1
|
Chen NWG, Thareau V, Ribeiro T, Magdelenat G, Ashfield T, Innes RW, Pedrosa-Harand A, Geffroy V. Common Bean Subtelomeres Are Hot Spots of Recombination and Favor Resistance Gene Evolution. FRONTIERS IN PLANT SCIENCE 2018; 9:1185. [PMID: 30154814 PMCID: PMC6102362 DOI: 10.3389/fpls.2018.01185] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 05/10/2023]
Abstract
Subtelomeres of most eukaryotes contain fast-evolving genes usually involved in adaptive processes. In common bean (Phaseolus vulgaris), the Co-2 anthracnose resistance (R) locus corresponds to a cluster of nucleotide-binding-site leucine-rich-repeat (NL) encoding sequences, the prevalent class of plant R genes. To study the recent evolution of this R gene cluster, we used a combination of sequence, genetic and cytogenetic comparative analyses between common bean genotypes from two distinct gene pools (Andean and Mesoamerican) that diverged 0.165 million years ago. Co-2 is a large subtelomeric cluster on chromosome 11 comprising from 32 (Mesoamerican) to 52 (Andean) NL sequences embedded within khipu satellite repeats. Since the recent split between Andean and Mesoamerican gene pools, the Co-2 cluster has experienced numerous gene-pool specific NL losses, leading to distinct NL repertoires. The high proportion of solo-LTR retrotransposons indicates that the Co-2 cluster is located in a hot spot of unequal intra-strand homologous recombination. Furthermore, we observe large segmental duplications involving both Non-Homologous End Joining and Homologous Recombination double-strand break repair pathways. Finally, the identification of a Mesoamerican-specific subtelomeric sequence reveals frequent interchromosomal recombinations between common bean subtelomeres. Altogether, our results highlight that common bean subtelomeres are hot spots of recombination and favor the rapid evolution of R genes. We propose that chromosome ends could act as R gene incubators in many plant genomes.
Collapse
Affiliation(s)
- Nicolas W. G. Chen
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
- IRHS, INRA, AGROCAMPUS OUEST, Université d’Angers, SFR 4207 QUASAV, Beaucouzé, France
| | - Vincent Thareau
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
| | - Tiago Ribeiro
- Laboratory of Plant Cytogenetics, Federal University of Pernambuco, Recife, Brazil
| | - Ghislaine Magdelenat
- Genoscope/Commissariat à l’Energie Atomique-Centre National de Séquençage, Evry, France
| | - Tom Ashfield
- Department of Biology, Indiana University, Bloomington, IN, United States
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, IN, United States
| | | | - Valérie Geffroy
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot Sorbonne Paris Cité, Orsay, France
- *Correspondence: Valérie Geffroy,
| |
Collapse
|
2
|
Zambounis A, Ganopoulos I, Kalivas A, Tsaftaris A, Madesis P. Identification and evidence of positive selection upon resistance gene analogs in cotton ( Gossypium hirsutum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:415-421. [PMID: 27729728 PMCID: PMC5039151 DOI: 10.1007/s12298-016-0362-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 05/24/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) is an important fiber crop species, which is intensively plagued by a plethora of phytopathogenic fungi such as Fusarium oxysporum f. sp. vasinfectum (Fov) causing severe wilt disease. Resistance gene analogs (RGAs) are the largest class of potential resistance (R) genes depicting highly conserved domains and structures in plants. Additionally, RGAs are pivotal components of breeding projects towards host disease resistance, serving as useful functional markers linked to R genes. In this study, a cloning approach based on conserved RGAs motifs was used in order to amplify 38 RGAs from two upland cotton cultivars differing in their Fov susceptibility. Besides, we assessed the phylogenetic expansion and the evolutionary pressures acting upon 127 RGA homologues, which were previously deposited in GenBank along with the 38 RGAs from this study. A total of 165 RGAs sequences were clustered according to their BLAST(P) similarities in ten paralogous genes groups (PGGs). These RGAs exhibited intensive signs of positive selection as it was revealed by inferring various maximum likelihood analyses. The results showed robust signs of positive selection, acting in almost all PGGs across the phylogeny. The evolutionary analysis revealed the existence of 42 positively selected residue sites across the PGG lineages, putatively affecting their ligand-binding specificities. As RGAs derived markers are in close linkage to R genes, these results could be used in ongoing breeding programs of upland cotton.
Collapse
Affiliation(s)
- Antonios Zambounis
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124 Thessaloníki, Greece
| | - Ioannis Ganopoulos
- Laboratory of Forest Genetics and Tree Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 238, 54006 Thessaloníki, Greece
| | - Apostolos Kalivas
- Plant Breeding and Phytogenetic Resources Institute, Hellenic Agricultural Organization “Demeter”, 5700 Thermi, Thessaloníki, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124 Thessaloníki, Greece
- Institute of Applied Biosciences, CERTH, 570 01 Thermi, Thessaloníki, Greece
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 570 01 Thermi, Thessaloníki, Greece
| |
Collapse
|
3
|
Takahashi W, Miura Y, Sasaki T, Takamizo T. Identification of a novel major locus for gray leaf spot resistance in Italian ryegrass (Lolium multiflorum Lam.). BMC PLANT BIOLOGY 2014; 14:303. [PMID: 25407403 PMCID: PMC4248433 DOI: 10.1186/s12870-014-0303-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/23/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Gray leaf spot (GLS), caused by Magnaporthe oryzae (anamorph Pyricularia oryzae), in ryegrasses is a very serious problem. Heavily infected small seedlings die within a matter of days, and stands of the grasses are seriously damaged by the disease. Thus, the development of GLS-resistant cultivars has become a concern in ryegrass breeding. RESULTS Phenotypic segregations in a single cross-derived F1 population of Italian ryegrass (Lolium multiflorum Lam.) indicated that the GLS resistance in the population was possibly controlled by one or two dominant genes with 66.5-77.9% of broad-sense heritability. In bulked segregant analyses, two simple sequence repeat (SSR) markers, which have so far been reported to locate on linkage group (LG) 3 of Italian ryegrass, showed specific signals in the resistant parent and resistant bulk, indicating that the resistance gene locus was possibly in the LG 3. We thus constructed a genetic linkage map of the LG 3 covering 133.6 centimorgan with other SSR markers of the LG 3 of Italian ryegrass and grass anchor probes that have previously been assigned to LG 3 of ryegrasses, and with rice expressed sequence tag (EST)-derived markers selected from a rice EST map of chromosome (Chr) 1 since LG 3 of ryegrasses are syntenic to rice Chr 1. Quantitative trait locus (QTL) analysis with the genetic linkage map and phenotypic data of the F1 population detected a major locus for GLS resistance. Proportions of phenotypic variance explained by the QTL at the highest logarithm of odds scores were 61.0-69.5%. CONCLUSIONS A resistance locus was confirmed as novel for GLS resistance, because its genetic position was different from other known loci for GLS resistance. Broad-sense heritability and the proportion of phenotypic variance explained by the QTL were similar, suggesting that most of the genetic factors for the resistance phenotype against GLS in the F1 population can be explained by a function of the single resistance locus. We designated the putative gene for the novel resistance locus as LmPi2. LmPi2 will be useful for future development of GLS-resistant cultivars in combination with other resistance genes.
Collapse
Affiliation(s)
- Wataru Takahashi
- />Forage Crop Research Division, NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793 Japan
| | - Yuichi Miura
- />Kyushu Experiment Station, Japan Grassland Agriculture and Forage Seed Association, 1740 Takaba, Koshi, Kumamoto 861-1114 Japan
- />Present address: Snow Brand Seed Co., Ltd, Hokkaido Research Station, 1066 Horonai, Naganuma-cho, Yubari-gun, Hokkaido 069-1464 Japan
| | - Tohru Sasaki
- />Forage Crop Research Institute, Japan Grassland Agriculture and Forage Seed Association, 388-5 Higashiakada, Nasushiobara, Tochigi 329-2742 Japan
- />Present address: Hokkaido Branch, Japan Grassland Agriculture and Forage Seed Association, 406 Higashi-Nopporo, Ebetsu, Hokkaido 069-0822 Japan
| | - Tadashi Takamizo
- />Forage Crop Research Division, NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793 Japan
| |
Collapse
|
4
|
Lei X, Yao Q, Xu X, Liu Y. Isolation and characterization of NBS-LRR resistance gene analogues from mango. BIOTECHNOL BIOTEC EQ 2014; 28:417-424. [PMID: 26740762 PMCID: PMC4684051 DOI: 10.1080/13102818.2014.931706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/22/2014] [Indexed: 11/24/2022] Open
Abstract
The nucleotide-binding site (NBS)–leucine-rich repeat (LRR) gene family is a class of R genes in plants. NBS genes play a very important role in disease defence. To further study the variation and homology of mango NBS–LRR genes, 16 resistance gene analogues (RGAs) (GenBank accession number HM446507-22) were isolated from the polymerase chain reaction fragments and sequenced by using two degenerate primer sets. The total nucleotide diversity index Pi was 0.362, and 236 variation sites were found among 16 RGAs. The degree of homology between the RGAs varied from 44.4% to 98.5%. Sixteen RGAs could be translated into amino sequences. The high level of this homology in the protein sequences of the P-loop and kinase-2 of the NBS domain between the RGAs isolated in this study and previously characterized R genes indicated that these cloned sequences belonged to the NBS–LRR gene family. Moreover, these 16 RGAs could be classified into the non-TIR–NBS–LRR gene family because only tryptophan (W) could be claimed as the final residual of the kinase-2 domain of all RGAs isolated here. From our results, we concluded that our mango NBS–LRR genes possessed a high level of variation from the mango genome, which may allow mango to recognize many different pathogenic virulence factors.
Collapse
Affiliation(s)
- Xintao Lei
- Chinese Academy of Tropical Agriculture Science, South Subtropical Crops Research Institute , Zhanjiang , Guangdong , P.R. China
| | - Quansheng Yao
- Chinese Academy of Tropical Agriculture Science, South Subtropical Crops Research Institute , Zhanjiang , Guangdong , P.R. China
| | - Xuerong Xu
- Chinese Academy of Tropical Agriculture Science, South Subtropical Crops Research Institute , Zhanjiang , Guangdong , P.R. China
| | - Yang Liu
- Chinese Academy of Tropical Agriculture Science, South Subtropical Crops Research Institute, Zhanjiang, Guangdong, P.R. China; Chinese Academy of Tropical Agriculture Science, Zhanjiang Experiment Station, Zhanjiang, Guangdong, P.R. China
| |
Collapse
|
5
|
Identification and phylogenetic analysis of a CC-NBS-LRR encoding gene assigned on chromosome 7B of wheat. Int J Mol Sci 2013; 14:15330-47. [PMID: 23887654 PMCID: PMC3759862 DOI: 10.3390/ijms140815330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/04/2022] Open
Abstract
Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR). In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD), only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat.
Collapse
|
6
|
Enciso-Rodríguez FE, González C, Rodríguez EA, López CE, Landsman D, Barrero LS, Mariño-Ramírez L. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem. PLoS One 2013; 8:e68500. [PMID: 23844210 PMCID: PMC3701084 DOI: 10.1371/journal.pone.0068500] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.
Collapse
Affiliation(s)
- Felix E. Enciso-Rodríguez
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Carolina González
- Molecular Microbiology Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Edwin A. Rodríguez
- Molecular Microbiology Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
| | - Camilo E. López
- Laboratorio de Fitopatología Molecular, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Luz Stella Barrero
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
| | - Leonardo Mariño-Ramírez
- Plant Molecular Genetics Laboratory, Center for Biotechnology and Bioindustry (CBB), Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, Colombia
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- * E-mail:
| |
Collapse
|
7
|
Ren J, Yu Y, Gao F, Zeng L, Lu X, Wu X, Yan W, Ren G. Application of resistance gene analog markers to analyses of genetic structure and diversity in rice. Genome 2013; 56:377-87. [DOI: 10.1139/gen-2012-0142] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Plant disease resistance gene analog (RGA) markers were designed according to the conserved sequence of known RGAs and used to map resistance genes. We used genome-wide RGA markers for genetic analyses of structure and diversity in a global rice germplasm collection. Of the 472 RGA markers, 138 were polymorphic and these were applied to 178 entries selected from the USDA rice core collection. Results from the RGA markers were similar between two methods, UPGMA and STRUCTURE. Additionally, the results from RGA markers in our study were agreeable with those previously reported from SSR markers, including cluster of ancestral classification, genetic diversity estimates, genetic relatedness, and cluster of geographic origins. These results suggest that RGA markers are applicable for analyses of genetic structure and diversity in rice. However, unlike SSR markers, the RGA markers failed to differentiate temperate japonica, tropical japonica, and aromatic subgroups. The restricted way for developing RGA markers from the cDNA sequence might limit the polymorphism of RGA markers in the genome, thus limiting the discriminatory power in comparison with SSR markers. Genetic differentiation obtained using RGA markers may be useful for defining genetic diversity of a suite of random R genes in plants, as many studies show a differentiation of resistance to a wide array of pathogens. They could also help to characterize the genetic structure and geographic distribution in crops, including rice, wheat, barley, and banana.
Collapse
Affiliation(s)
- Juansheng Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Yuchao Yu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
- Sichuan Normal University, Chengdu, 610066, P.R. China
| | - Fangyuan Gao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Lihua Zeng
- Sichuan Normal University, Chengdu, 610066, P.R. China
| | - Xianjun Lu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Xianting Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Wengui Yan
- Dale Bumpers National Rice Research Center, US Department of Agriculture-Agricultural Research Service (USDA-ARS), 2890 Hwy 130 East, Stuttgart, AR, 72160, USA
| | - Guangjun Ren
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| |
Collapse
|
8
|
Nair RA, Thomas G. Molecular characterization of ZzR1 resistance gene from Zingiber zerumbet with potential for imparting Pythium aphanidermatum resistance in ginger. Gene 2013; 516:58-65. [PMID: 23262347 DOI: 10.1016/j.gene.2012.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 11/15/2012] [Accepted: 12/06/2012] [Indexed: 12/24/2022]
Abstract
Soft rot disease caused by the oomycete Pythium aphanidermatum (Edson) Fitzp. is the most economically significant disease of ginger (Zingiber officinale Rosc.) in tropical countries. All available ginger cultivars are susceptible to this pathogen. However a wild ginger relative viz., Zingiber zerumbet L. Smith, was identified as a potential soft rot resistance donor. In the present study, a putative resistance (R) gene designated, ZzR1 was isolated and characterized from Z. zerumbet using sequence information from Zingiber RGCs identified in our earlier experiments. Analysis of the 2280 bp segment revealed a 2157 bp open reading frame (ORF) encoding a putative cytoplasmically localized protein. The deduced ZzR1 protein shared high homology with other known R-genes belonging to the CC-NBS-LRR (coiled coil-nucleotide binding site-leucine rich repeat) class and had a calculated molecular weight of 84.61kDa. Real-time PCR analysis of ZzR1 transcription in Z. zerumbet following pathogen infection demonstrated activation at 3 hpi thus suggesting an involvement of ZzR1 in Z. zerumbet defense mechanism. Although many R-genes have been characterized from different taxa, none of them will help in the development of resistant ginger cultivars owing to the phenomenon of "Restricted Taxonomic Functionality" (RTF). Thus ZzR1 gene characterized from the resistant wild Zingiber accession represents a valuable genomic resource for ginger improvement programs. This first report on R-gene isolation from the Zingiber secondary gene pool is pivotal in designing strategies for engineering resistance in ginger, which is otherwise not amenable to conventional improvement programs owing to sexual reproduction barriers.
Collapse
Affiliation(s)
- R Aswati Nair
- School of Biotechnology, National Institute of Technology Calicut (NITC), Calicut, Kerala, India.
| | | |
Collapse
|
9
|
Baek DE, Choi C. Identification of resistance gene analogs in Korean wild apple germplasm collections. GENETICS AND MOLECULAR RESEARCH 2013; 12:483-93. [PMID: 23408446 DOI: 10.4238/2013.january.30.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Several plant disease resistance gene (R-gene) classes have been identified on the basis of specific conserved functional domains. Cloning of disease-resistance apple genes would be useful for breeding programs and for studying resistance mechanisms. We used a PCR approach with degenerate primers designed from conserved NBS-LRR (nucleotide binding site-leucine-rich repeat) regions of known R-genes to amplify and clone homologous sequences from six Korean wild apple germplasm collections and an individual plant of the Siberian wild apple, Malus baccata. One hundred and twenty-four sequenced clones showed high similarity at multiple NBS motifs with the R-genes of other plants. The clones OLE 2-9, BP 6-11, OLE 1-22, and OLE 5-13 shared 45% identity with the R-gene of other plants. The conserved sequence, which plays an important role in resistance, was found in our isolated resistance gene analogs (RGAs). The sequences of isolated apple RGAs showed more similarity to Toll/interleukin-1 receptor (TIR)-NBS-LRR than non-TIR-NBS-LRR. We suggest using a marker for this resistance gene region as well as for identifying potential material for disease-resistant breeding among Korea wild apple germplasms. This is the first step in preparing a comprehensive analysis of the RGAs in Korean wild apple germplasm.
Collapse
Affiliation(s)
- D E Baek
- Department of Horticulture Sciences, Kyungpook National University, Daegu, Korea
| | | |
Collapse
|
10
|
Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics 2013; 14:109. [PMID: 23418910 PMCID: PMC3599390 DOI: 10.1186/1471-2164-14-109] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/08/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) proteins encoded by resistance genes play an important role in the responses of plants to various pathogens, including viruses, bacteria, fungi, and nematodes. In this study, a comprehensive analysis of NBS-encoding genes within the whole cucumber genome was performed, and the phylogenetic relationships of NBS-encoding resistance gene homologues (RGHs) belonging to six species in five genera of Cucurbitaceae crops were compared. RESULTS Cucumber has relatively few NBS-encoding genes. Nevertheless, cucumber maintains genes belonging to both Toll/interleukine-1 receptor (TIR) and CC (coiled-coil) families. Eight commonly conserved motifs have been established in these two families which support the grouping into TIR and CC families. Moreover, three additional conserved motifs, namely, CNBS-1, CNBS-2 and TNBS-1, have been identified in sequences from CC and TIR families. Analyses of exon/intron configurations revealed that some intron loss or gain events occurred during the structural evolution between the two families. Phylogenetic analyses revealed that gene duplication, sequence divergence, and gene loss were proposed as the major modes of evolution of NBS-encoding genes in Cucurbitaceae species. Compared with NBS-encoding sequences from the Arabidopsis thaliana genome, the remaining seven TIR familes of NBS proteins and RGHs from Cucurbitaceae species have been shown to be phylogenetically distinct from the TIR family of NBS-encoding genes in Arabidopsis, except for two subfamilies (TIR4 and TIR9). On the other hand, in the CC-NBS family, they grouped closely with the CC family of NBS-encoding genes in Arabidopsis. Thus, the NBS-encoding genes in Cucurbitaceae crops are shown to be ancient, and NBS-encoding gene expansions (especially the TIR family) may have occurred before the divergence of Cucurbitaceae and Arabidopsis. CONCLUSION The results of this paper will provide a genomic framework for the further isolation of candidate disease resistance NBS-encoding genes in cucumber, and contribute to the understanding of the evolutionary mode of NBS-encoding genes in Cucurbitaceae crops.
Collapse
Affiliation(s)
- Hongjian Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | | | | | | | | | | |
Collapse
|
11
|
Garzón LN, Oliveros OA, Rosen B, Ligarreto GA, Cook DR, Blair MW. Isolation and characterization of nucleotide-binding site resistance gene homologues in common bean (Phaseolus vulgaris). PHYTOPATHOLOGY 2013; 103:156-68. [PMID: 23294404 DOI: 10.1094/phyto-07-12-0180-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Common bean production is constrained by many fungal, viral, and bacterial pathogens. Thus, the identification of resistance (R) genes is an important focal point of common bean research. The main goal of our study was to identify resistance gene homologues (RGH) in the crop, using degenerate primers designed from conserved sequences in the nucleotide-binding site (NBS) domains of R-genes from the model legume Medicago truncatula. Total DNA of the Andean common bean genotype G19833 was used for amplification of over 500 primer combinations. Sequencing of amplicons showed that 403 cloned fragments had uninterrupted open reading frames and were considered representative of functional RGH genes. The sequences were grouped at two levels of nucleotide identity (90 and 80%) and representative sequences of each group were used for phylogenetic analyses. The RGH sequence diversity of common bean was divided into TIR and non-TIR families, each with different clusters. The TIR sequences grouped into 14 clades while non-TIR sequences grouped into seven clades. Pairwise comparisons showed purifying selection, although some sequences may have been the result of diversifying selection. Knowledge about RGH genes in common bean can allow the design of molecular markers for pyramiding of resistance genes against various pathogens.
Collapse
Affiliation(s)
- Luz N Garzón
- Facultad de Agronomía, Universidad de Colombia, Bogota, Cra. 30 45-03 Bloque 500, oficina 423
| | | | | | | | | | | |
Collapse
|
12
|
Chang YL, Chuang HW, Meksem K, Wu FC, Chang CY, Zhang M, Zhang HB. Characterization of a plant-transformation-ready large-insert BIBAC library of Arabidopsis and bombardment transformation of a large-insert BIBAC of the library into tobacco. Genome 2011; 54:437-47. [PMID: 21585277 DOI: 10.1139/g11-011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant-transformation-ready, large-insert binary bacterial artificial chromosome (BIBAC) libraries are of significance for functional and network analysis of large genomic regions, gene clusters, large-spanning genes, and complex loci in the post-genome era. Here, we report the characterization of a plant-transformation-ready BIBAC library of the sequenced Arabidopsis genome for which such a library is not available to the public, the transformation of a large-insert BIBAC of the library into tobacco by biolistic bombardment, and the expression analysis of its containing genes in transgenic plants. The BIBAC library was constructed from nuclear DNA partially digested with BamHI in the BIBAC vector pCLD04541. It contains 6144 clones and has a mean insert size of 108 kb, representing 5.2× equivalents of the Arabidopsis genome or a probability of greater than 99% of obtaining at least one positive clone from the library using a single-copy sequence as a probe. The transformation of the large-insert BIBAC and analyses of the transgenic plants showed that not only did transgenic plants have intact BIBAC DNA, but also could the BIBAC be transmitted stably into progenies and its containing genes be expressed actively. These results suggest that the large-insert BIBAC library, combined with the biolistic bombardment transformation method, could provide a useful tool for large-scale functional analysis of the Arabidopsis genome sequence and applications in plant-molecular breeding.
Collapse
Affiliation(s)
- Yueh-Long Chang
- Institute of Agricultural Biotechnology, National Chiayi University, Chiayi 600, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Satheeskumar S, Sharp PJ, Lagudah ES, McIntosh RA, Molnar SJ. Genetic association of crown rust resistance gene Pc68, storage protein loci, and resistance gene analogues in oats. Genome 2011; 54:484-97. [PMID: 21615301 DOI: 10.1139/g11-014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Segregating F(3) families, derived from a cross between oat cultivar Swan and the putative single gene line PC68, were used to determine the association of seed storage protein loci and resistance gene analogues (RGAs) with the crown rust resistance gene Pc68. SDS-PAGE analysis detected three avenin loci, AveX, AveY, and AveZ, closely linked to Pc68. Their diagnostic alleles are linked in coupling to Pc68 and were also detected in three additional lines carrying Pc68. Another protein locus was linked in repulsion to Pc68. In complementary studies, three wheat RGA clones (W2, W4, and W10) detected restriction fragment length polymorphisms (RFLPs) between homozygous resistant and homozygous susceptible F(3) DNA bulks. Four oat homologues of W2 were cloned and sequenced. RFLPs detected with two of them were mapped using F(3) and F(4) populations. Clone 18 detected a locus, Orga2, linked in repulsion to Pc68. Clone 22 detected several RFLPs including Orga1 (the closest locus to Pc68) and three RGA loci (Orga22-2, Orga22-3, and Orga22-4) loosely linked to Pc68. The diagnostic RFLPs linked in coupling to Pc68 were detected by clone 22 in three additional oat lines carrying Pc68 and have potential utility in investigating and improving crown rust resistance of oat.
Collapse
Affiliation(s)
- Sivakala Satheeskumar
- The University of Sydney, Plant Breeding Institute, 107 Cobbitty Road, Cobbitty, NSW 2570, Australia
| | | | | | | | | |
Collapse
|
14
|
Hendre PS, Bhat PR, Krishnakumar V, Aggarwal RK. Isolation and characterization of resistance gene analogues from Psilanthus species that represent wild relatives of cultivated coffee endemic to India. Genome 2011; 54:377-90. [DOI: 10.1139/g11-004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biotic or abiotic stress can cause considerable damage to crop plants that can be managed by building disease resistance in the cultivated gene pool through breeding for disease resistance genes (R-genes). R-genes, conferring resistance to diverse pathogens or pests share a high level of similarity at the DNA and protein levels in different plant species. This property of R-genes has been successfully employed to isolate putative resistance gene analogues (RGAs) using a PCR-based approach from new plant sources. Using a similar approach, in the present study, we have successfully amplified putative RGAs having nucleotide-binding-site leucine-rich repeats (NBS-LRR-type RGAs) from seven different sources: two cultivated coffee species ( Coffea arabica L. and Coffea canephora Pierre ex. A. Froehner), four related taxa endemic to India (wild tree coffee species: Psilanthus bengalensis (Roem. & Schuttles) J.-F. Leroy, Psilanthus khasiana , Psilanthus travencorensis (Wight & Arn.) J.-F. Leroy, Psilanthus weightiana (Wall. ex Wight & Arn.) J.-F. Leroy), and a cDNA pool originally prepared from light- and drought-stressed Coffea arabica L. leaves. The total PCR amplicons obtained using NBS-LRR-specific primers from each source were cloned and transformed to construct seven independent libraries, from which 434 randomly picked clones were sequenced. In silico analysis of the sequenced clones revealed 27 sequences that contained characteristic RGA motifs, of which 24 had complete uninterrupted open reading frames. Comparisons of these with published RGAs showed several of these to be novel RGA sequences. Interestingly, most of such novel RGAs belonged to the related wild Psilanthus species. The data thus suggest the potential of the secondary gene pool as possible untapped donors of resistance genes to the present day cultivated species of coffee.
Collapse
Affiliation(s)
- Prasad S. Hendre
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad – 500 007, India
| | - Prasanna R. Bhat
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad – 500 007, India
| | - V. Krishnakumar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad – 500 007, India
| | - Ramesh K. Aggarwal
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Tarnaka, Hyderabad – 500 007, India
| |
Collapse
|
15
|
Mou B. Mutations in lettuce improvement. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2011; 2011:723518. [PMID: 22287955 PMCID: PMC3263626 DOI: 10.1155/2011/723518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 10/21/2011] [Accepted: 11/16/2011] [Indexed: 05/08/2023]
Abstract
Lettuce is a major vegetable in western countries. Mutations generated genetic variations and played an important role in the domestication of the crop. Many traits derived from natural and induced mutations, such as dwarfing, early flowering, male sterility, and chlorophyll deficiency, are useful in physiological and genetic studies. Mutants were also used to develop new lettuce products including miniature and herbicide-tolerant cultivars. Mutant analysis was critical in lettuce genomic studies including identification and cloning of disease-resistance genes. Mutagenesis combined with genomic technology may provide powerful tools for the discovery of novel gene alleles. In addition to radiation and chemical mutagens, unconventional approaches such as tissue or protoplast culture, transposable elements, and space flights have been utilized to generate mutants in lettuce. Since mutation breeding is considered nontransgenic, it is more acceptable to consumers and will be explored more in the future for lettuce improvement.
Collapse
|
16
|
Joshi RK, Mohanty S, Subudhi E, Nayak S. Isolation and characterization of NBS-LRR- resistance gene candidates in turmeric (Curcuma longa cv. surama). GENETICS AND MOLECULAR RESEARCH 2010; 9:1796-806. [PMID: 20830672 DOI: 10.4238/vol9-3gmr910] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Turmeric (Curcuma longa), an important asexually reproducing spice crop of the family Zingiberaceae is highly susceptible to bacterial and fungal pathogens. The identification of resistance gene analogs holds great promise for development of resistant turmeric cultivars. Degenerate primers designed based on known resistance genes (R-genes) were used in combinations to elucidate resistance gene analogs from Curcuma longa cultivar surama. The three primers resulted in amplicons with expected sizes of 450-600 bp. The nucleotide sequence of these amplicons was obtained through sequencing; their predicted amino acid sequences compared to each other and to the amino acid sequences of known R-genes revealed significant sequence similarity. The finding of conserved domains, viz., kinase-1a, kinase-2 and hydrophobic motif, provided evidence that the sequences belong to the NBS-LRR class gene family. The presence of tryptophan as the last residue of kinase-2 motif further qualified them to be in the non-TIR-NBS-LRR subfamily of resistance genes. A cluster analysis based on the neighbor-joining method was carried out using Curcuma NBS analogs together with several resistance gene analogs and known R-genes, which classified them into two distinct subclasses, corresponding to clades N3 and N4 of non-TIR-NBS sequences described in plants. The NBS analogs that we isolated can be used as guidelines to eventually isolate numerous R-genes in turmeric.
Collapse
Affiliation(s)
- R K Joshi
- Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar, India.
| | | | | | | |
Collapse
|
17
|
Wan H, Zhao Z, Malik AA, Qian C, Chen J. Identification and characterization of potential NBS-encoding resistance genes and induction kinetics of a putative candidate gene associated with downy mildew resistance in Cucumis. BMC PLANT BIOLOGY 2010; 10:186. [PMID: 20731821 PMCID: PMC2956536 DOI: 10.1186/1471-2229-10-186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/23/2010] [Indexed: 05/15/2023]
Abstract
BACKGROUND Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L.), an introgression line (IL5211S) was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S. RESULTS Degenerate primers that were designed based on the conserved motifs in the NBS domain of resistance (R) proteins were used to isolate NBS-type sequences from IL5211S. A total of 28 sequences were identified and named as cucumber (C. sativus = CS) resistance gene analogs as CSRGAs. Polygenetic analyses separated these sequences into four different classes. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that these CSRGAs expressed at different levels in leaves, roots, and stems. In addition, introgression from C. hystrix induced expression of the partial CSRGAs in cultivated cucumber, especially CSRGA23, increased four-fold when compared to the backcross parent CC3. Furthermore, the expression of CSRGA23 under P. cubensis infection and abiotic stresses was also analyzed at different time points. Results showed that the P. cubensis treatment and four tested abiotic stimuli, MeJA, SA, ABA, and H2O2, triggered a significant induction of CSRGA23 within 72 h of inoculation. The results indicate that CSRGA23 may play a critical role in protecting cucumber against P. cubensis through a signaling the pathway triggered by these molecules. CONCLUSIONS Four classes of NBS-type RGAs were successfully isolated from IL5211S, and the possible involvement of CSRGA23 in the active defense response to P. cubensis was demonstrated. These results will contribute to develop analog-based markers related to downy mildew resistance gene and elucidate the molecular mechanisms causing resistance in IL5211S in the future.
Collapse
Affiliation(s)
- Hongjian Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
18
|
Xu Q, Deng X. Cloning and phylogenetic analyses of serine/threonine kinase class defense-related genes in a wild fruit crop 'chestnut rose'. BMC Res Notes 2010; 3:202. [PMID: 20637125 PMCID: PMC2916010 DOI: 10.1186/1756-0500-3-202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 07/18/2010] [Indexed: 01/20/2023] Open
Abstract
Background Chestnut rose (Rosa roxburghii Tratt) is a promising wild fruit crop in Southwest China. However, chestnut rose suffers from several important diseases such as powdery mildew and black spot. Cloning and phylogenetic analysis of plant immunity related genes will strengthen the evolutionary knowledge of plant immune system and will facilitate the utilization of candidate genes in disease resistance breeding programs. Findings Serine/threonine kinase (STK) genes, encoding one of the important proteins for defense signal transduction, were cloned from 'chestnut rose'. Fifteen STK sequences were obtained by degenerate PCR. Sequence analysis showed that nine of them have continued open reading frames, and they are separated into five classes based on sequence analysis. Interestingly, one of the classes (STK V) showed less than 40% similarity to any other class, possibly representing new type genes from chestnut rose. Southern blotting analysis revealed that the new type STK V genes are single copy, while all the other genes have several copies in the genome. Phylogenetic analysis of STK genes from chestnut rose and 21 plant species revealed that most chestnut rose genes show close relationship with Rosaceae homologs, while the STK V genes are rather ancient and form a unique clade distantly from plant homologs. Conclusions We cloned nine STK genes from a wild fruit crop 'chestnut rose', of which a new type of STK genes was identified. The new type STK genes exist as single copies in the genome, and they are phylogenetically distant to plant homologs. The polymorphic STK genes, combined with other plant immunity genes, provide plenty of resources to be utilized to defend against pathogens attack.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China.
| | | |
Collapse
|
19
|
Knepper C, Day B. From perception to activation: the molecular-genetic and biochemical landscape of disease resistance signaling in plants. THE ARABIDOPSIS BOOK 2010; 8:e012. [PMID: 22303251 PMCID: PMC3244959 DOI: 10.1199/tab.0124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
More than 60 years ago, H.H. Flor proposed the "Gene-for-Gene" hypothesis, which described the genetic relationship between host plants and pathogens. In the decades that followed Flor's seminal work, our understanding of the plant-pathogen interaction has evolved into a sophisticated model, detailing the molecular genetic and biochemical processes that control host-range, disease resistance signaling and susceptibility. The interaction between plants and microbes is an intimate exchange of signals that has evolved for millennia, resulting in the modification and adaptation of pathogen virulence strategies and host recognition elements. In total, plants have evolved mechanisms to combat the ever-changing landscape of biotic interactions bombarding their environment, while in parallel, plant pathogens have co-evolved mechanisms to sense and adapt to these changes. On average, the typical plant is susceptible to attack by dozens of microbial pathogens, yet in most cases, remains resistant to many of these challenges. The sum of research in our field has revealed that these interactions are regulated by multiple layers of intimately linked signaling networks. As an evolved model of Flor's initial observations, the current paradigm in host-pathogen interactions is that pathogen effector molecules, in large part, drive the recognition, activation and subsequent physiological responses in plants that give rise to resistance and susceptibility. In this Chapter, we will discuss our current understanding of the association between plants and microbial pathogens, detailing the pressures placed on both host and microbe to either maintain disease resistance, or induce susceptibility and disease. From recognition to transcriptional reprogramming, we will review current data and literature that has advanced the classical model of the Gene-for-Gene hypothesis to our current understanding of basal and effector triggered immunity.
Collapse
Affiliation(s)
- Caleb Knepper
- Michigan State University. Program in Genetics. East Lansing, MI 48824. USA
- Michigan State University. Department of Energy Plant Research Laboratory. East Lansing, MI 48824. USA
| | - Brad Day
- Michigan State University. Program in Genetics. East Lansing, MI 48824. USA
- Michigan State University. Department of Plant Pathology. East Lansing, MI 48824. USA
| |
Collapse
|
20
|
Borhan MH, Holub EB, Kindrachuk C, Omidi M, Bozorgmanesh-Frad G, Rimmer SR. WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops. MOLECULAR PLANT PATHOLOGY 2010; 11:283-91. [PMID: 20447277 PMCID: PMC6640464 DOI: 10.1111/j.1364-3703.2009.00599.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.
Collapse
Affiliation(s)
- Mohammad Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2.
| | | | | | | | | | | |
Collapse
|
21
|
Phylogenetic analyses of peanut resistance gene candidates and screening of different genotypes for polymorphic markers. Saudi J Biol Sci 2010; 17:43-9. [PMID: 23961057 DOI: 10.1016/j.sjbs.2009.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleotide-binding-site-leucine-rich-repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. Here, we describe a collection of peanut NBS-LRR resistance gene candidates (RGCs) isolated from peanut (Arachis) species by mining Gene Bank data base. NBS-LRR sequences assembled into TIR-NBS-LRR (75.4%) and non-TIR-NBS-LRR (24.6%) subfamilies. Total of 20 distinct clades were identified and showed a high level of sequence divergence within TIR-NBS and non-TIR-NBS subfamilies. Thirty-four primer pairs were designed from these RGC sequences and used for screening different genotypes belonging to wild and cultivated peanuts. Therefore, peanut RGC identified in this study will provide useful tools for developing DNA markers and cloning the genes for resistance to different pathogens in peanut.
Collapse
|
22
|
Broggini GAL, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A. HcrVf paralogs are present on linkage groups 1 and 6 of Malus. Genome 2009; 52:129-38. [PMID: 19234561 DOI: 10.1139/g08-115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular markers derived from resistance gene analogs of HcrVf2, the first apple resistance gene cloned, may pave the way to the cloning of additional apple scab resistance genes. The Malus xdomestica 'Florina' (Vf) bacterial artificial chromosome (BAC) genomic library was screened by hybridization using HcrVf2 as a probe. Positive BAC clones were assembled into contigs and microsatellite markers developed from each contig mapped. Only linkage groups 1 and 6 contained HcrVf2 paralogs. On linkage group 1, five loci in addition to the Vf locus were identified. A single locus was detected on linkage group 6. Representative BAC clones of these loci including the Vf locus were sequenced and the gene structure compiled. A total of 22 sequences, showing high sequence similarity to HcrVf2, were identified. Nine sequences were predicted to encode all seven protein domains described in HcrVf2, while three were truncated. Transcriptional analysis indicated that six genes with a complete HcrVf-like structure were constitutively expressed in young uninfected leaves of 'Florina'. The map position of each HcrVf analog was compared with the location of the major apple scab resistance genes. None of the major genes conferring scab resistance co-localized with HcrVf paralogs, indicating that they are unlikely to belong to the leucine-rich repeat - transmembrane class, which includes the Vf gene.
Collapse
|
23
|
Rubiales D, Fernández-Aparicio M, Pérez-de-Luque A, Castillejo MA, Prats E, Sillero JC, Rispail N, Fondevilla S. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). PEST MANAGEMENT SCIENCE 2009; 65:553-9. [PMID: 19253919 DOI: 10.1002/ps.1740] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/03/2008] [Indexed: 05/22/2023]
Abstract
BACKGROUND Pea cultivation is strongly hampered in Mediterranean and Middle East farming systems by the occurrence of Orobanche crenata Forsk. Strategies of control have been developed, but only marginal successes have been achieved. Most control methods are either unfeasible, uneconomical, hard to achieve or result in incomplete protection. The integration of several control measures is the most desirable strategy. RESULTS [corrected] Recent developments in control are presented and re-evaluated in light of recent developments in crop breeding and molecular genetics. These developments are placed within a framework that is compatible with current agronomic practices. CONCLUSION The current focus in applied breeding is leveraging biotechnological tools to develop more and better markers to speed up the delivery of improved cultivars to the farmer. To date, however, progress in marker development and delivery of useful markers has been slow. The application of knowledge gained from basic genomic research and genetic engineering will contribute to more rapid pea improvement for resistance against O. crenata and/or the herbicide.
Collapse
Affiliation(s)
- Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Apartado, Córdoba, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
McHale LK, Truco MJ, Kozik A, Wroblewski T, Ochoa OE, Lahre KA, Knapp SJ, Michelmore RW. The genomic architecture of disease resistance in lettuce. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:565-80. [PMID: 19005638 DOI: 10.1007/s00122-008-0921-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 10/14/2008] [Indexed: 05/03/2023]
Abstract
Genbank and The Compositae Genome Project database, containing over 42,000 lettuce unigenes from Lactuca sativa cv. Salinas and L. serriola accession UC96US23 were mined to identify 702 candidate genes involved in pathogen recognition (RGCs), resistance signal transduction, defense responses, and disease susceptibility. In addition, to identify sequences representing additional sub-families of nucleotide binding site (NBS)-leucine-rich repeat encoding genes; the major classes of resistance genes (R-genes), NBS-encoding sequences were amplified by PCR using degenerate oligonucleotides designed to NBS sub-families specific to the subclass Asteridae, which includes the Compositae family. These products were cloned and sequenced resulting in 18 novel NBS sequences from cv. Salinas and 15 novel NBS sequences from UC96US23. Using a variety of marker technologies, 294 of the 735 candidate disease resistance genes were mapped in our primary mapping population, which consisted of 119 F7 recombinant inbred lines derived from an interspecific cross between cv. Salinas and UC96US23. Using markers shared across multiple genetic maps, 36 resistance phenotypic loci, including two new loci for resistance to downy mildew and two quantitative trait loci for resistance to anthracnose were positioned onto the reference map to provide a global view of the genomic architecture of disease resistance in lettuce and to identify candidate genes for resistance phenotypes. The majority but not all of the resistance phenotypes were genetically associated with RGCs.
Collapse
Affiliation(s)
- Leah K McHale
- The Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mutlu N, Boyaci FH, Göçmen M, Abak K. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1303-12. [PMID: 18712340 DOI: 10.1007/s00122-008-0864-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/31/2008] [Indexed: 05/14/2023]
Abstract
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F(2) and BC(1) populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F(2,) BC(1) and F(2) of BC(3) generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.
Collapse
Affiliation(s)
- Nedim Mutlu
- Alata Horticultural Research Institute, Erdemli, Mersin, Turkey.
| | | | | | | |
Collapse
|
26
|
Brugmans B, Wouters D, van Os H, Hutten R, van der Linden G, Visser RGF, van Eck HJ, van der Vossen EAG. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:1379-88. [PMID: 18806994 DOI: 10.1007/s00122-008-0871-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 08/15/2008] [Indexed: 05/04/2023]
Abstract
NBS profiling is a method for the identification of resistance gene analog (RGA) derived fragments. Here we report the use of NBS profiling for the genome wide mapping of RGA loci in potato. NBS profiling analyses on a minimal set of F1 genotypes of the diploid mapping population previously used to generate the ultra dense (UHD) genetic map of potato, allowed us to efficiently map polymorphic RGA fragments relative to 10,000 existing AFLP markers. In total, 34 RGA loci were mapped, of which only 13 contained RGA sequences homologous to RGAs genetically positioned at approximately similar positions in potato or tomato. The remaining RGA loci mapped either at approximate chromosomal regions previously shown to contain RGAs in potato or tomato without sharing homology to these RGAs, or mapped at positions not yet identified as RGA-containing regions. In addition to markers representing RGAs with unknown functions, segregating markers were detected that were closely linked to four functional R genes that segregate in the UHD mapping population. To explore the potential of NBS profiling in RGA transcription analyses, RNA isolated from different tissues was used as template for NBS profiling. Of all the fragments amplified approximately 15% showed putative intensity or absent/present differences between different tissues suggesting putative tissue specific RGA or R gene transcription. Putative absent/present differences between individuals were also found. In addition to being a powerful tool for generating candidate gene markers linked to R gene loci, NBS profiling, when applied to cDNA, can be instrumental in identifying those members of an R gene cluster that are transcribed, and thus putatively functional.
Collapse
Affiliation(s)
- Bart Brugmans
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Naji AM, Moghaddam M, Ghaffari MR, Irandoost HP, Farsad LK, Pirseyedi SM, Mohammadi SA, Ghareyazie B, Mardi M. Validation of EST-derived STS markers localized on Qfhs.ndsu-3BS for Fusarium head blight resistance in wheat using a ‘Wangshuibai’ derived population. J Genet Genomics 2008; 35:625-9. [DOI: 10.1016/s1673-8527(08)60083-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
|
28
|
Martínez Zamora MG, Castagnaro AP, Díaz Ricci JC. Genetic diversity of Pto-like serine/threonine kinase disease resistance genes in cultivated and wild strawberries. J Mol Evol 2008; 67:211-21. [PMID: 18618068 DOI: 10.1007/s00239-008-9134-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 05/16/2008] [Accepted: 06/09/2008] [Indexed: 02/03/2023]
Abstract
Degenerate oligonucleotide primers, designed based on conserved regions of several serine-threonine kinases (STK) previously cloned in tomato and Arabidopsis, were used to isolate STK candidates in wild and cultivated strawberries. Seven distinct classes of STKs were identified from three related wild species, i.e., Fragaria vesca, Fragaria chiloensis, and Potentilla tucumanensis, and seven different Fragaria x ananassa cultivars. Alignment of the deduced amino acid sequences and the Pto R protein from tomato revealed the presence of characteristic subdomains and conservation of the plant STK consensus and other residues that are crucial for Pto function. Based on identity scores and clustering in phylogenetic trees, five groups were recognized as Pto-like kinases. Strawberry Pto-like clones presented sequences that were clearly identified as the activation segments contained in the Pto, and some of them showed residues previously identified as being required for binding to AvrPto. Some of the non-Pto-like kinases presented a high degree of identity and grouped together with B-lectin receptor kinases that are also involved in disease resistance. Statistical studies carried out to evaluate departure from the neutral theory and nonsynonymous/synonymous substitutions suggest that the evolution of STK-encoding sequences in strawberries is subjected mainly to a purifying selection process. These results represent the first report of Pto-like STKs in strawberry.
Collapse
Affiliation(s)
- M G Martínez Zamora
- INSIBIO (CONICET-UNT), Departamento de Bioquímica de la Nutrición e Instituto de Qca Biológica Dr. Bernabé Bloj (UNT), Chacabuco 461, 4000, Tucuman, Argentina
| | | | | |
Collapse
|
29
|
Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol Genet Genomics 2008; 280:111-25. [PMID: 18553106 DOI: 10.1007/s00438-008-0346-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Three-fourths of the recognition-dependent disease resistance genes (R-genes) identified in plants encode nucleotide binding site (NBS) leucine-rich repeat (LRR) proteins. NBS-LRR homologs have only been isolated on a limited scale from sunflower (Helianthus annuus L.), and most of the previously identified homologs are members of two large NBS-LRR clusters harboring downy mildew R-genes. We mined the sunflower EST database and used comparative genomics approaches to develop a deeper understanding of the diversity and distribution of NBS-LRR homologs in the sunflower genome. Collectively, 630 NBS-LRR homologs were identified, 88 by mining a database of 284,241 sunflower ESTs and 542 by sequencing 1,248 genomic DNA amplicons isolated from common and wild sunflower species. DNA markers were developed from 196 unique NBS-LRR sequences and facilitated genetic mapping of 167 NBS-LRR loci. The latter were distributed throughout the sunflower genome in 44 clusters or singletons. Wild species ESTs were a particularly rich source of novel NBS-LRR homologs, many of which were tightly linked to previously mapped downy mildew, rust, and broomrape R-genes. The DNA sequence and mapping resources described here should facilitate the discovery and isolation of recognition-dependent R-genes guarding sunflower from a broad spectrum of economically important diseases. Sunflower nucleotide and amino acid sequences have been deposited in DDBJ/EMBL/GenBank under accession numbers EF 560168-EF 559378 and ABQ 58077-ABQ 57529.
Collapse
|
30
|
Xu Q, Wen X, Deng X. Genomic organization, rapid evolution and meiotic instability of nucleotide-binding-site-encoding genes in a new fruit crop, "chestnut rose". Genetics 2008; 178:2081-91. [PMID: 18245857 PMCID: PMC2323798 DOI: 10.1534/genetics.107.086421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/22/2008] [Indexed: 11/18/2022] Open
Abstract
From chestnut rose, a promising fruit crop of the Rosa genus, powdery mildew disease-resistant and susceptible genotypes and their F(1) progeny were used to isolate nucleotide-binding-site (NBS)-encoding genes using 19 degenerate primer pairs and an additional cloning method called overlapping extension amplification. A total of 126 genes were harvested; of these, 38 were from a resistant parent, 37 from a susceptible parent, and 51 from F(1) progeny. A phylogenetic tree was constructed, which revealed that NBS sequences from parents and F(1) progeny tend to form a mixture and are well distributed among the branches of the tree. Mapping of these NBS genes suggested that their organization in the genome is a "tandem duplicated cluster" and, to a lesser extent, a "heterogeneous cluster." Intraspecific polymorphisms and interspecific divergence were detected by Southern blotting with NBS-encoding genes as probes. Sequencing on the nucleotide level revealed even more intraspecific variation: for the R4 gene, 9.81% of the nucleotides are polymorphic. Amino acid sites under positive selection were detected in the NBS region. Some NBS-encoding genes were meiotically unstable, which may due to recombination and deletion events. Moreover, a transposon-like element was isolated in the flanking region of NBS genes, implying a possible role for transposon in the evolutionary history of resistance genes.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | | | | |
Collapse
|
31
|
Aswati Nair R, Thomas G. Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 116:123-34. [PMID: 17928987 DOI: 10.1007/s00122-007-0652-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 09/17/2007] [Indexed: 05/25/2023]
Abstract
Ginger (Zingiber officinale Rosc.) production is seriously affected by many fungal and bacterial diseases to which no resistant source is available in the cultivated germplasm. Degenerate primers based on conserved motifs of plant resistance (R) genes were used to isolate analogous sequences called resistance gene candidates (RGCs) from cultivated and wild Zingiber species. Cloning and sequence characterization identified 42 Zingiber RGCs, which could be classified into five classes following phenetic analysis. Deduced amino acid sequences of Zingiber RGCs showed strong identity, ranging from 16 to 43%, to non-toll interleukin receptor (non-TIR) R-gene subfamily. Non-synonymous to synonymous nucleotide substitution (dN/dS) ratio for the NBS domains of Zingiber RGC classes showed evidence of purifying selection. RT-PCR analysis with 15 Zingiber RGC-specific primers demonstrated 8 of the 15 Zingiber RGCs to be expressed. The present study reports for the first time the isolation and characterization of RGCs from ginger and its wild relatives, which will serve as a potential resource for future improvement of this important vegetatively propagated spice crop.
Collapse
Affiliation(s)
- R Aswati Nair
- Plant Molecular Biology Group, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| | | |
Collapse
|
32
|
Xiao W, Zhao J, Fan S, Li L, Dai J, Xu M. Mapping of genome-wide resistance gene analogs (RGAs) in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:501-8. [PMID: 17581735 DOI: 10.1007/s00122-007-0583-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/25/2007] [Indexed: 05/15/2023]
Abstract
Isolation and mapping of genome-wide resistance (R) gene analogs (RGAs) is of importance in identifying candidate(s) for a particular resistance gene/QTL. Here we reported our result in mapping totally 228 genome-wide RGAs in maize. By developing RGA-tagged markers and subsequent genotyping a population consisting of 294 recombinant inbred lines (RILs), 67 RGAs were genetically mapped on maize genome. Meanwhile, in silico mapping was conducted to anchor 113 RGAs by comparing all 228 RGAs to those anchored EST and BAC/BAC-end sequences via tblastx search (E-value < 10(-20)). All RGAs from different mapping efforts were integrated into the existing SSR linkage map. After accounting for redundancy, the resultant RGA linkage map was composed of 153 RGAs that were mapped onto 172 loci on maize genome, and the mapped RGAs accounted for approximate three quarters of the genome-wide RGAs in maize. The extensive co-localizations were observed between mapped RGAs and resistance gene/QTL loci, implying the usefulness of this RGA linkage map in R gene cloning via candidate gene approach.
Collapse
Affiliation(s)
- Wenkai Xiao
- National Maize Improvement Center of China, China Agricultural University, 2 west Yuanmingyuan Road, Beijing, 100094, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Chen R, Li H, Zhang L, Zhang J, Xiao J, Ye Z. CaMi, a root-knot nematode resistance gene from hot pepper (Capsium annuum L.) confers nematode resistance in tomato. PLANT CELL REPORTS 2007; 26:895-905. [PMID: 17310335 DOI: 10.1007/s00299-007-0304-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Revised: 12/04/2006] [Accepted: 01/02/2007] [Indexed: 05/08/2023]
Abstract
Several root-knot nematode (Meloidogyne spp.) resistance genes have been discovered in different pepper (Capsium annuum L.) lines; however, none of them has yet been cloned. In this study, a candidate root-knot nematode resistance gene (designated as CaMi) was isolated from the resistant pepper line PR 205 by degenerate PCR amplification combined with the RACE technique. Expression profiling analysis revealed that this gene was highly expressed in roots, leaves, and flowers and expressed at a lower level in stems and was not detectable in fruits. To verify the function of CaMi, a sense vector containing the genomic DNA spanning the full coding region of CaMi was constructed and transferred into root-knot nematode susceptible tomato plants. Sixteen transgenic plants carrying one to five copies of T-DNA inserts were generated from two nematode susceptible tomato cultivars. RT-PCR analysis revealed that the expression levels of CaMi gene varied in different transgenic plants. Nematode assays showed that the resistance to root-knot nematodes was significantly improved in some transgenic lines compared to untransformed susceptible plants, and that the resistance was inheritable. Ultrastructure analysis showed that nematodes led to the formation of galls or root knots in the susceptible lines while in the resistant transgenic plants, the CaMi gene triggered a hypersensitive response (HR) as well as many necrotic cells around nematodes.
Collapse
Affiliation(s)
- Rugang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
34
|
Pattison JA, Samuelian SK, Weber CA. Inheritance of Phytophthora root rot resistance in red raspberry determined by generation means and molecular linkage analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:225-36. [PMID: 17592602 DOI: 10.1007/s00122-007-0558-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/11/2007] [Indexed: 05/12/2023]
Abstract
Classical and molecular methodologies were used to determine the inheritance of Phytophthora root rot (PRR) resistance in red raspberry. The varieties 'Latham' and 'Titan,' resistant and susceptible, respectively, were used to create F(1), F(2), B(1), B(2), and S(1) populations for analysis. Generational means analysis was used to calculate the components of genetic variation and estimates of narrow and broad sense heritability for the plant disease index and the incidence of petiole lesions. The plant disease index showed additive genetic variation with additional significant interactions, but the incidence of petiole lesions was non-additive. A dominant, two-gene model was shown to be the best fit for the observed segregation ratios when classification for resistance was based on a combination of all criteria measured. Molecular linkage maps were generated from the segregating B(2) population. Linkage maps of both parents were constructed from amplified fragment length polymorphism (AFLP), Random amplified polymorphic DNA (RAPD), and uncharacterized resistant gene analog polymorphism (RGAP) markers with seven linkage groups each totaling 440 and 370 cM of genetic distance, respectively. An analysis of the distributional extremes of the B(2) population identified several RAPD markers clustered on two linkage groups associated with PRR resistance. QTL analysis identified two similar genomic regions on each map that explained significant percentages of phenotypic variation observed for the disease assessment criteria. Genetic mapping supports the dominant two-gene model developed from generational means analysis. The results reconcile conflicting reports on inheritance of PRR resistance, provide a basis for further investigation of durable resistance to Phytophthora caused diseases, and indicates that recurrent selection is the appropriate approach for the development of new resistant cultivars.
Collapse
Affiliation(s)
- Jeremy A Pattison
- Virginia Polytechnic Institute and State University, Southern Piedmont Agricultural Research and Extension Center, 2375 Darvills Road, Blackstone, VA 23824, USA
| | | | | |
Collapse
|
35
|
McIntyre CL, Casu RE, Drenth J, Knight D, Whan VA, Croft BJ, Jordan DR, Manners JM. Resistance gene analogues in sugarcane and sorghum and their association with quantitative trait loci for rust resistance. Genome 2007; 48:391-400. [PMID: 16121236 DOI: 10.1139/g05-006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.
Collapse
Affiliation(s)
- C L McIntyre
- CSIRO Plant Industry, Queensland Bioscience Precinct, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Palomino C, Satovic Z, Cubero JI, Torres AM. Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 2007; 49:1227-37. [PMID: 17213904 DOI: 10.1139/g06-071] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A PCR approach with degenerate primers designed from conserved NBS-LRR (nucleotide binding site-leucine-rich repeat) regions of known disease-resistance (R) genes was used to amplify and clone homologous sequences from 5 faba bean (Vicia faba) lines and 2 chickpea (Cicer arietinum) accessions. Sixty-nine sequenced clones showed homologies to various R genes deposited in the GenBank database. The presence of internal kinase-2 and kinase-3a motifs in all the sequences isolated confirm that these clones correspond to NBS-containing genes. Using an amino-acid sequence identity of 70% as a threshold value, the clones were grouped into 10 classes of resistance-gene analogs (RGA01 to RGA10). The number of clones per class varied from 1 to 30. RGA classes 1, 6, 8, and 9 were comprised solely of clones isolated from faba bean, whereas classes 2, 3, 4, 5, and 7 included only chickpea clones. RGA10, showing a within-class identity of 99%, was the only class consisting of both faba bean and chickpea clones. A phylogenetic tree, based on the deduced amino-acid sequences of 12 representative clones from the 10 RGA classes and the NBS domains of 6 known R genes (I2 and Prf from tomato, RPP13 from Arabidopsis, Gro1-4 from potato, N from tobacco, L6 from flax), clearly indicated the separation between TIR (Toll/interleukin-1 receptor homology: Gro1-4, L6, N, RGA05 to RGA10)- and non-TIR (I2, Prf, RPP13, RGA01 to RGA04)-type NBS-LRR sequences. The development of suitable polymorphic markers based on cloned RGA sequences to be used in genetic mapping will facilitate the assessment of their potential linkage relationships with disease-resistance genes in faba bean and chickpea. This work is the first to report on faba bean RGAs.
Collapse
Affiliation(s)
- C Palomino
- Departamento de Genética, E.T.S.I.A.M, Universidad de Córdoba, 14071 Córdoba, Spain.
| | | | | | | |
Collapse
|
37
|
Xu Q, Wen X, Deng X. Phylogenetic and evolutionary analysis of NBS-encoding genes in Rosaceae fruit crops. Mol Phylogenet Evol 2007; 44:315-24. [PMID: 17395495 DOI: 10.1016/j.ympev.2006.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 12/20/2006] [Accepted: 12/28/2006] [Indexed: 10/23/2022]
Abstract
Phylogenetic relationships of the nucleotide binding site (NBS)-encoding resistance gene homologues (RGHs) among 12 species in five genera of Rosaceae fruit crops were evaluated. A total of 228 Rosaceous RGHs were deeply separated into two distinct clades, designated as TIR (sequences within this clade containing a Toll Interleukin-1 Receptor domain) and NonTIR (sequences lacking a TIR domain). Most Rosaceous RGH genes were phylogenetically distinct from Arabidopsis, Rice or Pine genes, except for a few Rosaceous members which grouped closely with Arabidopsis genes. Within Rosaceae, sequences from multiple species were often phylogenetically clustered together, forming heterogenous groups, however, apple- and chestnut rose-specific groups really exist. Gene duplication followed by sequence divergence were proposed as the mode for the evolution of a large number of distantly or closely related RGH genes in Rosaceae, and this mode may play a role in the generation of new resistance specificity. Positively selected sites within NBS-coding region were detected and thus nucleotide variation within NBS domain may function in determining disease resistance specificity. This study also discusses the synteny of a genomic region that encompass powdery mildew resistance locus among Malus, Prunus and Rosa, which may have potential use for fruit tree disease breeding and important gene cloning.
Collapse
Affiliation(s)
- Qiang Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | |
Collapse
|
38
|
Naik S, Hampson C, Gasic K, Bakkeren G, Korban SS. Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome 2006; 49:959-68. [PMID: 17036071 DOI: 10.1139/g06-085] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Linkage maps developed from known-function genes can be valuable in the candidate gene mapping approach. A set of 121 expressed sequence tagged site (E-STS) primer pairs were tested on a framework genetic linkage map of apple (Malus × domestica Borkh.) constructed using simple sequence repeats (SSRs) and randomly amplified polymorphic DNA (RAPD) markers. These known-function gene markers, E-STSs, were supplemented by markers for resistance gene analogues (RGAs), designed based on conserved motifs in all characterized resistance genes isolated from plant species. A total of 229 markers, including 46 apple E-STSs, 8 RGAs, 85 SSRs from apple and peach, and 88 RAPDs, were assigned to 17 linkage groups covering 832 cM of the apple genome, based on 52 individuals originating from the cross 'Antonovka debnicka' (Q12-4) × 'Summerred'. Clusters of E-STS and RGA loci were located in linkage groups previously identified to carry resistance genes, some of which confer resistance to apple scab disease caused by Venturia inaequalis (Cke.) Wint.Key words: apple scab, EST, Malus, RAPD, SSR.
Collapse
Affiliation(s)
- Suresh Naik
- Agriculture and Agri-food Canada, Pacific Agri-Food Centre, Summersland, Canada
| | | | | | | | | |
Collapse
|
39
|
Jiang SM, Hu J, Yin WB, Chen YH, Wang RRC, Hu ZM. Cloning of resistance gene analogs located on the alien chromosome in an addition line of wheat-Thinopyrum intermedium. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:923-31. [PMID: 16044269 DOI: 10.1007/s00122-005-0022-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Accepted: 06/16/2005] [Indexed: 05/03/2023]
Abstract
Homology-based gene/gene-analog cloning method has been extensively applied in isolation of RGAs (resistance gene analogs) in various plant species. However, serious interference of sequences on homoeologous chromosomes in polyploidy species usually occurred when cloning RGAs in a specific chromosome. In this research, the techniques of chromosome microdissection combined with homology-based cloning were used to clone RGAs from a specific chromosome of Wheat-Thinopyrum alien addition line TAi-27, which was derived from common wheat and Thinopyrum intermedium with a pair of chromosomes from Th. intermedium. The alien chromosomes carry genes for resistance to BYDV. The alien chromosome in TAi-27 was isolated by a glass needle and digested with proteinase K. The DNA of the alien chromosome was amplified by two rounds of Sau3A linker adaptor-mediated PCR. RGAs were amplified by PCR with the degenerated primers designed based on conserved domains of published resistance genes (R genes) by using the alien chromosome DNA, genomic DNA and cDNA of Th. intermedium, TAi-27 and 3B-2 (a parent of TAi-27) as templates. A total of seven RGAs were obtained and sequenced. Of which, a constitutively expressed single-copy NBS-LRR type RGA ACR 3 was amplified from the dissected alien chromosome of TAi-27, TcDR 2 and TcDR 3 were from cDNA of Th. intermedium, AcDR 3 was from cDNA of TAi-27, FcDR 2 was from cDNA of 3B-2, AR 2 was from genomic DNA of TAi-27 and TR 2 was from genomic DNA of Th. intermedium. Sequence homology analyses showed that the above RGAs were highly homologous with known resistance genes or resistance gene analogs and belonged to NBS-LRR type of R genes. ACR 3 was recovered by PCR from genomic DNA and cDNA of Th. intermedium and TAi-27, but not from 3B-2. Southern hybridization using the digested genomic DNA of Th. intermedium, TAi-27 and 3B-2 as the template and ACR 3 as the probe showed that there is only one copy of ACR 3 in the genome of Th. intermedium and TAi-27, but it is absent in 3B-2. The ACR 3 could be used as a specific probe of the R gene on the alien chromosome of TAi-27. Results of Northern hybridization suggested that ACR 3 was constitutively expressed in Th. intermedium and TAi-27, but not 3B-2, and expressed higher in leaves than in roots. This research demonstrated a new way to clone RGAs located on a specific chromosome. The information reported here should be useful to understand the resistance mechanism of, and to clone resistant genes from, the alien chromosome in TAi-27.
Collapse
Affiliation(s)
- Shu-Mei Jiang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
40
|
Saal B, Struss D. RGA- and RAPD-derived SCAR markers for a Brassica B-genome introgression conferring resistance to blackleg in oilseed rape. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:281-90. [PMID: 15887037 DOI: 10.1007/s00122-005-2022-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/30/2005] [Indexed: 05/02/2023]
Abstract
An introgression derived from the B genome of Brassica juncea in spring-type oilseed rape (B. napus) conferring recessively inherited cotyledon resistance against several pathotypes of the blackleg fungus Leptosphaeria maculans was mapped using PCR-based molecular markers. Resistance-associated B-genome-specific randomly amplified (RAPD) and resistance gene analog (RGA) DNA polymorphisms were converted into three sequence-specific markers (SCARs; B5-1520, C5-1000, RGALm). The flanking sequence of the RGALm locus was determined by genomic walking, leading to a 1,610-bp EcoRV fragment which showed extensive homology to known and putative resistance genes of a cluster on Arabidopsis chromosome 5. Partial sequence analysis of the genomic RAPD segment OPC-05-1700 revealed strong homology to the gibberellin 2-oxidase gene of Arabidopsis. The SCAR markers were analyzed in two segregating populations and were found to be linked in coupling to each other, and in repulsion to the resistance locus. In both populations, markers deviated significantly from a monogenic 3:1 segregation ratio, with plants lacking the markers being more frequent than expected. Although the mode of introgression is yet unknown, the recombinant individuals observed among susceptible progeny suggest homeology between the B-genome-specific segment and its B. napus counterpart. This would offer prospects for reducing the size of the introgression and further fine mapping of the resistance locus.
Collapse
Affiliation(s)
- B Saal
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany
| | | |
Collapse
|
41
|
Yaish MWF, Sáenz de Miera LE, Pérez de la Vega M. Isolation of a family of resistance gene analogue sequences of the nucleotide binding site (NBS) type from Lens species. Genome 2005; 47:650-9. [PMID: 15284869 DOI: 10.1139/g04-027] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most known plant disease-resistance genes (R genes) include in their encoded products domains such as a nucleotide-binding site (NBS) or leucine-rich repeats (LRRs). Sequences with unknown function, but encoding these conserved domains, have been defined as resistance gene analogues (RGAs). The conserved motifs within plant NBS domains make it possible to use degenerate primers and PCR to isolate RGAs. We used degenerate primers deduced from conserved motifs in the NBS domain of NBS-LRR resistance proteins to amplify genomic sequences from Lens species. Fragments from approximately 500-850 bp were obtained. The nucleotide sequence analysis of these fragments revealed 32 different RGA sequences in Lens species with a high similarity (up to 91%) to RGAs from other plants. The predicted amino acid sequences showed that lentil sequences contain all the conserved motifs (P-loop, kinase-2, kinase-3a, GLPL, and MHD) present in the majority of other known plant NBS-LRR resistance genes. Phylogenetic analyses grouped the Lens NBS sequences with the Toll and interleukin-1 receptor (TIR) subclass of NBS-LRR genes, as well as with RGA sequences isolated from other legume species. Using inverse PCR on one putative RGA of lentil, we were able to amplify the flanking regions of this sequence, which contained features found in R proteins.
Collapse
Affiliation(s)
- M W F Yaish
- Department of Genetics, Facultuy of Biology, Universidad de León, 24071 León, Spain
| | | | | |
Collapse
|
42
|
Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denancé C, Durel CE. Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:660-8. [PMID: 15647920 DOI: 10.1007/s00122-004-1891-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 11/23/2004] [Indexed: 05/04/2023]
Abstract
We used a new method called nucleotide-binding site (NBS) profiling to identify and map resistance gene analogues (RGAs) in apple. This method simultaneously allows the amplification and the mapping of genetic markers anchored in the conserved NBS-encoding domain of plant disease resistance genes. Ninety-four individuals belonging to an F1 progeny derived from a cross between the apple cultivars 'Discovery' and 'TN10-8' were studied. Two degenerate primers designed from the highly conserved P-loop motif within the NBS domain were used together with adapter primers. Forty-three markers generated with NBS profiling could be mapped in this progeny. After sequencing, 23 markers were identified as RGAs, based on their homologies with known resistance genes or NBS/leucine-rich-repeat-like genes. Markers were mapped on 10 of the 17 linkage groups of the apple genetic map used. Most of these markers were organized in clusters. Twenty-five markers mapped close to major genes or quantitative trait loci for resistance to scab and mildew previously identified in different apple progenies. Several markers could become efficient tools for marker-assisted selection once converted into breeder-friendly markers. This study demonstrates the efficiency of the NBS-profiling method for generating RGA markers for resistance loci in apple.
Collapse
Affiliation(s)
- F Calenge
- Institut National de la Recherche Agronomique, UMR GenHort, 42 rue Georges Morel, BP 60057, 49071, Beaucouzé cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Matoba, H, Soejima A, Hoshi Y, Kondo K. Molecular Cytogenetic Organization of 5S and 18S rDNA Loci in Aster ageratoides var. ageratoides, A. iinumae (=Kalimeris pinnatifida) and A. microcephalus var. ovatus in Japan. CYTOLOGIA 2005. [DOI: 10.1508/cytologia.70.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | - Katsuhiko Kondo
- Laboratory of Plant Chromosome and Gene Stock, Graduate of Science, Hiroshima University
| |
Collapse
|
44
|
Brotman Y, Kovalski I, Dogimont C, Pitrat M, Portnoy V, Katzir N, Perl-Treves R. Molecular markers linked to papaya ring spot virus resistance and Fusarium race 2 resistance in melon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 110:337-345. [PMID: 15551034 DOI: 10.1007/s00122-004-1845-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 10/13/2004] [Indexed: 05/24/2023]
Abstract
In melon, the Fom-1 gene confers monogenic resistance against the soil-borne fungus Fusarium oxysporum f. sp. melonis, races 0 and 2, while the closely linked Prv gene specifies resistance against the papaya ring spot virus. Markers linked to these resistance (R) genes were identified using two recombinant inbred line populations, derived from crosses between Cucumis melo Vedrantais and C. melo PI 161375, and between C. melo Vedrantais and C. melo PI 414723, respectively. Using bulked segregant analysis, as well as systematic scoring of the mapping populations, we developed two amplified fragment length polymorphism markers, two random amplified polymorphic DNA markers and five restriction fragment length polymorphism (RFLP) markers linked to this locus. Four of the RFLP sequences bear homology to nucleotide-binding site-leucine-rich repeat R genes, indicating the presence of a significant R-gene cluster in this locus. Our study provides the most closely linked markers published so far for these important traits. It also improves the resolution of the whole linkage group IX, which was difficult to order in our previous studies. Two of the markers were converted to cleaved amplified polymorphic sequence markers to facilitate their application in marker-assisted selection. Testing these two markers in several melon lines revealed different marker haplotypes in the melon germplasm and supported multiple, independent origin of the Fusarium races 0 and 2 resistance trait.
Collapse
Affiliation(s)
- Yariv Brotman
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
45
|
He L, Du C, Covaleda L, Xu Z, Robinson AF, Yu JZ, Kohel RJ, Zhang HB. Cloning, characterization, and evolution of the NBS-LRR-encoding resistance gene analogue family in polyploid cotton (Gossypium hirsutum L.). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1234-1241. [PMID: 15553248 DOI: 10.1094/mpmi.2004.17.11.1234] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The nucleotide-binding site-leucine-rich repeat (NBS-LRR)-encoding gene family has attracted much research interest because approximately 75% of the plant disease resistance genes that have been cloned to date are from this gene family. We cloned the NBS-LRR-encoding genes from polyploid cotton by a polymerase chain reaction-based approach. A sample of 150 clones was selected from the NBS-LRR gene sequence library and was sequenced, and 61 resistance gene analogs (RGA) were identified. Sequence analysis revealed that RGA are abundant and highly diverged in the cotton genome and could be categorized into 10 distinct subfamilies based on the similarities of their nucleotide sequences. The numbers of members vary many fold among different subfamilies, and gene index analysis showed that each of the subfamilies is at a different stage of RGA family evolution. Genetic mapping of a selection of RGA indicates that the RGA reside on a limited number of the cotton chromosomes, with those from a single subfamily tending to cluster and two of the RGA loci being colocalized with the cotton bacterial blight resistance genes. The distribution of RGA between the two subgenomes A and D of cotton is uneven, with RGA being more abundant in the A subgenome than in the D subgenome. The data provide new insights into the organization and evolution of the NBS-LRR-encoding RGA family in polyploid plants.
Collapse
Affiliation(s)
- Limei He
- Department of Soil and Crop Sciences and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS. Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 2004; 166:461-81. [PMID: 15020436 PMCID: PMC1470719 DOI: 10.1534/genetics.166.1.461] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The objectives of this study were to isolate and physically localize expressed resistance (R) genes on wheat chromosomes. Irrespective of the host or pest type, most of the 46 cloned R genes from 12 plant species share a strong sequence similarity, especially for protein domains and motifs. By utilizing this structural similarity to perform modified RNA fingerprinting and data mining, we identified 184 putative expressed R genes of wheat. These include 87 NB/LRR types, 16 receptor-like kinases, and 13 Pto-like kinases. The remaining were seven Hm1 and two Hs1(pro-1) homologs, 17 pathogenicity related, and 42 unique NB/kinases. About 76% of the expressed R-gene candidates were rare transcripts, including 42 novel sequences. Physical mapping of 121 candidate R-gene sequences using 339 deletion lines localized 310 loci to 26 chromosomal regions encompassing approximately 16% of the wheat genome. Five major R-gene clusters that spanned only approximately 3% of the wheat genome but contained approximately 47% of the candidate R genes were observed. Comparative mapping localized 91% (82 of 90) of the phenotypically characterized R genes to 18 regions where 118 of the R-gene sequences mapped.
Collapse
Affiliation(s)
- Muharrem Dilbirligi
- Department of Crop and Soil Science, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
47
|
Martínez Zamora MG, Castagnaro AP, Díaz Ricci JC. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 2004; 272:480-7. [PMID: 15565466 DOI: 10.1007/s00438-004-1079-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Degenerate oligonucleotide primers, designed based on conserved regions of Nucleotide Binding Site (NBS) domains from previously cloned plant resistance genes, were used to isolate Resistance Gene Analogues (RGAs) from wild and cultivated strawberries. Seven distinct families of RGAs of the NBS-LRR type were identified from two related wild species, Fragaria vesca and F. chiloensis, and six different Fragaria x ananassa cultivars. With one exception (GAV-3), the deduced amino acid sequences of strawberry RGAs showed strong similarity to TIR (Toll Interleukin I Receptor)-type R genes from Arabidopsis, tobacco and flax, suggesting the existence of common ancestors. GAV-3 seemed to be more closely related to the non-TIR type. Further studies showed that the recombination level and the ratio of non-synonymous to synonymous substitutions within families were low. These data suggest that NBS-encoding sequences of RGAs in strawberry are subject to a gradual accumulation of mutations leading to purifying selection, rather than to a diversifying process. The present paper is the first report on RGAs in strawberry.
Collapse
Affiliation(s)
- M G Martínez Zamora
- Dpto. de Bioquímica de la Nutrición, Instituto de Química Biológica "Dr. Bernabé Bloj" (UNT), INSIBIO (CONICET-UNT), Chacabuco 461, 4000 Tucumán, Argentina
| | | | | |
Collapse
|
48
|
Irigoyen ML, Loarce Y, Fominaya A, Ferrer E. Isolation and mapping of resistance gene analogs from the Avena strigosa genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:713-724. [PMID: 15258739 DOI: 10.1007/s00122-004-1679-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 03/28/2004] [Indexed: 05/24/2023]
Abstract
Degenerate primers based on conserved regions of the nucleotide binding site (NBS) domain (encoded by the largest group of cloned plant disease resistance genes) were used to isolate a set of 15 resistance gene analogs (RGA) from the diploid species Avena strigosa Schreb. These were grouped into seven classes on the basis of 60% or greater nucleic acid sequence identity. Representative clones were used for genetic mapping in diploid and hexaploid oats. Two RGAs were mapped at two loci of the linkage group AswBF belonging to the A. strigosa x A. wiestii Steud map, and ten RGAs were mapped at 15 loci in eight linkage groups belonging to the A. byzantina C. Koch cv. Kanota x A. sativa L. cv. Ogle map. A similar approach was used for targeting genes encoding receptor-like kinases. Three different sequences were obtained and mapped to two linkage groups of the hexaploid oat map. Associations were explored between already known disease resistance loci mapped in different populations and the RGAs. Molecular markers previously linked to crown rust and barley yellow dwarf resistance genes or quantitative trait loci were found in the Kanota x Ogle map linked to RGAs at a distance ranging from 0 cM to 20 cM. Homoeologous RGAs were found to be linked to loci either conferring resistance to different isolates of the same pathogen or to different pathogens. This suggests that these RGAs identify genome regions containing resistance gene clusters.
Collapse
Affiliation(s)
- M L Irigoyen
- Department of Cell Biology and Genetics, University of Alcalá, 28871 Alcalá de Henares, Campus Universitario, Madrid, Spain
| | | | | | | |
Collapse
|
49
|
Zhang Z, Xu J, Xu Q, Larkin P, Xin Z. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:433-439. [PMID: 15067508 DOI: 10.1007/s00122-004-1649-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2003] [Accepted: 02/23/2004] [Indexed: 05/24/2023]
Abstract
The distal segment of the long arm of the Thinopyrum intermedium chromosome 7Ai1 carries the barley yellow dwarf virus (BYDV) resistance gene Bdv2. This segment was transferred to the distal region of the long arm of wheat chromosome 7D in the Yw series of translocation lines by using the ph1b mutant to induce homoeologous pairing. To transfer Bdv2 to commercial varieties, we developed two resistance gene-analog polymorphism (RGAP) markers, Tgp-1(350) and Tgp-2(210), and one randomly amplified polymorphic DNA (RAPD) marker, OPD04(1300). The diagnostic fragments of the RGAP marker Tgp-1(350) and the RAPD marker OPD04(1300) were cloned, sequenced and converted into sequence-characterized amplified region (SCAR) markers, named SC-gp1 and SC-D04, respectively. SC-gp1 and SC-D04 were validated based on available translocation lines and segregating F(2) individuals. Our results indicated that the SCAR markers co-segregated with the BYDV resistance associated with Bdv2. Therefore, they can be used as a low-cost, high-throughput alternative to conventional phenotypic screening in wheat-breeding programs exploiting Bdv2. The marker-assisted selection for BYDV resistance was successfully performed in a wheat-breeding program.
Collapse
Affiliation(s)
- Zengyan Zhang
- Key Laboratory of Crop Genetics and Breeding of Ministry of Agriculture, Institute of Crop Breeding and Cultivation, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | | | | | | | | |
Collapse
|
50
|
Radwan O, Bouzidi MF, Nicolas P, Mouzeyar S. Development of PCR markers for the Pl5/Pl8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:176-85. [PMID: 15007505 DOI: 10.1007/s00122-004-1613-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 01/28/2004] [Indexed: 05/20/2023]
Abstract
Sunflower downy mildew, caused by Plasmopara halstedii, is one of the major diseases of this crop. Development of elite sunflower lines resistant to different races of this oomycete seems to be the most efficient method to limit downy mildew damage. At least two different gene clusters conferring resistance to different races of P. halstedii have been described. In this work we report the cloning and mapping of two full-length resistance gene analogs (RGA) belonging to the CC-NBC-LRR class of plant resistance genes. The two sequences were then used to develop 14 sequence tagged sites (STS) within the Pl5/Pl8 locus conferring resistance to a wide range of P. halstedii races. These STSs will be useful in marker-assisted selection programs.
Collapse
Affiliation(s)
- O Radwan
- UMR 1095 INRA-UBP Amélioration et Santé des Plantes, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | |
Collapse
|