1
|
Thomson G, Dickinson L, Jacob Y. Genomic consequences associated with Agrobacterium-mediated transformation of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:342-363. [PMID: 37831618 PMCID: PMC10841553 DOI: 10.1111/tpj.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Attenuated strains of the naturally occurring plant pathogen Agrobacterium tumefaciens can transfer virtually any DNA sequence of interest to model plants and crops. This has made Agrobacterium-mediated transformation (AMT) one of the most commonly used tools in agricultural biotechnology. Understanding AMT, and its functional consequences, is of fundamental importance given that it sits at the intersection of many fundamental fields of study, including plant-microbe interactions, DNA repair/genome stability, and epigenetic regulation of gene expression. Despite extensive research and use of AMT over the last 40 years, the extent of genomic disruption associated with integrating exogenous DNA into plant genomes using this method remains underappreciated. However, new technologies like long-read sequencing make this disruption more apparent, complementing previous findings from multiple research groups that have tackled this question in the past. In this review, we cover progress on the molecular mechanisms involved in Agrobacterium-mediated DNA integration into plant genomes. We also discuss localized mutations at the site of insertion and describe the structure of these DNA insertions, which can range from single copy insertions to large concatemers, consisting of complex DNA originating from different sources. Finally, we discuss the prevalence of large-scale genomic rearrangements associated with the integration of DNA during AMT with examples. Understanding the intended and unintended effects of AMT on genome stability is critical to all plant researchers who use this methodology to generate new genetic variants.
Collapse
Affiliation(s)
- Geoffrey Thomson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Lauren Dickinson
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences; New Haven, Connecticut 06511, USA
- Yale Cancer Center, Yale School of Medicine; New Haven, Connecticut 06511, USA
| |
Collapse
|
2
|
Hoengenaert L, Van Doorsselaere J, Vanholme R, Boerjan W. Microparticle-mediated CRISPR DNA delivery for genome editing in poplar. FRONTIERS IN PLANT SCIENCE 2023; 14:1286663. [PMID: 38023888 PMCID: PMC10679337 DOI: 10.3389/fpls.2023.1286663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
The use of CRISPR/Cas9 is currently the method of choice for precise genome engineering in plants, including in the biomass crop poplar. The most commonly used method for delivering CRISPR/Cas9 and its components in poplar is via Agrobacterium-mediated transformation, that besides the desired gene-editing event also results in stable T-DNA integration. Here we explore the delivery of the gene-editing reagents via DNA-coated microparticle bombardment into the model tree Populus tremula x P. alba to evaluate its potential for developing transgene-free, gene-edited trees, as well as its potential for integrating donor DNA at specific target sites. Using an optimized transformation method, which favors the regeneration of plants that transiently express the genes on the delivered donor DNA, we regenerated gene-edited plants that are free of the Cas9 and the antibiotic resistance-encoding transgenes. In addition, we report the frequent integration of donor DNA fragments at the Cas9-induced double-strand break, opening opportunities toward targeted gene insertions.
Collapse
Affiliation(s)
- Lennart Hoengenaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | | | - Ruben Vanholme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
3
|
Tian Y, Zhong D, Li X, Shen R, Han H, Dai Y, Yao Q, Zhang X, Deng Q, Cao X, Zhu JK, Lu Y. High-throughput genome editing in rice with a virus-based surrogate system. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:646-655. [PMID: 36218268 DOI: 10.1111/jipb.13381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
With the widespread use of clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) technologies in plants, large-scale genome editing is increasingly needed. Here, we developed a geminivirus-mediated surrogate system, called Wheat Dwarf Virus-Gate (WDV-surrogate), to facilitate high-throughput genome editing. WDV-Gate has two parts: one is the recipient callus from a transgenic rice line expressing Cas9 and a mutated hygromycin-resistant gene (HygM) for surrogate selection; the other is a WDV-based construct expressing two single guide RNAs (sgRNAs) targeting HygM and a gene of interest, respectively. We evaluated WDV-Gate on six rice loci by producing a total of 874 T0 plants. Compared with the conventional method, the WDV-Gate system, which was characterized by a transient and high level of sgRNA expression, significantly increased editing frequency (66.8% vs. 90.1%), plantlet regeneration efficiency (2.31-fold increase), and numbers of homozygous-edited plants (36.3% vs. 70.7%). Large-scale editing using pooled sgRNAs targeting the SLR1 gene resulted in a high editing frequency of 94.4%, further demonstrating its feasibility. We also tested WDV-Gate on sequence knock-in for protein tagging. By co-delivering a chemically modified donor DNA with the WDV-Gate plasmid, 3xFLAG peptides were successfully fused to three loci with an efficiency of up to 13%. Thus, by combining transiently expressed sgRNAs and a surrogate selection system, WDV-Gate could be useful for high-throughput gene knock-out and sequence knock-in.
Collapse
Affiliation(s)
- Yifu Tian
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Dating Zhong
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinbo Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Rundong Shen
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Han Han
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqin Dai
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Qi Yao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuening Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Deng
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuesong Cao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Center for Advanced Bioindustry Technologies, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Fambrini M, Usai G, Pugliesi C. Induction of Somatic Embryogenesis in Plants: Different Players and Focus on WUSCHEL and WUS-RELATED HOMEOBOX (WOX) Transcription Factors. Int J Mol Sci 2022; 23:15950. [PMID: 36555594 PMCID: PMC9781121 DOI: 10.3390/ijms232415950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
In plants, other cells can express totipotency in addition to the zygote, thus resulting in embryo differentiation; this appears evident in apomictic and epiphyllous plants. According to Haberlandt's theory, all plant cells can regenerate a complete plant if the nucleus and the membrane system are intact. In fact, under in vitro conditions, ectopic embryos and adventitious shoots can develop from many organs of the mature plant body. We are beginning to understand how determination processes are regulated and how cell specialization occurs. However, we still need to unravel the mechanisms whereby a cell interprets its position, decides its fate, and communicates it to others. The induction of somatic embryogenesis might be based on a plant growth regulator signal (auxin) to determine an appropriate cellular environment and other factors, including stress and ectopic expression of embryo or meristem identity transcription factors (TFs). Still, we are far from having a complete view of the regulatory genes, their target genes, and their action hierarchy. As in animals, epigenetic reprogramming also plays an essential role in re-establishing the competence of differentiated cells to undergo somatic embryogenesis. Herein, we describe the functions of WUSCHEL-RELATED HOMEOBOX (WOX) transcription factors in regulating the differentiation-dedifferentiation cell process and in the developmental phase of in vitro regenerated adventitious structures.
Collapse
Affiliation(s)
| | | | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
5
|
Chen K, Ke R, Du M, Yi Y, Chen Y, Wang X, Yao L, Liu H, Hou X, Xiong L, Yang Y, Xie K. A FLASH pipeline for arrayed CRISPR library construction and the gene function discovery of rice receptor-like kinases. MOLECULAR PLANT 2022; 15:243-257. [PMID: 34619328 DOI: 10.1016/j.molp.2021.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/13/2021] [Accepted: 09/29/2021] [Indexed: 05/04/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene editing is revolutionizing plant research and crop breeding. Here, we present an effective and streamlined pipeline for arrayed CRISPR library construction and demonstrate it is suitable for small- to large-scale genome editing in plants. This pipeline introduces artificial PCR fragment-length markers for distinguishing guide RNAs (gRNAs) (FLASH), and a group of 12 constructs harboring different FLASH tags are co-transformed into plants each time. The identities of gRNAs in Agrobacterium mixtures and transgenic plants can therefore be read out by detecting the FLASH tags, a process that requires only conventional PCR and gel electrophoresis rather than sequencing. We generated an arrayed CRISPR library targeting all 1,072 members of the receptor-like kinase (RLK) family in rice. One-shot transformation generated a mutant population that covers gRNAs targeting 955 RLKs, and 74.3% (710/955) of the target genes had three or more independent T0 lines. Our results indicate that the FLASH tags act as bona fide surrogates for the gRNAs and are tightly (92.1%) associated with frameshift mutations in the target genes. In addition, the FLASH pipeline allows for rapid identification of unintended editing events without corresponding T-DNA integrations and generates high-order mutants of closely related RLK genes. Furthermore, we showed that the RLK mutant library enables rapid discovery of defense-related RLK genes. This study introduces an effective pipeline for arrayed CRISPR library construction and provides genome-wide rice RLK mutant resources for functional genomics.
Collapse
Affiliation(s)
- Kaiyuan Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runnan Ke
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Manman Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Yi
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yache Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaochun Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Yao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Liu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, The Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, No. 1 Shizishan Street, Hongshan District, Wuhan 430070, China; Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Pereman I, Melamed-Bessudo C, Dahan-Meir T, Herz E, Elbaum M, Levy AA. Single Molecule Imaging of T-DNA Intermediates Following Agrobacterium tumefaciens Infection in Nicotiana benthamiana. Int J Mol Sci 2019; 20:ijms20246209. [PMID: 31835367 PMCID: PMC6940882 DOI: 10.3390/ijms20246209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Plant transformation mediated by Agrobacterium tumefaciens is a well-studied phenomenon in which a bacterial DNA fragment (T-DNA), is transferred to the host plant cell, as a single strand, via type IV secretion system and has the potential to reach the nucleus and to be integrated into its genome. While Agrobacterium-mediated transformation has been widely used for laboratory-research and in breeding, the time-course of its journey from the bacterium to the nucleus, the conversion from single- to double-strand intermediates and several aspects of the integration in the genome remain obscure. In this study, we sought to follow T-DNA infection directly using single-molecule live imaging. To this end, we applied the LacO-LacI imaging system in Nicotiana benthamiana, which enabled us to identify double-stranded T-DNA (dsT-DNA) molecules as fluorescent foci. Using confocal microscopy, we detected progressive accumulation of dsT-DNA foci in the nucleus, starting 23 h after transfection and reaching an average of 5.4 and 8 foci per nucleus at 48 and 72 h post-infection, respectively. A time-course diffusion analysis of the T-DNA foci has demonstrated their spatial confinement.
Collapse
Affiliation(s)
- Idan Pereman
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
- Migal, Galilee Research Institute, Kiryat Shmona 11016, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tal Dahan-Meir
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad Herz
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| | - Avraham A. Levy
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
- Correspondence: (I.P.); (M.E); (A.A.L.)
| |
Collapse
|
7
|
Palaci J, Virdi V, Depicker A. Transformation strategies for stable expression of complex hetero-multimeric proteins like secretory immunoglobulin A in plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1760-1769. [PMID: 30801876 PMCID: PMC6686127 DOI: 10.1111/pbi.13098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Plant expression systems have proven to be exceptional in producing high-value complex polymeric proteins such as secretory IgAs (SIgAs). However, polymeric protein production requires the expression of multiple genes, which can be transformed as single or multiple T-DNA units to generate stable transgenic plant lines. Here, we evaluated four strategies to stably transform multiple genes and to obtain high expression of all components. Using the in-seed expression of a simplified secretory IgA (sSIgA) as a reference molecule, we conclude that it is better to spread the genes over two T-DNAs than to contain them in a single T-DNA, because of the presence of homologous recombination events and gene silencing. These T-DNAs can be cotransformed to obtain transgenic plants in one transformation step. However, if time permits, more transformants with high production levels of the polymeric protein can be obtained either by sequential transformation or by in-parallel transformation followed by crossing of transformants independently selected for excellent expression of the genes in each T-DNA.
Collapse
Affiliation(s)
- Jorge Palaci
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
| | - Vikram Virdi
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
- Department of Biochemistry and MicrobiologyGhent UniversityGentBelgium
- VIB Center for Medical BiotechnologyGentBelgium
| | - Ann Depicker
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGentBelgium
- VIB Center for Plant Systems BiologyGentBelgium
| |
Collapse
|
8
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
10
|
Vazquez-Vilar M, Quijano-Rubio A, Fernandez-Del-Carmen A, Sarrion-Perdigones A, Ochoa-Fernandez R, Ziarsolo P, Blanca J, Granell A, Orzaez D. GB3.0: a platform for plant bio-design that connects functional DNA elements with associated biological data. Nucleic Acids Res 2017; 45:2196-2209. [PMID: 28053117 PMCID: PMC5389719 DOI: 10.1093/nar/gkw1326] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Modular DNA assembly simplifies multigene engineering in Plant Synthetic Biology. Furthermore, the recent adoption of a common syntax to facilitate the exchange of plant DNA parts (phytobricks) is a promising strategy to speed up genetic engineering. Following this lead, here, we present a platform for plant biodesign that incorporates functional descriptions of phytobricks obtained under pre-defined experimental conditions, and systematically registers the resulting information as metadata for documentation. To facilitate the handling of functional descriptions, we developed a new version (v3.0) of the GoldenBraid (GB) webtool that integrates the experimental data and displays it in the form of datasheets. We report the use of the Luciferase/Renilla (Luc/Ren) transient agroinfiltration assay in Nicotiana benthamiana as a standard to estimate relative transcriptional activities conferred by regulatory phytobricks, and show the consistency and reproducibility of this method in the characterization of a synthetic phytobrick based on the CaMV35S promoter. Furthermore, we illustrate the potential for combinatorial optimization and incremental innovation of the GB3.0 platform in two separate examples, (i) the development of a collection of orthogonal transcriptional regulators based on phiC31 integrase and (ii) the design of a small genetic circuit that connects a glucocorticoid switch to a MYB/bHLH transcriptional activation module.
Collapse
Affiliation(s)
- Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alfredo Quijano-Rubio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Asun Fernandez-Del-Carmen
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Alejandro Sarrion-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Rocio Ochoa-Fernandez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Peio Ziarsolo
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Blanca
- Centro de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
11
|
Kwon T. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation. Mol Cells 2016; 39:705-13. [PMID: 27643450 PMCID: PMC5050536 DOI: 10.14348/molcells.2016.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022] Open
Abstract
The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.
Collapse
Affiliation(s)
- Tackmin Kwon
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315,
Korea
| |
Collapse
|
12
|
Ghedira R, De Buck S, Van Ex F, Angenon G, Depicker A. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation. PLANTA 2013; 238:1025-1037. [PMID: 23975012 DOI: 10.1007/s00425-013-1948-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.
Collapse
Affiliation(s)
- Rim Ghedira
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Sylvie De Buck
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Frédéric Van Ex
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), 1050, Brussel, Belgium
- Bayer CropScience NV, Technologiepark 38, 9052, Ghent, Belgium
| | - Geert Angenon
- Laboratory of Plant Genetics, Institute for Molecular Biology and Biotechnology, Vrije Universiteit Brussel (VUB), 1050, Brussel, Belgium
| | - Ann Depicker
- Department Plant Systems Biology, VIB, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
| |
Collapse
|
13
|
De Paepe A, De Buck S, Nolf J, Van Lerberge E, Depicker A. Site-specific T-DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:172-184. [PMID: 23574114 DOI: 10.1111/tpj.12202] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
Random T-DNA integration into the plant host genome can be problematic for a variety of reasons, including potentially variable transgene expression as a result of different integration positions and multiple T-DNA copies, the risk of mutating the host genome and the difficulty of stacking well-defined traits. Therefore, recombination systems have been proposed to integrate the T-DNA at a pre-selected site in the host genome. Here, we demonstrate the capacity of the ϕC31 integrase (INT) for efficient targeted T-DNA integration. Moreover, we show that the iterative site-specific integration system (ISSI), which combines the activities of the CRE recombinase and INT, enables the targeting of genes to a pre-selected site with the concomitant removal of the resident selectable marker. To begin, plants expressing both the CRE and INT recombinase and containing the target attP site were constructed. These plants were supertransformed with a T-DNA vector harboring the loxP site, the attB sites, a selectable marker and an expression cassette encoding a reporter protein. Three out of the 35 transformants obtained (9%) showed transgenerational site-specific integration (SSI) of this T-DNA and removal of the resident selectable marker, as demonstrated by PCR, Southern blot and segregation analysis. In conclusion, our results show the applicability of the ISSI system for precise and targeted Agrobacterium-mediated integration, allowing the serial integration of transgenic DNA sequences in plants.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Sylvie De Buck
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Jonah Nolf
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Els Van Lerberge
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| |
Collapse
|
14
|
Singer K, Shiboleth YM, Li J, Tzfira T. Formation of complex extrachromosomal T-DNA structures in Agrobacterium tumefaciens-infected plants. PLANT PHYSIOLOGY 2012; 160:511-22. [PMID: 22797657 PMCID: PMC3440224 DOI: 10.1104/pp.112.200212] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 07/12/2012] [Indexed: 05/09/2023]
Abstract
Agrobacterium tumefaciens is a unique plant pathogenic bacterium renowned for its ability to transform plants. The integration of transferred DNA (T-DNA) and the formation of complex insertions in the genome of transgenic plants during A. tumefaciens-mediated transformation are still poorly understood. Here, we show that complex extrachromosomal T-DNA structures form in A. tumefaciens-infected plants immediately after infection. Furthermore, these extrachromosomal complex DNA molecules can circularize in planta. We recovered circular T-DNA molecules (T-circles) using a novel plasmid-rescue method. Sequencing analysis of the T-circles revealed patterns similar to the insertion patterns commonly found in transgenic plants. The patterns include illegitimate DNA end joining, T-DNA truncations, T-DNA repeats, binary vector sequences, and other unknown "filler" sequences. Our data suggest that prior to T-DNA integration, a transferred single-stranded T-DNA is converted into a double-stranded form. We propose that termini of linear double-stranded T-DNAs are recognized and repaired by the plant's DNA double-strand break-repair machinery. This can lead to circularization, integration, or the formation of extrachromosomal complex T-DNA structures that subsequently may integrate.
Collapse
MESH Headings
- Agrobacterium tumefaciens/pathogenicity
- Ampicillin/pharmacology
- Cloning, Molecular
- DNA End-Joining Repair
- DNA, Bacterial/genetics
- DNA, Circular/genetics
- DNA, Single-Stranded/genetics
- Drug Resistance, Bacterial
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Genetic Vectors/genetics
- Plant Diseases/microbiology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plasmids/genetics
- Sequence Analysis, DNA/methods
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/microbiology
- Transformation, Genetic
Collapse
Affiliation(s)
- Kamy Singer
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA.
| | | | | | | |
Collapse
|
15
|
De Paepe A, De Buck S, Nolf J, Depicker A. High frequency of single-copy T-DNA transformants produced after floral dip in CRE-expressing Arabidopsis plants. Methods Mol Biol 2012; 847:317-333. [PMID: 22351019 DOI: 10.1007/978-1-61779-558-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Transgenic plants that harbor a single copy of the introduced transgene are preferable to those with multiple transgene copies because multiple T-DNA copies correlate with expression variability and susceptibility to silencing. Especially after the commonly used floral-dip Agrobacterium-mediated transformation method, the frequency of single-copy transformants is low. The CRE/loxP recombinase-based strategy to resolve complex T-DNA loci has proven to be successful to efficiently obtain single-copy T-DNA transformants by directly transforming loxP-containing T-DNA vectors in CRE-expressing Arabidopsis thaliana plants. This chapter describes in detail how to transform three available loxP-containing T-DNA vectors into CRE-producing Arabidopsis C24 plants and subsequently how to analyze the transgenic plants for the T-DNA locus structure.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, VIB, Department of Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | | | |
Collapse
|
16
|
Dutt M, Li ZT, Dhekney SA, Gray DJ. Co-transformation of grapevine somatic embryos to produce transgenic plants free of marker genes. Methods Mol Biol 2012; 847:201-213. [PMID: 22351010 DOI: 10.1007/978-1-61779-558-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A cotransformation system using somatic embryos was developed to produce grapevines free of selectable marker genes. This was achieved by transforming Vitis vinifera L. "Thompson Seedless" somatic embryos with a mixture of two Agrobacterium strains. The first strain contained a binary plasmid with an egfp gene of interest between the T-DNA borders. The second strain harbored the neomycin phosphotransferase (nptII) gene for positive selection and the cytosine deaminase (codA) gene for negative selection, linked together by a bidirectional dual promoter complex. Our technique included a short positive selection phase of cotransformed somatic embryos on liquid medium containing 100 mg/L kanamycin before subjecting cultures to prolonged negative selection on medium containing 250 mg/L 5-fluorocytosine.
Collapse
Affiliation(s)
- Manjul Dutt
- Citrus Research and Education Center, University of Florida/IFAS, Lake Alfred, FL, USA
| | | | | | | |
Collapse
|
17
|
Kapusi E, Ma L, Teo CH, Hensel G, Himmelbach A, Schubert I, Mette MF, Kumlehn J, Houben A. Telomere-mediated truncation of barley chromosomes. Chromosoma 2011; 121:181-90. [PMID: 22080935 DOI: 10.1007/s00412-011-0351-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/19/2011] [Accepted: 10/25/2011] [Indexed: 12/18/2022]
Abstract
Engineered minichromosomes offer an enormous opportunity to plant biotechnology as they have the potential to simultaneously transfer and stably express multiple genes. Following a top-down approach, we truncated endogenous chromosomes in barley (Hordeum vulgare) by Agrobacterium-mediated transfer of T-DNA constructs containing telomere sequences. Blocks of Arabidopsis-like telomeric repeats were inserted into a binary vector suitable for stable transformation. After transfer of these constructs into immature embryos of diploid and tetraploid barley, chromosome truncation by T-DNA-induced de novo formation of telomeres could be confirmed by fluorescent in situ hybridisation, primer extension telomere repeat amplification and DNA gel blot analysis in regenerated plants. Telomere seeding connected to chromosome truncation was found in tetraploid plants only, indicating that genetic redundancy facilitates recovery of shortened chromosomes. Truncated chromosomes were transmissible in sexual reproduction, but were inherited at rates lower than expected according to Mendelian rules.
Collapse
Affiliation(s)
- Eszter Kapusi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
RamanaRao MV, Veluthambi K. Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. PLANT CELL REPORTS 2010; 29:473-83. [PMID: 20204372 DOI: 10.1007/s00299-010-0836-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/15/2010] [Accepted: 02/15/2010] [Indexed: 05/28/2023]
Abstract
Transient selection involving the bar gene and non-conditional negative selection against stable T-DNA integration through the use of the Mungbean yellow mosaic virus (MYMV) transcriptional activator protein gene (TrAP) were used in a novel co-transformation strategy to generate selectable marker gene (SMG)-eliminated transgenic tobacco plants in the T(0) generation itself. Two compatible binary plasmids, pCam-bar-TrAP-gus harbouring bar as an SMG and the MYMV TrAP gene as a non-conditional negative selectable marker, and pGA472 with the nptII gene as an unselected experimental gene of interest (GOI) were placed in the Agrobacterium tumefaciens strain EHA105 and used for co-transformation. Transient selection with 5 mg l(-1) phosphinothricin (PPT) for 2-4 weeks and subsequent establishment in a PPT-minus medium yielded 114 plants from 200 leaf discs. The unselected nptII gene was detected by Southern blot analysis in 13 plants, revealing a co-transformation efficiency of 11.5%. Five of these plants harboured only the nptII gene (GOI) and not the bar gene (SMG). Thus, SMG elimination was achieved in the T(0) generation itself in 4.4% (5/114) of plants, which were transiently selected for 2-4 weeks on PPT. MYMV TrAP, a non-conditional negative selectable marker, effectively reduced the recovery of plants with stable integration of the SMG (bar).
Collapse
Affiliation(s)
- Mangu Venkata RamanaRao
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | | |
Collapse
|
19
|
De Buck S, Podevin N, Nolf J, Jacobs A, Depicker A. The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:134-45. [PMID: 19508426 DOI: 10.1111/j.1365-313x.2009.03942.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transgenic loci obtained after Agrobacterium tumefaciens-mediated transformation can be simple, but fairly often they contain multiple T-DNA copies integrated into the plant genome. To understand the origin of complex T-DNA loci, floral-dip and root transformation experiments were carried out in Arabidopsis thaliana with mixtures of A. tumefaciens strains, each harboring one or two different T-DNA vectors. Upon floral-dip transformation, 6-30% of the transformants were co-transformed by multiple T-DNAs originating from different bacteria and 20-36% by different T-DNAs from one strain. However, these co-transformation frequencies were too low to explain the presence of on average 4-6 T-DNA copies in these transformants, suggesting that, upon floral-dip transformation, T-DNA replication frequently occurs before or during integration after the transfer of single T-DNA copies. Upon root transformation, the co-transformation frequencies of T-DNAs originating from different bacteria were similar or slightly higher (between 10 and 60%) than those obtained after floral-dip transformation, whereas the co-transformation frequencies of different T-DNAs from one strain were comparable (24-31%). Root transformants generally harbor only one to three T-DNA copies, and thus co-transformation of different T-DNAs can explain the T-DNA copy number in many transformants, but T-DNA replication is postulated to occur in most multicopy root transformants. In conclusion, the comparable co-transformation frequencies and differences in complexity of the T-DNA loci after floral-dip and root transformations indicate that the T-DNA copy number is highly determined by the transformation-competent target cells.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium
| | | | | | | | | |
Collapse
|
20
|
De Paepe A, De Buck S, Hoorelbeke K, Nolf J, Peck I, Depicker A. High frequency of single-copy T-DNA transformants produced by floral dip in CRE-expressing Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:517-527. [PMID: 19392707 DOI: 10.1111/j.1365-313x.2009.03889.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
For genetic transformation of plants, floral dip with Agrobacterium often results in integration of multiple T-DNA copies at a single locus and frequently in low and unstable transgene expression. To obtain efficient single-copy T-DNA transformants, two CRE/loxP recombinase-based simplifying strategies for complex T-DNA loci were compared. A T-DNA vector with oppositely oriented loxP sites was transformed into CRE-expressing and wild-type control Arabidopsis thaliana plants. Of the primary CRE-expressing transformants, 55% harboured a single copy of the introduced T-DNA, but only 15% in the wild-type plants. However, 73% of the single-copy transformants in the CRE background showed continuous somatic inversion of the DNA segment between the two loxP sites. To avoid inversion of the loxP-flanked T-DNA segment, two T-DNA vectors harbouring only one loxP site were investigated for their suitability for CRE/loxP recombinase-mediated resolution upon floral-dip transformation into CRE-expressing plants. On average, 70% of the transformants in the CRE background were single-copy transformants, whereas the single-copy T-DNA frequency was only 11% for both vectors in the wild-type background. Both resolution strategies yielded mostly Cre transformants in which the 35S-driven transgene expression was stable and uniform in the progeny and remarkably, also in Cre transformants with multiple T-DNA copies. Therefore, a role is proposed for the CRE recombinase in preventing inverted T-DNA repeat formation or modifying the locus chromatin structure, resulting in a reduced sensitivity for silencing.
Collapse
Affiliation(s)
- Annelies De Paepe
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Molecular analysis of rice plants harboring a multi-functional T-DNA tagging system. J Genet Genomics 2009; 36:267-76. [DOI: 10.1016/s1673-8527(08)60114-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 11/21/2022]
|
22
|
Louwerse JD, van Lier MCM, van der Steen DM, de Vlaam CMT, Hooykaas PJJ, Vergunst AC. Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. PLANT PHYSIOLOGY 2007; 145:1282-93. [PMID: 17921337 PMCID: PMC2151714 DOI: 10.1104/pp.107.108092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 09/27/2007] [Indexed: 05/02/2023]
Abstract
Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Jeanine D Louwerse
- Institute of Biology, Clusius Laboratory, Leiden University, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A. Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. PLANT PHYSIOLOGY 2007; 145:1171-82. [PMID: 17693537 PMCID: PMC2151725 DOI: 10.1104/pp.107.104067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We investigated whether complex T-DNA loci, often resulting in low transgene expression, can be resolved efficiently into single copies by CRE/loxP-mediated recombination. An SB-loxP T-DNA, containing two invertedly oriented loxP sequences located inside and immediately adjacent to the T-DNA border ends, was constructed. Regardless of the orientation and number of SB-loxP-derived T-DNAs integrated at one locus, recombination between the outermost loxP sequences in direct orientation should resolve multiple copies into a single T-DNA copy. Seven transformants with a complex SB-loxP locus were crossed with a CRE-expressing plant. In three hybrids, the complex T-DNA locus was reduced efficiently to a single-copy locus. Upon segregation of the CRE recombinase gene, only the simplified T-DNA locus was found in the progeny, demonstrating DNA had been excised efficiently in the progenitor cells of the gametes. In the two transformants with an inverted T-DNA repeat, the T-DNA resolution was accompanied by at least a 10-fold enhanced transgene expression. Therefore, the resolution of complex loci to a single-copy T-DNA insert by the CRE/loxP recombination system can become a valuable method for the production of elite transgenic Arabidopsis thaliana plants that are less prone to gene silencing.
Collapse
Affiliation(s)
- Sylvie De Buck
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, and Department of Molecular Genetics, Ghent University, 9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z, Chan KM, Zhang H, Qi J, Ji L, Hong Y. Transgene integration and organization in cotton (Gossypium hirsutum L.) genome. Transgenic Res 2007; 17:293-306. [PMID: 17549600 DOI: 10.1007/s11248-007-9101-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 04/18/2007] [Indexed: 11/28/2022]
Abstract
While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA, 24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB) ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences, 12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences. Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology between target sites and the T-DNA (8/8), deletions to cotton genome in most cases studied (7/8) and some also had filler sequences (3/8). This information on T-DNA integration in cotton will facilitate functional genomic studies and further crop improvement.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Base Sequence
- Blotting, Southern
- DNA Primers
- DNA, Bacterial/genetics
- DNA, Plant/genetics
- Genetic Vectors
- Genome, Plant
- Gossypium/genetics
- Gossypium/growth & development
- Molecular Sequence Data
- Plants, Genetically Modified
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Transformation, Genetic
- Transgenes/physiology
Collapse
Affiliation(s)
- Jun Zhang
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Marjanac G, De Paepe A, Peck I, Jacobs A, De Buck S, Depicker A. Evaluation of CRE-mediated excision approaches in Arabidopsis thaliana. Transgenic Res 2007; 17:239-50. [PMID: 17541719 DOI: 10.1007/s11248-007-9096-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 03/26/2007] [Indexed: 10/23/2022]
Abstract
The ability of the CRE recombinase to catalyze excision of a DNA fragment flanked by directly repeated lox sites has been exploited to modify gene expression and proved to function well in particular case studies. However, very often variability in CRE expression and differences in efficiency of CRE-mediated recombination are observed. Here, various approaches were investigated to reproducibly obtain optimal CRE activity. CRE recombination was analyzed either by transforming the CRE T-DNA into plants containing a lox-flanked fragment or by transforming a T-DNA harboring a lox-flanked fragment into plants producing the CRE recombinase. Although somatic CRE-mediated excision of a lox-flanked fragment was obtained in all transformants, a variable amount of germline-transmitted deletions was found among different independent transformants, irrespective of the orientation of transformation. Also, the efficiency of CRE-mediated excision correlated well with the CRE mRNA level. In addition, CRE-mediated fragment excision was compared after floral dip and after root tissue transformation when transforming in a CRE-expressing background. Importantly, less CRE activity was needed to excise the lox-flanked fragment from the transferred T-DNA after root tissue transformation than after floral dip transformation. We hypothesize that this is correlated with the lower T-DNA copy number inserted during root transformation as compared to floral dip transformation.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/growth & development
- DNA, Bacterial/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant
- Genome, Plant
- Glucuronidase/metabolism
- Integrases/genetics
- Integrases/metabolism
- Plant Roots/genetics
- Plant Roots/growth & development
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/growth & development
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Transformation, Genetic
Collapse
Affiliation(s)
- Gordana Marjanac
- Department of Plant Systems Biology, VIB, Technologiepark 927, Gent 9052, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Shrawat AK, Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:575-603. [PMID: 17309731 DOI: 10.1111/j.1467-7652.2006.00209.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cereal crops have been the primary targets for improvement by genetic transformation because of their worldwide importance for human consumption. For a long time, many of these important cereals were difficult to genetically engineer, mainly as a result of their inherent limitations associated with the resistance to Agrobacterium infection and their recalcitrance to in vitro regeneration. The delivery of foreign genes to rice plants via Agrobacterium tumefaciens has now become a routine technique. However, there are still serious handicaps with Agrobacterium-mediated transformation of other major cereals. In this paper, we review the pioneering efforts, existing problems and future prospects of Agrobacterium-mediated genetic transformation of major cereal crops, such as rice, maize, wheat, barley, sorghum and sugarcane.
Collapse
Affiliation(s)
- Ashok Kumar Shrawat
- Centre for Applied Plant Molecular Biology (AMP II), University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | | |
Collapse
|
27
|
Jelesko JG, Carter K, Kinoshita Y, Gruissem W. Frequency and character of alternative somatic recombination fates of paralogous genes during T-DNA integration. Mol Genet Genomics 2005; 274:91-102. [PMID: 15983820 DOI: 10.1007/s00438-005-0001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 04/25/2005] [Indexed: 11/28/2022]
Abstract
A synthetic RBCSB gene cluster was transformed into Arabidopsis in order to simultaneously evaluate the frequency and character of somatic illegitimate recombination, homologous recombination, and targeted gene replacement events associated with T-DNA-mediated transformation. The most frequent type of recombination event observed was illegitimate integration of the T-DNA without activation of the silent DeltaRBCS1B: LUC transgene. Sixteen luc(+) (firefly luciferase positive) T1 plants were isolated. Six of these were due to illegitimate recombination events resulting in a gene trapping effect. Nine resulted from homologous recombination between paralogous RBCSB sequences associated with T-DNA integration. The frequency of somatic homologous recombination associated with T-DNA integration was almost 200 times higher than previously reported rates of meiotic homologous recombination with the same genes. The distribution of (somatic homologous) recombination resolution sites generally fits a fractional interval length model. However, a small region adjacent to an indel showed a significant over-representation of resolution sites, suggesting that DNA mismatch recognition may also play an important role in the positioning of somatic resolution sites. The frequency of somatic resolution within exon-2 was significantly different from that previously observed during meiotic recombination.
Collapse
Affiliation(s)
- John G Jelesko
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | |
Collapse
|
28
|
Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K. Crop improvement through modification of the plant's own genome. PLANT PHYSIOLOGY 2004; 135:421-31. [PMID: 15133156 PMCID: PMC429395 DOI: 10.1104/pp.104.040949] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 03/10/2004] [Accepted: 03/12/2004] [Indexed: 05/17/2023]
Abstract
Plant genetic engineering has, until now, relied on the incorporation of foreign DNA into plant genomes. Public concern about the extent to which transgenic crops differ from their traditionally bred counterparts has resulted in molecular strategies and gene choices that limit, but not eliminate, the introduction of foreign DNA. Here, we demonstrate that a plant-derived (P-) DNA fragment can be used to replace the universally employed Agrobacterium transfer (T-) DNA. Marker-free P-DNAs are transferred to plant cell nuclei together with conventional T-DNAs carrying a selectable marker gene. By subsequently linking a positive selection for temporary marker gene expression to a negative selection against marker gene integration, 29% of derived regeneration events contain P-DNA insertions but lack any copies of the T-DNA. Further refinements are accomplished by employing Omega-mutated virD2 and isopentenyl transferase cytokinin genes to impair T-DNA integration and select against backbone integration, respectively. The presented methods are used to produce hundreds of marker-free and backbone-free potato (Solanum tuberosum) plants displaying reduced expression of a tuber-specific polyphenol oxidase gene in potato. The modified plants represent the first example of genetically engineered plants that only contain native DNA.
Collapse
Affiliation(s)
- Caius M Rommens
- J.R. Simplot Company, Simplot Plant Sciences, Boise, Idaho 83706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Windels P, De Buck S, Van Bockstaele E, De Loose M, Depicker A. T-DNA integration in Arabidopsis chromosomes. Presence and origin of filler DNA sequences. PLANT PHYSIOLOGY 2003; 133:2061-8. [PMID: 14645727 PMCID: PMC300757 DOI: 10.1104/pp.103.027532] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/20/2003] [Accepted: 08/21/2003] [Indexed: 05/20/2023]
Abstract
To investigate the relationship between T-DNA integration and double-stranded break (DSB) repair in Arabidopsis, we studied 67 T-DNA/plant DNA junctions and 13 T-DNA/T-DNA junctions derived from transgenic plants. Three different types of T-DNA-associated joining could be distinguished. A minority of T-DNA/plant DNA junctions were joined by a simple ligation-like mechanism, resulting in a junction without microhomology or filler DNA insertions. For about one-half of all analyzed junctions, joining of the two ends occurred without insertion of filler sequences. For these junctions, microhomology was strikingly combined with deletions of the T-DNA ends. For the remaining plant DNA/T-DNA junctions, up to 51-bp-long filler sequences were present between plant DNA and T-DNA contiguous sequences. These filler segments are built from several short sequence motifs, identical to sequence blocks that occur in the T-DNA ends and/or the plant DNA close to the integration site. Mutual microhomologies among the sequence motifs that constitute a filler segment were frequently observed. When T-DNA integration and DSB repair were compared, the most conspicuous difference was the frequency and the structural organization of the filler insertions. In Arabidopsis, no filler insertions were found at DSB repair junctions. In maize (Zea mays) and tobacco (Nicotiana tabacum), DSB repair-associated filler was normally composed of simple, uninterrupted sequence blocks. Thus, although DSB repair and T-DNA integration are probably closely related, both mechanisms have some exclusive and specific characteristics.
Collapse
Affiliation(s)
- Pieter Windels
- Department of Plant Genetics and Breeding, Center of Agricultural Research-Gent, Caritasstraat 21, B-9090 Melle, Belgium
| | | | | | | | | |
Collapse
|
30
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
31
|
Aufsatz W, Mette MF, van der Winden J, Matzke AJM, Matzke M. RNA-directed DNA methylation in Arabidopsis. Proc Natl Acad Sci U S A 2002; 99 Suppl 4:16499-506. [PMID: 12169664 PMCID: PMC139914 DOI: 10.1073/pnas.162371499] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In plants, double-stranded RNA that is processed to short RNAs approximately 21-24 nt in length can trigger two types of epigenetic gene silencing. Posttranscriptional gene silencing, which is related to RNA interference in animals and quelling in fungi, involves targeted elimination of homologous mRNA in the cytoplasm. RNA-directed DNA methylation involves de novo methylation of almost all cytosine residues within a region of RNA-DNA sequence identity. RNA-directed DNA methylation is presumed to be responsible for the methylation observed in protein coding regions of posttranscriptionally silenced genes. Moreover, a type of transcriptional gene silencing and de novo methylation of homologous promoters in trans can occur if a double-stranded RNA contains promoter sequences. Although RNA-directed DNA methylation has been described so far only in plants, there is increasing evidence that RNA can also target genome modifications in other organisms. To understand how RNA directs methylation to identical DNA sequences and how changes in chromatin configuration contribute to initiating or maintaining DNA methylation induced by RNA, a promoter double-stranded RNA-mediated transcriptional gene silencing system has been established in Arabidopsis. A genetic analysis of this system is helping to unravel the relationships among RNA signals, DNA methylation, and chromatin structure.
Collapse
Affiliation(s)
- Werner Aufsatz
- Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, A-5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
32
|
Ditt RF, Nester EW, Comai L. Plant gene expression response to Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2001; 98:10954-9. [PMID: 11535836 PMCID: PMC58580 DOI: 10.1073/pnas.191383498] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2001] [Indexed: 11/18/2022] Open
Abstract
To elucidate the nature of plant response to infection and transformation by Agrobacterium tumefaciens, we compared the cDNA-amplified fragment length polymorphism (AFLP) pattern of Agrobacterium- and mock-inoculated Ageratum conyzoides plant cell cultures. From 16,000 cDNA fragments analyzed, 251 (1.6%) were differentially regulated (0.5% down-regulated) 48 h after cocultivation with Agrobacterium. From 75 strongly regulated fragments, 56 were already regulated 24 h after cocultivation. Sequence similarities were obtained for 20 of these fragments, and reverse transcription-PCR analysis was carried out with seven to confirm their cDNA-AFLP differential pattern. Their sequence similarities suggest a role for these genes in signal perception, transduction, and plant defense. Reverse transcription-PCR analysis indicated that four genes involved in defense response are regulated in a similar manner by nonpathogenic bacteria, whereas one gene putatively involved in signal transduction appeared to respond more strongly to Agrobacterium. A nodulin-like gene was regulated only by Agrobacterium. These results demonstrate a rapid plant cell response to Agrobacterium infection, which overlaps a general response to bacteria but also has Agrobacterium-specific features.
Collapse
Affiliation(s)
- R F Ditt
- Department of Botany, University of Washington, Seattle, WA 98195-5325, USA
| | | | | |
Collapse
|
33
|
Cornelis K, Ritsema T, Nijsse J, Holsters M, Goethals K, Jaziri M. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:599-608. [PMID: 11332724 DOI: 10.1094/mpmi.2001.14.5.599] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhodococcus fascians is a plant-pathogenic bacterium that causes malformations on aerial plant parts, whereby leafy galls occur at axillary meristems. The colonization behavior on Nicotiana tabacum and Arabidopsis thaliana plants was examined. Independent of the infection methods, R. fascians extensively colonized the plant surface where the bacteria were surrounded by a slime layer. R. fascians caused the collapse of epidermal cells and penetrated intercellularly into the plant tissues. The onset of symptom development preceded the extensive colonization of the interior. The meristematic regions induced by pathogenic strain D188 were surrounded by bacteria. The nonpathogenic strain, D188-5, colonized the exterior of the plant equally well, but the linear plasmid (pFiD188) seemed to be involved in the penetration efficiency and colonization of tobacco tissues.
Collapse
Affiliation(s)
- K Cornelis
- Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Goethals K, Vereecke D, Jaziri M, Van Montagu M, Holsters M. Leafy gall formation by Rhodococcus fascians. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:27-52. [PMID: 11701858 DOI: 10.1146/annurev.phyto.39.1.27] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rhodococcus fascians infects a wide range of plants, initiating the formation of leafy galls that consist of centers of shoot amplification and shoot growth inhibition. R. fascians is an epiphyte but it also can establish endophytic populations. Bacterial signals involved in symptom development initiate de novo cell division and shoot meristem formation in differentiated tissues. The R. fascians signals exert activities that are distinct from mere cytokinin effects, and the evidence points to a process that adopted cytokinin biosynthetic enzymes to form derivatives with unique activity. Genes implicated in leafy gall formation are located on a linear plasmid and are subject to a highly controlling, complex regulatory network, integrating autoregulatory compounds and environmental signals. Leafy galls are considered as centers with specific metabolic features, a niche where populations of R. fascians experience a selective advantage. Such "metabolic habitat modification" might be universal for gall-inducing bacteria.
Collapse
Affiliation(s)
- K Goethals
- Vakgroep Moleculaire Genetica & Departement of Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie (VIB), Universiteit Gent, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | |
Collapse
|
35
|
Stone PJ, O'Callaghan KJ, Davey MR, Cocking EC. Azorhizobium caulinodans ORS571 colonizes the xylem of Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:93-97. [PMID: 11194878 DOI: 10.1094/mpmi.2001.14.1.93] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Improved conditions were used for the aseptic growth of Arabidopsis thaliana to investigate whether xylem colonization of A. thaliana by Azorhizobium caulinodans ORS571 might occur. When seedlings were inoculated with ORS571 (pXLGD4) tagged with the lacZ reporter gene, nearly all of the plants showed blue regions of ORS571 colonization at lateral root cracks (LRC). The flavonoids naringenin and liquiritigenin significantly stimulated colonization of LRC by ORS571. Blue bands of ORS571 (pXLGD4) bacteria were observed histochemically in the xylem of intact roots of inoculated plants. Detailed microscopic analysis of sections of primary and lateral roots from inoculated A. thaliana confirmed xylem colonization. Xylem colonization also occurred with an ORS571 nodC mutant deficient in nodulation factors. There was no significant difference in the percentage of plants with xylem colonization or in the mean length of xylem colonized per plant between plants inoculated with either ORS571 (pXLGD4) or ORS571::nodC (pXLGD4), with or without naringenin.
Collapse
Affiliation(s)
- P J Stone
- Centre for Crop Nitrogen Fixation, Plant Science Division, School of Biosciences, University of Nottingham, UK
| | | | | | | |
Collapse
|