1
|
Duan H, Moresco P, Champouret N. Characterization of host-effector transcription dynamics during pathogen infection in engineered late blight resistant potato. Transgenic Res 2023; 32:95-107. [PMID: 36870023 DOI: 10.1007/s11248-023-00340-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
Phytophthora infestans, the etiologic agent of late blight, is a threat to potato production in areas with high humidity during the growing season. The oomycete pathogen is hemi-biotrophic, it establishes infection on living plant cells and then spreads, kills, and feeds off the necrotized plant tissue material. The interaction between host and pathogen is complex with dynamic pathogen RXLR effectors and potato NB-LRR resistance proteins actively competing for dominance and survival. Late blight protection was brought to several cultivars of potato through insertion of the wild potato (Solanum venturii) NB-LRR resistance gene Rpi-vnt1.1. We have established that the late blight protection trait, mediated by Rpi-vnt1.1, is effective despite low expression of RNA. The RNA expression dynamics of Rpi-vnt1.1 and the cognate pathogen RXLR effector, Avr-vnt1, were evaluated following spray inoculation with up to five different contemporary late blight isolates from North America and South America. Following inoculations, RXLR effector transcript profiles provided insight into interaction compatibility in relation to markers of the late blight hemi-biotrophic lifecycle.
Collapse
Affiliation(s)
- Hui Duan
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA.
- Floral and Nursery Plants Research Unit, Beltsville Agricultural Research Center (BARC)-West, USDA-ARS, U.S. National Arboretum, Beltsville, MD, 20705, USA.
| | - Paul Moresco
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA
- , Chicago, IL, 60610, USA
| | - Nicolas Champouret
- Simplot Plant Sciences, J. R. Simplot Company, Boise, ID, 83706, USA
- , Naperville, IL, 60540, USA
| |
Collapse
|
2
|
Wang Q, Shao B, Shaikh FI, Friedt W, Gottwald S. Wheat Resistances to Fusarium Root Rot and Head Blight Are Both Associated with Deoxynivalenol- and Jasmonate-Related Gene Expression. PHYTOPATHOLOGY 2018; 108:602-616. [PMID: 29256831 DOI: 10.1094/phyto-05-17-0172-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fusarium graminearum is a major pathogen of wheat causing Fusarium head blight (FHB). Its ability to colonize wheat via seedling root infection has been reported recently. Our previous study on Fusarium root rot (FRR) has disclosed histological characteristics of pathogenesis and pathogen defense that mirror processes of spike infection. Therefore, it would be interesting to understand whether genes relevant for FHB resistance are induced in roots. The concept of similar-acting defense mechanisms provides a basis for research at broad Fusarium resistance in crop plants. However, molecular defense responses involved in FRR as well as their relation to spike resistance are unknown. To test the hypothesis of a conserved defense response, a candidate gene expression study was conducted to test the activity of selected prominent FHB defense-related genes in seedling roots, adult plant roots, spikes, and shoots. FRR was examined at seedling and adult plant stages to assess age-related pattern of disease and pathogen resistance. This study offers first evidence for a significant genetic overlap in root and spike defense responses, both in local and distant tissues. The results point to plant development-specific rather than organ-specific determinants of resistance, and suggest roots as an interesting model for studies on wheat-Fusarium interactions.
Collapse
Affiliation(s)
- Qing Wang
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Beiqi Shao
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Fayaz Imamrasul Shaikh
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Wolfgang Friedt
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Sven Gottwald
- All authors: Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
3
|
Stenlid J, Oliva J. Phenotypic interactions between tree hosts and invasive forest pathogens in the light of globalization and climate change. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0455. [PMID: 28080981 DOI: 10.1098/rstb.2015.0455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/30/2022] Open
Abstract
Invasive pathogens can cause considerable damage to forest ecosystems. Lack of coevolution is generally thought to enable invasive pathogens to bypass the defence and/or recognition systems in the host. Although mostly true, this argument fails to predict intermittent outcomes in space and time, underlining the need to include the roles of the environment and the phenotype in host-pathogen interactions when predicting disease impacts. We emphasize the need to consider host-tree imbalances from a phenotypic perspective, considering the lack of coevolutionary and evolutionary history with the pathogen and the environment, respectively. We describe how phenotypic plasticity and plastic responses to environmental shifts may become maladaptive when hosts are faced with novel pathogens. The lack of host-pathogen and environmental coevolution are aligned with two global processes currently driving forest damage: globalization and climate change, respectively. We suggest that globalization and climate change act synergistically, increasing the chances of both genotypic and phenotypic imbalances. Short moves on the same continent are more likely to be in balance than if the move is from another part of the world. We use Gremmeniella abietina outbreaks in Sweden to exemplify how host-pathogen phenotypic interactions can help to predict the impacts of specific invasive and emergent diseases.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 750 07 Uppsala, Sweden
| | - Jonàs Oliva
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, PO Box 7026, 750 07 Uppsala, Sweden
| |
Collapse
|
4
|
Stefańczyk E, Sobkowiak S, Brylińska M, Śliwka J. Expression of the Potato Late Blight Resistance Gene Rpi-phu1 and Phytophthora infestans Effectors in the Compatible and Incompatible Interactions in Potato. PHYTOPATHOLOGY 2017; 107:740-748. [PMID: 28134594 DOI: 10.1094/phyto-09-16-0328-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study describes late blight resistance of potato breeding lines resulting from crosses between cultivar 'Sárpo Mira' and Rpi-phu1 gene donors. The progeny is investigated for the presence of Rpi-Smira1 and Rpi-phu1 resistance (R) genes. Interestingly, in detached-leaflet tests, plants with both R genes withstood the infection of the Phytophthora infestans isolate virulent to each gene separately, due to either interaction of these genes or the presence of additional resistance loci. The interaction was studied further in three chosen breeding lines on the transcriptional level. The Rpi-phu1 expression, measured over 5 days, revealed different patterns depending on the outcome of the interaction with P. infestans: it increased in infected plants whereas it remained low and stable when infection was unsuccessful. The expression patterns of P. infestans effectors Avr-vnt1, AvrSmira1, and Avr8, recognized by the Rpi-phu1, Rpi-Smira1, and Rpi-Smira2 genes, respectively, were evaluated in the same experimental setup. This is the first report that the Avr-vnt1 effector expression is not switched off permanently in virulent isolates to avoid recognition by an R protein but can reappear in a postbiotrophic phase and is present constantly when infecting plants without the corresponding R gene. Both a plant and a pathogen can react to the other interacting side by changing the transcript accumulation of R genes or effectors.
Collapse
Affiliation(s)
- Emil Stefańczyk
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - Sylwester Sobkowiak
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - Marta Brylińska
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
5
|
Millett BP, Gao L, Iorizzo M, Carputo D, Bradeen JM. Potato Tuber Blight Resistance Phenotypes Correlate with RB Transgene Transcript Levels in an Age-Dependent Manner. PHYTOPATHOLOGY 2015; 105:1131-1136. [PMID: 25775104 DOI: 10.1094/phyto-10-14-0291-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plants have evolved strategies and mechanisms to detect and respond to pathogen attack. Different organs of the same plant may be subjected to different environments (e.g., aboveground versus belowground) and pathogens with different lifestyles. Accordingly, plants commonly need to tailor defense strategies in an organ-specific manner. Phytophthora infestans, causal agent of potato late blight disease, infects both aboveground foliage and belowground tubers. We examined the efficacy of transgene RB (known for conferring foliar late blight resistance) in defending against tuber late blight disease. Our results indicate that the presence of the transgene has a positive yet only marginally significant effect on tuber disease resistance on average. However, a significant association between transgene transcript levels and tuber resistance was established for specific transformed lines in an age-dependent manner, with higher transcript levels indicating enhanced tuber resistance. Thus, RB has potential to function in both foliage and tuber to impart late blight resistance. Our data suggest that organ-specific resistance might result directly from transcriptional regulation of the resistance gene itself.
Collapse
Affiliation(s)
- Benjamin P Millett
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Liangliang Gao
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Massimo Iorizzo
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Domenico Carputo
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - James M Bradeen
- First, second, third, and fifth authors: Department of Plant Pathology, University of Minnesota, St. Paul 55108; second author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul; third and fourth authors: Department of Agricultural Sciences, University of Naples Federico II, Portici (NA), Italy; and fifth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
6
|
Rodewald J, Trognitz B. Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. MOLECULAR PLANT PATHOLOGY 2013; 14:740-57. [PMID: 23710878 PMCID: PMC6638693 DOI: 10.1111/mpp.12036] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Resistance genes against Phytophthora infestans (Rpi genes), the most important potato pathogen, are still highly valued in the breeding of Solanum spp. for enhanced resistance. The Rpi genes hitherto explored are localized most often in clusters, which are similar between the diverse Solanum genomes. Their distribution is not independent of late maturity traits. This review provides a summary of the most recent important revelations on the genomic position and cloning of Rpi genes, and the structure, associations, mode of action and activity spectrum of Rpi and corresponding avirulence (Avr) proteins. Practical implications for research into and application of Rpi genes are deduced and combined with an outlook on approaches to address remaining issues and interesting questions. It is evident that the potential of Rpi genes has not been exploited fully.
Collapse
Affiliation(s)
- Jan Rodewald
- Department of Health and Environment, Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| | | |
Collapse
|
7
|
Bonde MR, Nester SE, Berner DK. Effects of frequency of "extreme" temperature highs on development of soybean rust. PHYTOPATHOLOGY 2013; 103:708-16. [PMID: 23425238 DOI: 10.1094/phyto-09-12-0250-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previously, we hypothesized that summer "extreme" diurnal temperature highs in the southeastern United States were responsible for the yearly absence or delay of soybean rust development until fall. Utilizing temperature-controlled growth chambers, a diurnal temperature pattern of 33°C high and 20°C low reduced urediniospore production by 81%. However, that study did not consider the influence of frequency of extreme temperatures on soybean rust. We now report that a temperature high of 35°C for 1 h on three consecutive days, initiated 15 days after inoculation, when lesions had formed, reduced urediniospore production by 50% and required 9 to 12 days for sporulation to resume once the extreme temperature highs ceased. Furthermore, three consecutive days in which the temperature high was 37°C, beginning immediately after inoculation and subsequent dew period, reduced lesion numbers by 60%. The combined effects of reduced numbers of lesions and urediniospores per lesion caused by extreme temperature highs can account for observed absence or delay of soybean rust development in the southeastern United States until fall. A comparison of frequency of extreme temperature highs with numbers of counties reporting presence of soybean rust from 2005 to 2012 verified that extreme temperature highs may be largely responsible for absence or delay of soybean rust development. This is the first report showing the effect of frequency of extreme temperature highs on development of soybean rust. Because the south-to-north progression of soybean rust is required for the disease to occur in the major soybean-production regions of the United States, temperatures in the southeastern United States have a major effect on the entire U.S. soybean industry.
Collapse
Affiliation(s)
- M R Bonde
- United States Department of Agriculture-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Frederick, MD 21702-5023, USA.
| | | | | |
Collapse
|
8
|
Zhang H, Wang C, Cheng Y, Chen X, Han Q, Huang L, Wei G, Kang Z. Histological and cytological characterization of adult plant resistance to wheat stripe rust. PLANT CELL REPORTS 2012; 31:2121-37. [PMID: 22833277 DOI: 10.1007/s00299-012-1322-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/24/2012] [Accepted: 07/13/2012] [Indexed: 05/09/2023]
Abstract
UNLABELLED Wheat cultivar Xingzi 9104 (XZ) possesses adult plant resistance (APR) to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). In this study, histological and cytological experiments were conducted to elucidate the mechanisms of APR in XZ. The results of leaf inoculation experiments indicated that APR was initiated at the tillering stage, gradually increased as the plant aged and highly expressed after boot stage. The histology and oxidative burst in infected leaves of plants at seedling, tillering and boot stages were examined using light microscopic and histochemical methods. Subcellular changes in the host-pathogen interactions during the seedling and boot stages were analyzed by transmission electron microscopy. The results showed that haustorium formation was retarded in the adult plants and that the differentiation of secondary intercellular hyphae was significantly inhibited, which decreased the development of microcolonies in the adult plants, especially in plants of boot stage. The expression of APR to stipe rust during wheat development was clearly associated with extensive hypersensitive cell death of host cells and localized production of reactive oxygen species, which coincided with the restriction of fungal growth in infection sites in adult plants. At the same time, cell wall-related resistance in adult plants prevented ingression of haustorial mother cells into plant cells. Haustorium encasement was coincident with malformation or death of haustoria. The results provide useful information for further determination of mechanisms of wheat APR to stripe rust. KEY MESSAGE The expression of APR to stipe rust in wheat cultivar Xingzi 9104 (XZ) was clearly associated with extensive hypersensitive cell death of host cells and the localized production of reactive oxygen species.
Collapse
Affiliation(s)
- Hongchang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jorgensen TH. The effect of environmental heterogeneity on RPW8-mediated resistance to powdery mildews in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 109:833-42. [PMID: 22234559 PMCID: PMC3286285 DOI: 10.1093/aob/mcr320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/25/2011] [Indexed: 05/28/2023]
Abstract
BACKGROUND AND AIMS The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. METHODS The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. KEY RESULTS Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. CONCLUSIONS There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8.
Collapse
Affiliation(s)
- Tove H Jorgensen
- School of Biological Sciences, University of East Anglia, Norwich Research Park, UK.
| |
Collapse
|
10
|
Bradeen JM, Iorizzo M, Mollov DS, Raasch J, Kramer LC, Millett BP, Austin-Phillips S, Jiang J, Carputo D. Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:437-446. [PMID: 19271958 DOI: 10.1094/mpmi-22-4-0437] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Late blight of potato ranks among the costliest of crop diseases worldwide. Host resistance offers the best means for controlling late blight, but previously deployed single resistance genes have been short-lived in their effectiveness. The foliar blight resistance gene RB, previously cloned from the wild potato Solanum bulbocastanum, has proven effective in greenhouse tests of transgenic cultivated potato. In this study, we examined the effects of the RB transgene on foliar late blight resistance in transgenic cultivated potato under field production conditions. In a two-year replicated trial, the RB transgene, under the control of its endogenous promoter, provided effective disease resistance in various genetic backgrounds, including commercially prominent potato cultivars, without fungicides. RB copy numbers and transcript levels were estimated with transgene-specific assays. Disease resistance was enhanced as copy numbers and transcript levels increased. The RB gene, like many other disease resistance genes, is constitutively transcribed at low levels. Transgenic potato lines with an estimated 15 copies of the RB transgene maintain high RB transcript levels and were ranked among the most resistant of 57 lines tested. We conclude that even in these ultra-high copy number lines, innate RNA silencing mechanisms have not been fully activated. Our findings suggest resistance-gene transcript levels may have to surpass a threshold before triggering RNA silencing. Strategies for the deployment of RB are discussed in light of the current research.
Collapse
Affiliation(s)
- James M Bradeen
- University of Minnesota, Department of Plant Pathology, St. Paul, 55108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|