight (FHB) is one such evidence that depredates major cereals throughout the world. The symptomatological perplexity and aetiological complexity make this disease very severe, engendering significant losses in the yield. Apart from qualitative and quantitative losses, mycotoxin production solemnly deteriorates the grain quality in addition to life endangerment of humans and animals after consumption of toxified grains above the permissible limit. To minimize this risk, we must be very strategic in designing sustainable management practices constituting cultural, biological, chemical, and host resistance approaches. Even though genetic resistance is the most effective and environmentally safe strategy, a huge genetic variation and unstable resistance response limit the holistic deployment of resistance genes in FHB management. Thus, the focus must shift towards the editing of susceptible (S) host proteins that are soft targets of newly evolving effector molecules, which ultimately could be exploited to repress the disease development process. Hence, we must understand the pathological, biochemical, and molecular insight of disease development in a nutshell. In the present time, the availability of functional genomics, proteomics, and metabolomics information on host-pathogen interaction in FHB have constructed various networks which helped in understanding the pathogenesis and coherent host response(s). So now translation of this information for designing of host defense in the form of desirable resistant variety/genotype is the next step. The insights collected and presented in this review will be aiding in the understanding of the disease and apprise a solution to the multi-faceted problems which are related to FHB resistance in wheat and other cereals to ensure global food safety and food security.
Collapse
Affiliation(s)
- Basavaraj Teli
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Jyotika Purohit
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Md Mahtab Rashid
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - A Abdul Kader Jailani
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Anirudha Chattopadhyay
- 1Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India; 2Department of Plant Pathology, C.P. College of Agriculture, S.D. Agricultural University, S.K. Nagar, India; 3Plant RNAi Biology Group, I.C.G.E.B., New Delhi, India; 4Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
27
|
Muhammad A, Hu W, Li Z, Li J, Xie G, Wang J, Wang L. Appraising the Genetic Architecture of Kernel Traits in Hexaploid Wheat Using GWAS. Int J Mol Sci 2020; 21:ijms21165649. [PMID: 32781752 PMCID: PMC7460857 DOI: 10.3390/ijms21165649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Kernel morphology is one of the major yield traits of wheat, the genetic architecture of which is always important in crop breeding. In this study, we performed a genome-wide association study (GWAS) to appraise the genetic architecture of the kernel traits of 319 wheat accessions using 22,905 single nucleotide polymorphism (SNP) markers from a wheat 90K SNP array. As a result, 111 and 104 significant SNPs for Kernel traits were detected using four multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) and three single-locus models (FarmCPU, MLM, and MLMM), respectively. Among the 111 SNPs detected by the multi-locus models, 24 SNPs were simultaneously detected across multiple models, including seven for kernel length, six for kernel width, six for kernels per spike, and five for thousand kernel weight. Interestingly, the five most stable SNPs (RAC875_29540_391, Kukri_07961_503, tplb0034e07_1581, BS00074341_51, and BobWhite_049_3064) were simultaneously detected by at least three multi-locus models. Integrating these newly developed multi-locus GWAS models to unravel the genetic architecture of kernel traits, the mrMLM approach detected the maximum number of SNPs. Furthermore, a total of 41 putative candidate genes were predicted to likely be involved in the genetic architecture underlining kernel traits. These findings can facilitate a better understanding of the complex genetic mechanisms of kernel traits and may lead to the genetic improvement of grain yield in wheat.
Collapse
Affiliation(s)
- Ali Muhammad
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Weicheng Hu
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Zhaoyang Li
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Jianguo Li
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Guosheng Xie
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Jibin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (J.W.); (L.W.)
| | - Lingqiang Wang
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (J.W.); (L.W.)
| |
Collapse
|
28
|
Chen A, Ju Z, Wang J, Wang J, Wang H, Wu J, Yin Y, Zhao Y, Ma Z, Chen Y. The RasGEF FgCdc25 regulates fungal development and virulence in Fusarium graminearum via cAMP and MAPK signalling pathways. Environ Microbiol 2020; 22:5109-5124. [PMID: 32537857 DOI: 10.1111/1462-2920.15129] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Ras GTPases act as molecular switches to control various cellular processes by coupling integrated signals in eukaryotes. Activities of Ras GTPases are triggered by Ras GTPase guanine nucleotide exchange factors (RasGEFs) in general, whereas the role of RasGEF in plant pathogenic fungi is largely unknown. In this study, we characterized the only RasGEF protein in Fusarium graminearum, FgCdc25, by combining genetic, cytological and phenotypic strategies. FgCdc25 directly interacted with RasGTPase FgRas2, but not FgRas1, to regulate growth and sexual reproduction. Mutation of the FgCDC25 gene resulted in decreased toxisome formation and deoxynivalenol (DON) production, which was largely depended on cAMP signalling. In addition, FgCdc25 indirectly interacted with FgSte11 in FgSte11-Ste7-Gpmk1 cascade, and the ΔFgcdc25 strain totally abolished the formation of infection structures and was nonpathogenic in planta, which was partially recovered by addition of exogenous cAMP. In contrast, FgCdc25 directly interplayed with FgBck1 in FgBck1-MKK1-Mgv1 cascade to negatively control cell wall integrity. Collectively, these results suggest that FgCdc25 modulates cAMP and MAPK signalling pathways and further regulates fungal development, DON production and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Zhenzhen Ju
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
29
|
Yan Y, Tang J, Yuan Q, Gu Q, Liu H, Huang J, Hsiang T, Zheng L. ChCDC25 Regulates Infection-Related Morphogenesis and Pathogenicity of the Crucifer Anthracnose Fungus Colletotrichum higginsianum. Front Microbiol 2020; 11:763. [PMID: 32457707 PMCID: PMC7227425 DOI: 10.3389/fmicb.2020.00763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen, Colletotrichum higginsianum, causes a disease called anthracnose on various cruciferous plants. Here, we characterized a Saccharomyces cerevisiae CDC25 ortholog in C. higginsianum, named ChCDC25 (CH063_04363). The ChCDC25 deletion mutants were defective in mycelial growth, conidiation, conidial germination, appressorial formation, and invasive hyphal growth on Arabidopsis leaves, resulting in loss of virulence. Furthermore, deletion of ChCDC25 led to increased sensitivity to cell wall stress and resulted in resistance to osmotic stress. Exogenous cyclic adenosine monophosphate (cAMP) and IBMX treatments were able to induce appressorial formation in the ChCDC25 mutants, but abnormal germ tubes were still formed. The results implied that ChCDC25 is involved in pathogenicity by regulation of cAMP signaling pathways in C. higginsianum. More importantly, we found that ChCDC25 may interact with Ras2 and affects Ras2 protein abundance in C. higginsianum. Taken together, ChCDC25 regulates infection-related morphogenesis and pathogenicity of C. higginsianum. This is the first report to reveal functions of a CDC25 ortholog in a hemibiotrophic phytopathogen.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China.,Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Qiongnan Gu
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Hao Liu
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Threonine synthase CoTHR4 is involved in infection-related morphogenesis during the pre-penetration stage in Colletotrichum orbiculare. Microb Pathog 2019; 137:103746. [DOI: 10.1016/j.micpath.2019.103746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
|
31
|
Qin J, Wu M, Zhou S. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Curr Genet 2019; 66:517-529. [PMID: 31728616 DOI: 10.1007/s00294-019-01043-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 11/24/2022]
Abstract
Fusarium graminearum is a destructive fungal pathogen and a major cause of Fusarium head blight (FHB) which results in severe grain yield losses and quality reduction. Additionally, the pathogen produces mycotoxins during plant infection, which are harmful to the health of humans and livestock. As it is well known that lysine acetyltransferase complexes play important roles in pathogenesis, the roles of the Eaf6 homolog-containing complex have not been reported in fungal pathogen. In this study, a Eaf6 homolog FgEaf6 was identified in F. graminearum. To investigate the functions of FgEaf6, the gene was deleted using the split-marker method. ΔFgEaf6 mutant exhibited manifold defects in hyphal growth, conidial septation, asexual and sexual reproduction. Moreover, the virulence of the ΔFgEaf6 mutant was drastically reduced in both wheat heads and wheat coleoptiles. However, the FgEaf6 gene deletion did not impact DON production. An FgEaf6-gfp fusion localized to the nucleus and a conserved coiled-coil (C-C) domain was predicted in the sequence. Mutants with deletions in the C-C domain displayed similar defects during development and virulence as observed in the ΔFgEaf6 mutant. Moreover, the truncated gene was cytoplasm localized. In conclusion, the FgEaf6 encodes a nuclear protein, which plays key regulatory roles in hyphal growth, conidial septation, asexual/sexual reproduction, and the virulence of F. graminearum. The C-C is an indispensable domain in the gene. This is the first report on Eaf6 homolog functioning in virulence of fungal pathogen.
Collapse
Affiliation(s)
- Jiaxing Qin
- College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109, Shandong, China
| | - Mengchun Wu
- State Key Laboratory of Crop Stress Biology for Arid Aeras, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shanyue Zhou
- College of Plant Health and Medicine, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, 266109, Shandong, China.
| |
Collapse
|
32
|
Aboelfotoh Hendy A, Xing J, Chen X, Chen X. The farnesyltransferase β-subunit RAM1 regulates localization of RAS proteins and appressorium-mediated infection in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2019; 20:1264-1278. [PMID: 31250536 PMCID: PMC6715606 DOI: 10.1111/mpp.12838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Post-translational farnesylation can regulate subcellular localization and protein-protein interaction in eukaryotes. The function of farnesylation is not well identified in plant pathogenic fungi, particularly during the process of fungal infection. Here, through functional analyses of the farnesyltransferase β-subunit gene, RAM1, we examine the importance of protein farnesylation in the rice blast fungus Magnaporthe oryzae. Targeted disruption of RAM1 resulted in the reduction of hyphal growth and sporulation, and an increase in the sensitivity to various stresses. Importantly, loss of RAM1 also led to the attenuation of virulence on the plant host, characterized by decreased appressorium formation and invasive growth. Interestingly, the defect in appressoria formation of the Δram1 mutant can be recovered by adding exogenous cAMP and IBMX, suggesting that RAM1 functions upstream of the cAMP signalling pathway. We found that two Ras GTPases, RAS1 and RAS2, can interact with Ram1, and their plasma membrane localization was regulated by Ram1 through their C-terminal farnesylation sites. Adding a farnesyltransferase inhibitor Tipifarnib can result in similar defects as in Δram1 mutant, including decreased appressorium formation and invasive growth, as well as mislocalized RAS proteins. Our findings indicate that protein farnesylation regulates the RAS protein-mediated signaling pathways required for appressorium formation and host infection, and suggest that abolishing farnesyltransferase could be an effective strategy for disease control.
Collapse
Affiliation(s)
- Ahmed Aboelfotoh Hendy
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Department of Agricultural Botany, Faculty of Agriculture (Saba Basha)Alexandria UniversityAlexandria21531Egypt
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangsha410125China
| | - Xiaoyang Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Xiao‐Lin Chen
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangsha410125China
| |
Collapse
|
33
|
Chen Y, Kistler HC, Ma Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:15-39. [PMID: 30893009 DOI: 10.1146/annurev-phyto-082718-100318] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fusarium head blight (FHB) of small grain cereals caused by Fusarium graminearum and other Fusarium species is an economically important plant disease worldwide. Fusarium infections not only result in severe yield losses but also contaminate grain with various mycotoxins, especially deoxynivalenol (DON). With the complete genome sequencing of F. graminearum, tremendous progress has been made during the past two decades toward understanding the basis for DON biosynthesis and its regulation. Here, we summarize the current understanding of DON biosynthesis and the effect of regulators, signal transduction pathways, and epigenetic modifications on DON production and the expression of biosynthetic TRI genes. In addition, strategies for controlling FHB and DON contamination are reviewed. Further studies on these biosynthetic and regulatory systems will provide useful knowledge for developing novel management strategies to prevent FHB incidence and mycotoxin accumulation in cereals.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| | - H Corby Kistler
- Cereal Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Saint Paul, Minnesota 55108, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Wang H, Chen D, Li C, Tian N, Zhang J, Xu JR, Wang C. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Fungal Genet Biol 2019; 132:103251. [PMID: 31319136 DOI: 10.1016/j.fgb.2019.103251] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/06/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
The filamentous ascomycete Fusarium graminearum contains two β-tubulin genes TUB1 and TUB2 that differ in functions during vegetative growth and sexual reproduction. To further characterize their functional relationship, in this study we determined the co-localization of Tub1 and Tub2 and assayed their expression levels in different mutants and roles in DON production. Tub1 co-localized with Tub2 to the same regions of microtubules in conidia, hyphae, and ascospores. Whereas deletion of TUB1 had no obvious effect on the transcription of TUB2 and two α-tubulin genes (TUB4 and TUB5), the tub2 mutant was up-regulated in TUB1 transcription. To assay their protein expression levels, polyclonal antibodies that could specifically detect four α- and β-tubulin proteins were generated. Western blot analyses showed that the abundance of Tub1 proteins was increased in tub2 but reduced in tub4 and tub5 mutants. Interestingly, protein expression of Tub4 and Tub5 was decreased in the tub1 mutant in comparison with the wild type, despite a lack of obvious changes in their transcription. In contrast, deletion of TUB2 had no effect on translation of TUB4 and TUB5. Ectopic expression of Tub2-mCherry partially recovered the growth defect of the tub1 mutant but did not rescue its defect in sexual reproduction. Expression of Tub1-GFP in the tub2 mutant also partially rescued its defects in vegetative growth, suggesting that disturbance in the balance of α- and β-tubulins contributes to mutant defects. The tub2 but not tub1 mutant was almost blocked in DON biosynthesis. Expression of TRI genes, toxisome formation, and DON-related cellular differentiation were significantly reduced in the tub2 mutant. Overall, our results showed that Tub1 and Tub2 share similar subcellular localization and have overlapping functions during vegetative growth but they differ in functions in DON production and ascosporogenesis in F. graminearum.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chengliang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Neng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
35
|
Fan G, Zhang K, Zhang J, Yang J, Yang X, Hu Y, Huang J, Zhu Y, Yu W, Hu H, Wang B, Shim W, Lu GD. The transcription factor FgMed1 is involved in early conidiogenesis and DON biosynthesis in the plant pathogenic fungus Fusarium graminearum. Appl Microbiol Biotechnol 2019; 103:5851-5865. [PMID: 31115634 DOI: 10.1007/s00253-019-09872-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Fusarium graminearum is a prominent fungal pathogen that causes economically important losses by infesting a wide variety of cereal crops. F. graminearum produces both asexual and sexual spores which disseminate and inoculate hosts. Therefore, to better understand the disease cycle and to develop strategies to improve disease management, it is important to further clarify molecular mechanisms of F. graminearum conidiogenesis. In this study, we functionally characterized the FgMed1, a gene encoding an ortholog of a conserved MedA transcription factor known to be a key conidiogenesis regulator in Aspergillus nidulans. The gene deletion mutants ΔFgMed1 produced significantly less conidia, and these were generated from abnormal conidiophores devoid of phialides. Additionally, we observed defective sexual development along with reduced virulence and deoxynivalenol (DON) production in ΔFgMed1. The GFP-tagged FgMed1 protein localized to the nuclei of conidiophores and phialides during early conidiogenesis. Significantly, RNA-Seq analyses showed that a number of the conidiation- and toxin-related genes are differentially expressed in the ΔFgMed1 mutant in early conidiogenesis. These data strongly suggest that FgMed1 involved in regulation of genes associated with early conidiogenesis, DON production, and virulence in F. graminearum.
Collapse
Affiliation(s)
- Gaili Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Xiamen Greening Administration Center, Xiamen, 361004, Fujian, China
| | - Kai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jing Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiaoshuang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanpei Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiawei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yangyan Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongli Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - WonBo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
36
|
Sun S, Deng Y, Cai E, Yan M, Li L, Chen B, Chang C, Jiang Z. The Farnesyltransferase β-Subunit Ram1 Regulates Sporisorium scitamineum Mating, Pathogenicity and Cell Wall Integrity. Front Microbiol 2019; 10:976. [PMID: 31134021 PMCID: PMC6517510 DOI: 10.3389/fmicb.2019.00976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The basidiomycetous fungus Sporisorium scitamineum causes a serious sugarcane smut disease in major sugarcane growing areas. Sexual mating is essential for infection to the host; however, its underlying molecular mechanism has not been fully studied. In this study, we identified a conserved farnesyltransferase (FTase) β subunit Ram1 in S. scitamineum. The ram1Δ mutant displayed significantly reduced mating/filamentation, thus of weak pathogenicity to the host cane. The ram1Δ mutant sporidia showed more tolerant toward cell wall stressor Congo red compared to that of the wild-type. Transcriptional profiling showed that Congo red treatment resulted in notable up-regulation of the core genes involving in cell wall integrity pathway in ram1Δ sporidia compared with that of WT, indicating that Ram1 may be involved in cell wall integrity regulation. In yeast the heterodimeric FTase is responsible for post-translational modification of Ras (small G protein) and a-factor (pheromone). We also identified and characterized two conserved Ras proteins, Ras1 and Ras2, respectively, and a MAT-1 pheromone precursor Mfa1. The ras1Δ, ras2Δ and mfa1Δ mutants all displayed reduced mating/filamentation similar as the ram1Δ mutant. However, both ras1Δ and ras2Δ mutants were hypersensitive to Congo red while the mfa1Δ mutant was the same as wild-type. Overall our study displayed that RAM1 plays an essential role in S. scitamineum mating/filamentation, pathogenicity, and cell wall stability.
Collapse
Affiliation(s)
- Shuquan Sun
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Enping Cai
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Meixin Yan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lingyu Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Baoshan Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Changqing Chang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
37
|
The Fusarium Circinatum Gene Fcrho1, Encoding a Putative Rho1 GTPase, Is Involved in Vegetative Growth but Dispensable for Pathogenic Development. FORESTS 2018. [DOI: 10.3390/f9110684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fusarium circinatum is the causal agent of pine pitch canker (PPC), one of the most devastating forest diseases worldwide. This fungus causes severe damping-off in pine seedlings and growth reduction, wilting and the development of cankers in pine forests and plantations. A draft of the complete genome sequence of this phytopathogen was recently made available. This information was used to annotate in silico the gene Fcrho1 as a putative homolog of Rho1 GTPase genes. In this study, we generated Fcrho1 deletion mutants in two F. circinatum wildtype strains isolated from damaged trees in northern Spain. For that, we used a modified version of the OSCAR methodology, an approach not previously used in F. circinatum that allows the generation of deletion constructs in a single cloning step. The conidiation and spore germination of the resulting deletion mutants were not affected, neither the hyphal morphology. However, the mutant strains showed significantly reduced growth in vitro and more foamy macroscopic hyphal morphology than their corresponding ectopic and wildtype strains. Finally, an in vivo virulence assay showed that the reduced in vitro growth rate characteristic to the deletion mutants does not impact their pathogenicity.
Collapse
|
38
|
Wang G, Sun P, Gong Z, Gu L, Lou Y, Fang W, Zhang L, Su L, Yang T, Wang B, Zhou J, Xu JR, Wang Z, Zheng W. Srk1 kinase, a SR protein-specific kinase, is important for sexual reproduction, plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2018; 20:3261-3277. [DOI: 10.1111/1462-2920.14299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/24/2018] [Accepted: 05/26/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Guanghui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
- Institute of Oceanography; Minjiang University; Fuzhou China
| | - Peng Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Ziwen Gong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Center (BFPC), Haixia Institute of Science and Technology; Fujian Agriculture and Forestry University; Fuzhou China
| | - Yi Lou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Wenqin Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Lianhu Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Li Su
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Tao Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Baohua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins; College of Life Sciences, Fujian Agriculture and Forestry University; Fuzhou China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas; College of Plant Protection, Northwest A&F University; Yangling Shaanxi China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
- Institute of Oceanography; Minjiang University; Fuzhou China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; College of Plant Protection, Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
39
|
Duba A, Goriewa-Duba K, Wachowska U. A Review of the Interactions between Wheat and Wheat Pathogens: Zymoseptoria tritici, Fusarium spp. and Parastagonospora nodorum. Int J Mol Sci 2018; 19:E1138. [PMID: 29642627 PMCID: PMC5979484 DOI: 10.3390/ijms19041138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/24/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022] Open
Abstract
Zymoseptoria tritici is a hemibiotrophic pathogen which causes Septoria leaf blotch in wheat. The pathogenesis of the disease consists of a biotrophic phase and a necrotrophic phase. The pathogen infects the host plant by suppressing its immune response in the first stage of infection. Hemibiotrophic pathogens of the genus Fusarium cause Fusarium head blight, and the necrotrophic Parastagonosporanodorum is responsible for Septoria nodorum blotch in wheat. Cell wall-degrading enzymes in plants promote infections by necrotrophic and hemibiotrophic pathogens, and trichothecenes, secondary fungal metabolites, facilitate infections caused by fungi of the genus Fusarium. There are no sources of complete resistance to the above pathogens in wheat. Defense mechanisms in wheat are controlled by many genes encoding resistance traits. In the wheat genome, the characteristic features of loci responsible for resistance to pathogenic infections indicate that at least several dozen genes encode resistance to pathogens. The molecular interactions between wheat and Z. tritici, P. nodorum and Fusarium spp. pathogens have been insufficiently investigated. Most studies focus on the mechanisms by which the hemibiotrophic Z. tritici suppresses immune responses in plants and the role of mycotoxins and effector proteins in infections caused by P. nodorum and Fusarium spp. fungi. Trichothecene glycosylation and effector proteins, which are involved in defense responses in wheat, have been described at the molecular level. Recent advances in molecular biology have produced interesting findings which should be further elucidated in studies of molecular interactions between wheat and fungal pathogens. The Clustered Regularly-Interspaced Short Palindromic Repeats/ CRISPR associated (CRISPR/Cas) system can be used to introduce targeted mutations into the wheat genome and confer resistance to selected fungal diseases. Host-induced gene silencing and spray-induced gene silencing are also useful tools for analyzing wheat-pathogens interactions which can be used to develop new strategies for controlling fungal diseases.
Collapse
Affiliation(s)
- Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| | - Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, pl. Łódzki 3, 10-724 Olsztyn, Poland.
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-719 Olsztyn, Poland.
| |
Collapse
|
40
|
Li C, Zhang Y, Wang H, Chen L, Zhang J, Sun M, Xu J, Wang C. The PKR regulatory subunit of protein kinase A (PKA) is involved in the regulation of growth, sexual and asexual development, and pathogenesis in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:909-921. [PMID: 28665481 PMCID: PMC6638095 DOI: 10.1111/mpp.12576] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab disease and a producer of deoxynivalenol (DON) mycotoxins. Treatment with exogenous cyclic adenosine monophosphate (cAMP) increases its DON production. In this study, to better understand the role of the cAMP-protein kinase A (PKA) pathway in F. graminearum, we functionally characterized the PKR gene encoding the regulatory subunit of PKA. Mutants deleted of PKR were viable, but showed severe defects in growth, conidiation and plant infection. The pkr mutant produced compact colonies with shorter aerial hyphae with an increased number of nuclei in hyphal compartments. Mutant conidia were morphologically abnormal and appeared to undergo rapid autophagy-related cell death. The pkr mutant showed blocked perithecium development, but increased DON production. It had a disease index of less than unity and failed to spread to neighbouring spikelets. The mutant was unstable and spontaneous suppressors with a faster growth rate were often produced on older cultures. A total of 67 suppressor strains that grew faster than the original mutant were isolated. Three showed a similar growth rate and colony morphology to the wild-type, but were still defective in conidiation. Sequencing analysis with 18 candidate PKA-related genes in three representative suppressor strains identified mutations only in the CPK1 catalytic subunit gene. Further characterization showed that 10 of the other 64 suppressor strains also had mutations in CPK1. Overall, these results showed that PKR is important for the regulation of hyphal growth, reproduction, pathogenesis and DON production, and mutations in CPK1 are partially suppressive to the deletion of PKR in F. graminearum.
Collapse
Affiliation(s)
- Chaoqun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Yonghui Zhang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Huan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Ju Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| | - Jin‐Rong Xu
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi 712100China
| |
Collapse
|
41
|
Wang L, He H, Wang S, Chen X, Qiu D, Kondo H, Guo L. Evidence for a novel negative-stranded RNA mycovirus isolated from the plant pathogenic fungus Fusarium graminearum. Virology 2018; 518:232-240. [PMID: 29549785 DOI: 10.1016/j.virol.2018.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/26/2018] [Accepted: 03/07/2018] [Indexed: 10/24/2022]
Abstract
Here we describe a novel (-)ssRNA mycovirus, Fusarium graminearum negative-stranded RNA virus 1 (FgNSRV-1), isolated from Fusarium graminearum strain HN1. The genome of FgNSRV-1 is 9072 nucleotides in length, with five discontinuous but linear ORFs (ORF I-V). Phylogenetic analysis based on entire L polymerase sequences indicated that FgNSRV-1 is related to the (-)ssRNA mycovirus Sclerotinia sclerotiorum negative-stranded RNA virus 1 (SsNSRV-1), and other mycoviruses. Our data suggest that FgNSRV-1 can be classified into the family Mymonaviridae, order Mononegavirales. Putative enveloped virion-like structures with filamentous morphology similar to SsNSRV-1 were observed in virion preparation samples. The L proteins of FgNSRV-1, and other fungal mononegaviruses, were found to be related to L protein-like sequences in some fungal genome, supporting the hypothesis that there is coevolution occurring between mycoviruses and fungi. Besides, clearing the virus from the infected host fungus resulted in no discernable phenotypic change.
Collapse
Affiliation(s)
- Luan Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hao He
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuangchao Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoguang Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | - Lihua Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
42
|
Qi T, Zhu X, Tan C, Liu P, Guo J, Kang Z, Guo J. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f. sp. tritici enhances resistance of wheat to stripe rust. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:797-807. [PMID: 28881438 PMCID: PMC5814584 DOI: 10.1111/pbi.12829] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/13/2017] [Accepted: 08/23/2017] [Indexed: 05/18/2023]
Abstract
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)-mediated host-induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down-regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.
Collapse
Affiliation(s)
- Tuo Qi
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaoguo Zhu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Chenlong Tan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Peng Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
43
|
Yin T, Zhang Q, Wang J, Liu H, Wang C, Xu J, Jiang C. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:552-563. [PMID: 28142217 PMCID: PMC6638064 DOI: 10.1111/mpp.12540] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 05/25/2023]
Abstract
Fusarium graminearum is a causal agent of wheat scab and a producer of the trichothecene mycotoxin deoxynivalenol (DON). The expression of trichothecene biosynthesis (TRI) genes and DON production are mainly regulated by the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway and two pathway-specific transcription factors (TRI6 and TRI10). Interestingly, deletion mutants of TRI6 show reduced expression of several components of cAMP signalling, including the FgCAP1 adenylate-binding protein gene that has not been functionally characterized in F. graminearum. In this study, we show that FgCap1 interacts with Fac1 adenylate cyclase and that deletion of FgCAP1 reduces the intracellular cAMP level and PKA activity. The Fgcap1 deletion mutant is defective in vegetative growth, conidiogenesis and plant infection. It also shows significantly reduced DON production and TRI gene expression, which can be suppressed by exogenous cAMP, indicating a PKA-dependent regulation of DON biosynthesis by FgCap1. The wild-type, but not tri6 mutant, shows increased levels of intracellular cAMP and FgCAP1 expression under DON-producing conditions. Furthermore, the promoter of FgCAP1 contains one putative Tri6-binding site that is important for its function during DON biosynthesis, but is dispensable for hyphal growth, conidiogenesis and pathogenesis. In addition, FgCap1 shows an actin-like localization to the cortical patches at the apical region of hyphal tips. Phosphorylation of FgCap1 at S353 was identified by phosphoproteomics analysis. The S353A mutation in FgCAP1 has no effect on its functions during vegetative growth, conidiation and DON production. However, expression of the FgCAP1S353A allele fails to complement the defects of the Fgcap1 mutant in plant infection, indicating the importance of the phosphorylation of FgCap1 at S353 during pathogenesis. Taken together, our results suggest that FgCAP1 is involved in the regulation of DON production via cAMP signalling and subjected to a feedback regulation by TRI6, but the phosphorylation of FgCap1 at S353 is probably unrelated to the cAMP-PKA pathway because the S353A mutation only affects plant infection.
Collapse
Affiliation(s)
- Tao Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianhua Wang
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
- Institute for Agri‐food Standards and Testing TechnologyShanghai Academy of Agricultural SciencesShanghai201403China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Chenfang Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jin‐Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxi712100China
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIN 47907USA
| |
Collapse
|
44
|
Castiblanco V, Marulanda JJ, Würschum T, Miedaner T. Candidate gene based association mapping in Fusarium culmorum for field quantitative pathogenicity and mycotoxin production in wheat. BMC Genet 2017; 18:49. [PMID: 28525967 PMCID: PMC5438566 DOI: 10.1186/s12863-017-0511-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Quantitative traits are common in nature, but quantitative pathogenicity has received only little attention in phytopathology. In this study, we used 100 Fusarium culmorum isolates collected from natural field environments to assess their variation for two quantitative traits, aggressiveness and deoxynivalenol (DON) production on wheat plants grown in four different field environments (location-year combinations). Seventeen Fusarium graminearum pathogenicity candidate genes were assessed for their effect on the aggressiveness and DON production of F. culmorum under field conditions. Results For both traits, genotypic variance among isolates was high and significant while the isolate-by-environment interaction was also significant, amounting to approximately half of the genotypic variance. Among the studied candidate genes, the mitogen-activated protein kinase (MAPK) HOG1 was found to be significantly associated with aggressiveness and deoxynivalenol (DON) production, explaining 10.29 and 6.05% of the genotypic variance, respectively. Conclusions To the best of our knowledge, this is the first report of a protein kinase regulator explaining differences in field aggressiveness and mycotoxin production among individuals from natural populations of a plant pathogen. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0511-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Valheria Castiblanco
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Jose J Marulanda
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 79593, Stuttgart, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
45
|
Gu Q, Chen M, Huang J, Wei Y, Hsiang T, Zheng L. Multifaceted Roles of the Ras Guanine-Nucleotide Exchange Factor ChRgf in Development, Pathogenesis, and Stress Responses of Colletotrichum higginsianum. PHYTOPATHOLOGY 2017; 107:433-443. [PMID: 28026997 DOI: 10.1094/phyto-03-16-0137-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The infection process of Colletotrichum higginsianum, which causes a disease of crucifers, involves several key steps: conidial germination, appressorial formation, appressorial penetration, and invasive growth in host tissues. In this study, the ChRgf gene encoding a Ras guanine-nucleotide exchange factor protein was identified by screening T-DNA insertion mutants generated from Agrobacterium tumefaciens-mediated transformation that were unable to cause disease on the host Arabidopsis thaliana. Targeted gene deletion of ChRgf resulted in a null mutant (ΔChrgf-42) with defects in vegetative growth, hyphal morphology, and conidiation, and poor surface attachment and low germination on hydrophobic surfaces; however, there were no apparent differences in appressorial turgor pressure between the wild type and the mutant. The conidia of the mutant were unable to geminate on attached Arabidopsis leaves and did not cause any disease symptoms. Intracellular cyclic adenosine monophosphate levels in the ΔChrgf mutant were lower than that of the wild type. Our results suggest that ChRgf is a key regulator in response to salt and osmotic stresses in C. higginsianum, and indicate that it is involved in fungal pathogenicity. This gene seems to act as an important modulator upstream of several distinct signaling pathways that are involved in regulating vegetative growth, conidiation, infection-related structure development, and stress responses of C. higginsianum.
Collapse
Affiliation(s)
- Qiongnan Gu
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Meijuan Chen
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Junbin Huang
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Yangdou Wei
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Tom Hsiang
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Lu Zheng
- First, second, and sixth authors: The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei, China; first and fourth authors: Department of Biology, University of Saskatchewan, Saskatoon S7N 5E2, Canada; and fifth author: School of Environmental Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
46
|
Mangwanda R, Zwart L, van der Merwe NA, Moleleki LN, Berger DK, Myburg AA, Naidoo S. Localization and Transcriptional Responses of Chrysoporthe austroafricana in Eucalyptus grandis Identify Putative Pathogenicity Factors. Front Microbiol 2016; 7:1953. [PMID: 28008326 PMCID: PMC5143476 DOI: 10.3389/fmicb.2016.01953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022] Open
Abstract
Chrysoporthe austroafricana is a fungal pathogen that causes the development of stem cankers on susceptible Eucalyptus grandis trees. Clones of E. grandis that are partially resistant and highly susceptible have been identified based on the extent of lesion formation on the stem upon inoculation with C. austroafricana. These interactions have been used as a model pathosystem to enhance our understanding of interactions between pathogenic fungi and woody hosts, which may be different to herbaceous hosts. In previous research, transcriptomics of host responses in these two clones to C. austroafricana suggested roles for salicylic acid and gibberellic acid phytohormone signaling in defense. However, it is unclear how the pathogen infiltrates host tissue and which pathogenicity factors facilitate its spread in the two host genotypes. The aim of this study was to investigate these two aspects of the E. grandis-C. austroafricana interaction and to test the hypothesis that the pathogen possesses mechanisms to modulate the tree phytohormone-mediated defenses. Light microscopy showed that the pathogen occurred in most cell types and structures within infected E. grandis stem tissue. Notably, the fungus appeared to spread through the stem by penetrating cell wall pits. In order to understand the molecular interaction between these organisms and predict putative pathogenicity mechanisms of C. austroafricana, fungal gene expression was studied in vitro and in planta. Fungal genes associated with cell wall degradation, carbohydrate metabolism and phytohormone manipulation were expressed in planta by C. austroafricana. These genes could be involved in fungal spread by facilitating cell wall pit degradation and manipulating phytohormone mediated defense in each host environment, respectively. Specifically, the in planta expression of an ent-kaurene oxidase and salicylate hydroxylase in C. austroafricana suggests putative mechanisms by which the pathogen can modulate the phytohormone-mediated defenses of the host. These mechanisms have been reported in herbaceous plant-pathogen interactions, supporting the notion that these aspects of the interaction are similar in a woody species. This study highlights ent-kaurene oxidase and salicylate hydroxylase as candidates for further functional characterization.
Collapse
Affiliation(s)
- Ronishree Mangwanda
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lizahn Zwart
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Nicolaas A. van der Merwe
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Dave Kenneth Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Alexander A. Myburg
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| |
Collapse
|
47
|
Two FgLEU2 Genes with Different Roles in Leucine Biosynthesis and Infection-Related Morphogenesis in Fusarium graminearum. PLoS One 2016; 11:e0165927. [PMID: 27835660 PMCID: PMC5106029 DOI: 10.1371/journal.pone.0165927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/19/2016] [Indexed: 12/04/2022] Open
Abstract
3-isopropylmalate dehydrogenase (IPMD) encoded by LEU2 is a key enzyme in leucine (Leu) biosynthetic pathway. Analysis of the genome sequence of Fusarium graminearum revealed two paralogous LEU2 genes (designated as FgLEU2A and FgLEU2B) in this fungus and the deduced amino acid sequences of FgLeu2A and FgLeu2B share 45% identity. Targeted disruption of individual FgLEU2A/B gene in F. graminearum assigned a more crucial role of FgLeu2A in Leu biosynthesis as disruption of FgLEU2A resulted in mutant (ΔFgLeu2A-10) that was Leu-auxotrophic and could not grow in minimal medium limited for amino acids, whereas FgLEU2B deletion mutant ΔFgLeu2B-2 was morphologically indistinguishable from the wild type strain PH-1. The growth defects of ΔFgLeu2A-10 could be overcome by exogenous addition of Leu at 0.25 mM. Double deletion of FgLEU2A and FgLEU2B (ΔFgLeu2AB-8) caused a more severe Leu-auxotrophic phenotype as the concentration of Leu exogenously added to medium to rescue the growth defect of ΔFgLeu2AB-8 should be raised to 1.25 mM, indicating a less important but nonnegligible role of FgLeu2B in Leu biosynthesis. Disturb of Leu biosynthesis caused by FgLEU2A deletion leads to slower growth rate, reduced aerial hyphal formation and red pigmentation on PDA plates and completely blocked conidial production and germination. All of the defects above could be overcome by Leu addition or complementation of the full-length FgLEU2A gene. ΔFgLeu2A-10 also showed significantly increased sensitivity to osmotic and oxidative stresses. Pathogenicity assay results showed that virulence of mutants lacking FgLEU2A were dramatically impaired on wheat heads and non-host cherry tomatoes. Additionally, a low level of deoxynivalenol (DON) production of ΔFgLeu2A-10 and ΔFgLeu2AB-8 in wheat kernels was also detected. Taken together, results of this study indicated a crucial role of FgLeu2A and a less important role of FgLeu2B in Leu biosynthesis and fungal infection-related morphogenesis in F. graminearum and FgLeu2A may serve as a potential target for novel antifungal development.
Collapse
|
48
|
Zhu Q, Sun L, Lian J, Gao X, Zhao L, Ding M, Li J, Liang Y. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Fungal Genet Biol 2016; 97:1-9. [PMID: 27777035 DOI: 10.1016/j.fgb.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
Phospholipase C (PLC) is an important phospholipid hydrolase that plays critical roles in various biological processes in eukaryotic cells. To elucidate the functions of PLC in morphogenesis and pathogenesis in Fusarium graminearum, deletion mutants were constructed of all six FgPLC genes identified in this study. Deletion of FgPLC1, but not the other five FgPLC genes, affected hyphal growth and conidiation. The FgPLC1 deletion mutant (Δplc1) also was defective in conidium germination and germ tube growth. It was sterile in selfing crosses and had increased sensitivities to hyperosmotic and cell wall stresses. The Δplc1 mutant showed reduced DON production and virulence during infection in flowering wheat heads. Deletion of FgPLC1 decreased the phosphorylation levels of both Gpmk1 and Mgv1 MAP kinases. qRT-PCR analysis showed that several genes related to defective phenotypes were down-regulated in the Δplc1 mutant. Taken together, these results indicated that FgPLC1 is important for hyphal growth, plant infection, and sexual or asexual reproduction, and it may be functionally related to MAP kinases in F. graminearum.
Collapse
Affiliation(s)
- Qili Zhu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Ling Sun
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jiajie Lian
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xuli Gao
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Lei Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China
| | - Mingyu Ding
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jing Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
49
|
Cheng Y, Yao J, Zhang Y, Li S, Kang Z. Characterization of a Ran gene from Puccinia striiformis f. sp. tritici involved in fungal growth and anti-cell death. Sci Rep 2016; 6:35248. [PMID: 27734916 PMCID: PMC5062253 DOI: 10.1038/srep35248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022] Open
Abstract
Ran, an important family of small GTP-binding proteins, has been shown to regulate a variety of important cellular processes in many eukaryotes. However, little is known about Ran function in pathogenic fungi. In this study, we report the identification and functional analysis of a Ran gene (designated PsRan) from Puccinia striiformis f. sp. tritici (Pst), an important fungal pathogen affecting wheat production worldwide. The PsRan protein contains all conserved domains of Ran GTPases and shares more than 70% identity with Ran proteins from other organisms, indicating that Ran proteins are conserved in different organisms. PsRan shows a low level of intra-species polymorphism and is localized to the nucleus. qRT-PCR analysis showed that transcript level of PsRan was induced in planta during Pst infection. Silencing of PsRan did not alter Pst virulence phenotype but impeded fungal growth of Pst. In addition, heterologous overexpression of PsRan in plant failed to induce cell death but suppressed cell death triggered by a mouse BAX gene or a Pst Ras gene. Our results suggest that PsRan is involved in the regulation of fungal growth and anti-cell death, which provides significant insight into Ran function in pathogenic fungi.
Collapse
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanru Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
50
|
Kou Y, Naqvi NI. Surface sensing and signaling networks in plant pathogenic fungi. Semin Cell Dev Biol 2016; 57:84-92. [DOI: 10.1016/j.semcdb.2016.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022]
|