1
|
Mensah EO, Oh H, Song J, Baek J. Exploring Imaging Techniques for Detecting Tomato Spotted Wilt Virus (TSWV) Infection in Pepper ( Capsicum spp.) Germplasms. PLANTS (BASEL, SWITZERLAND) 2024; 13:3447. [PMID: 39683240 DOI: 10.3390/plants13233447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Due to the vulnerability of pepper (Capsicum spp.) and the virulence of tomato spotted wilt virus (TSWV), seasonal shortages and surges of prices are a challenge and thus threaten household income. Traditional bioassays for detecting TSWV, such as observation for symptoms and reverse transcription-PCR, are time-consuming, labor-intensive, and sometimes lack precision, highlighting the need for a faster and more reliable approach to plant disease assessment. Here, two imaging techniques-Red-Green-Blue (RGB) and hyperspectral imaging (using NDVI and wavelength intensities)-were compared with a bioassay method to study the incidence and severity of TSWV in different pepper accessions. The bioassay results gave TSWV an incidence from 0 to 100% among the accessions, while severity ranged from 0 to 5.68% based on RGB analysis. The normalized difference vegetative index (NDVI) scored from 0.21 to 0.23 for healthy spots on the leaf but from 0.14 to 0.19 for disease spots, depending on the severity of the damage. The peak reflectance of the disease spots on the leaves was identified in the visible light spectrum (430-470 nm) when spectral bands were studied in the broad spectrum (400.93-1004.5 nm). For the selected wavelength in the visible light spectrum, a high reflectance intensity of 340 to 430 was identified for disease areas, but between 270 and 290 for healthy leaves. RGB and hyperspectral imaging techniques can be recommended for precise and accurate detection and quantification of TSWV infection.
Collapse
Affiliation(s)
- Eric Opoku Mensah
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
- CSIR-Plant Genetic Resources Research Institute (CSIR-PGRRI), Bunso P.O. Box 7, Ghana
| | - Hyeonseok Oh
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jiseon Song
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Jeongho Baek
- Gene Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
2
|
Plant Protection against Viruses: An Integrated Review of Plant Immunity Agents. Int J Mol Sci 2023; 24:ijms24054453. [PMID: 36901884 PMCID: PMC10002506 DOI: 10.3390/ijms24054453] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Plant viruses are an important class of pathogens that seriously affect plant growth and harm crop production. Viruses are simple in structure but complex in mutation and have thus always posed a continuous threat to agricultural development. Low resistance and eco-friendliness are important features of green pesticides. Plant immunity agents can enhance the resilience of the immune system by activating plants to regulate their metabolism. Therefore, plant immune agents are of great importance in pesticide science. In this paper, we review plant immunity agents, such as ningnanmycin, vanisulfane, dufulin, cytosinpeptidemycin, and oligosaccharins, and their antiviral molecular mechanisms and discuss the antiviral applications and development of plant immunity agents. Plant immunity agents can trigger defense responses and confer disease resistance to plants, and the development trends and application prospects of plant immunity agents in plant protection are analyzed in depth.
Collapse
|
3
|
Tomato zonate spot virus induced hypersensitive resistance via an auxin-related pathway in pepper. Gene 2022; 823:146320. [PMID: 35218893 DOI: 10.1016/j.gene.2022.146320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/28/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022]
Abstract
Tomato zonate spotvirus (TZSV) often incurs significant losses in many food and ornamental crops in Yunnan province, China, and the surrounding areas. The pepper (Capsicum chinensePI152225)can develop hypersensitive resistance following infection with TZSV, through an as yet unknown mechanism. The transcriptome dataset showed a total of 45.81 GB of clean data were obtained from six libraries, and the average percentage of the reads mapped to the pepper genome was over 90.00 %. A total of 1403 differentially expressed genes (DEGs) were obtained after TZSV infection, including 825significantly up-regulated genes and 578 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that most up-regulated DEGs were involved in basal defenses. RT-qPCR, and virus induced gene silencing (VIGS) were used preliminarily to identifyBBC_22506 and BBC_18917, among total of 71 differentially expressed genes (DEGs), that play a key role in mediating the auxin-induced signaling pathway that might take part in hypersensitive response (HR) conferred resistance to viral infection in pepper (PI152225) byTZSV. This is the first study on the mechanism of auxin resistance, involved in defense responses of pepper against viral diseases, which lay the foundation for further study on the pathogenic mechanism of TZSV, as well as the mechanism of resistance to TZSV, in peppers.
Collapse
|
4
|
Qi S, Shen Y, Wang X, Zhang S, Li Y, Islam MM, Wang J, Zhao P, Zhan X, Zhang F, Liang Y. A new NLR gene for resistance to Tomato spotted wilt virus in tomato (Solanum lycopersicum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1493-1509. [PMID: 35179614 DOI: 10.1007/s00122-022-04049-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
A typical NLR gene, Sl5R-1, which regulates Tomato spotted wilt virus resistance, was fine mapped to a region less than 145 kb in the tomato genome. Tomato spotted wilt is a viral disease caused by Tomato spotted wilt virus (TSWV), which is a devastating disease that affects tomato (Solanum lycopersicum) production worldwide, and the resistance provided by the Sw-5 gene has broken down in some cases. In order to identify additional genes that confer resistance to TSWV, the F2 population was mapped using susceptible (M82) and resistant (H149) tomato lines. After 3 years of mapping, the main quantitative trait locus on chromosome 05 was narrowed to a genomic region of 145 kb and was subsequently identified by the F2 population, with 1971 plants in 2020. This region encompassed 14 candidate genes, and in it was found a gene cluster consisting of three genes (Sl5R-1, Sl5R-2, and Sl5R-3) that code for NBS-LRR proteins. The qRT-PCR and virus-induced gene silencing approach results confirmed that Sl5R-1 is a functional resistance gene for TSWV. Analysis of the Sl5R-1 promoter region revealed that there is a SlTGA9 transcription factor binding site caused by a base deletion in resistant plants, and its expression level was significantly up-regulated in infected resistant plants. Analysis of salicylic acid (SA) and jasmonic acid (JA) levels and the expression of SA- and JA-regulated genes suggest that SlTGA9 interacts or positively regulates Sl5R-1 to affect the SA- and JA-signaling pathways to resist TSWV. These results demonstrate that the identified Sl5R-1 gene regulates TSWV resistance by its own promoter interacting with the transcription factor SlTGA9.
Collapse
Affiliation(s)
- Shiming Qi
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Shijie Zhang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yushun Li
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Md Monirul Islam
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Xianyang, 712100, Shaanxi, China.
- State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources and Genetic Improvement, Northwest A&F University, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Kwon SJ, Cho YE, Byun HS, Kwak HR, Seo JK. A multiplex RT-PCR assay for detection of emergent pepper Tsw resistance-breaking variants of tomato spotted wilt virus in South Korea. Mol Cell Probes 2022; 61:101792. [PMID: 35041994 DOI: 10.1016/j.mcp.2022.101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/03/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
Tomato spotted wilt virus (TSWV) is a highly destructive virus for pepper. Introgression of the resistance gene Tsw in pepper is used to manage TSWV worldwide; however, the occurrence of Tsw resistance-breaking (RB) variants threatens the pepper industry. Here, we developed a multiplex reverse-transcription PCR assay for detection of recently emerged Tsw RB variants in South Korea with high specificity and sensitivity.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Young-Eun Cho
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Hee-Seong Byun
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea; Department of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
6
|
Kwon SJ, Cho YE, Kwon OH, Kang HG, Seo JK. Resistance-Breaking Tomato Spotted Wilt Virus Variant that Recently Occurred in Pepper in South Korea is a Genetic Reassortant. PLANT DISEASE 2021; 105:2771-2775. [PMID: 33973809 DOI: 10.1094/pdis-01-21-0205-sc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a destructive viral pathogen in various crops, including pepper. Although the single dominant gene Tsw has been utilized in pepper breeding to confer resistance to TSWV, the occurrence of TSWV variants that overcome Tsw-mediated resistance has been reported in various countries after several years of growing resistant cultivars. In this study, we determined the complete genome sequence of a resistance-breaking TSWV variant (TSWV-YI) that recently emerged in pepper in South Korea. TSWV-YI infected all of the resistant pepper cultivars tested. The phylogenetic and recombination analyses of the complete TSWV-YI genome sequence showed that it is a reassortant that acquired its L and M RNA segments from the existing South Korean TSWV population and its S RNA in an isolate from another country. Given that TSWV-YI is a resistance-breaking variant, it appears that reassortment of the S RNA led to the emergence of this variant that breaks the Tsw gene in pepper grown in South Korea. Our results suggest that resistance-breaking TSWV variants are a potential threat to pepper production in South Korea and that strategies to manage these variants should be developed to ensure sustainable pepper production.
Collapse
Affiliation(s)
- Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Young-Eun Cho
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - Oh-Hun Kwon
- Yeongyang Pepper Research Institute, Gyeongsangbukdo Agricultural Research and Extension Service, Yeongyang 36532, Republic of Korea
| | - Hyung-Gon Kang
- Yongin City Agricultural Technology Center, Yongin 17167, Republic of Korea
| | - Jang-Kyun Seo
- Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
7
|
Kabaş A, Fidan H, Batuhan Demirelli M. Identification of new sources of resistance to resistance-breaking isolates of tomato spotted wilt virus. Saudi J Biol Sci 2021; 28:3094-3099. [PMID: 34025184 PMCID: PMC8117038 DOI: 10.1016/j.sjbs.2021.02.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
The tomato as both a fresh consumption and industrial product is one of the most profitable vegetables and has a large cultivation area in the world. Parallel to intense production activities, Tomato Spotted Wilt Virus (TSWV), like viral diseases, results in significant economic losses every year. Use of resistant cultivars is the most efficient and environmental-friendly method of fighting against these diseases. This study was conducted to develop new tomato genetic resources resistant to TSWV because of the Sw-5 resistance breaking (RB) isolates that were determined in tomato cultivation areas. In this study, a total of 40 tomato materials including 15 lines, 9 commercial varieties and 16 wild genotypes were by tested with molecular and biological testing methods. Mechanical inoculation method was used for biological testing and SCAR marker was used in molecular analysis. S. penellii, S. chmielewski, S. habrochaites, S. peruvianum and S. sitiens, LA0716, LA1028, LA1777, LA2744 and LA4110 genotypes were found as resistant against breaking isolates of Tomato Spotted Wilt Virus. These genotypes may be a good resistance source for the future breeding studies in tomato.
Collapse
Affiliation(s)
- Aylin Kabaş
- Akdeniz University, Manavgat Vocational School, Antalya, Turkey
| | - Hakan Fidan
- Akdeniz University, Faculty of Agriculture, Department of Plant Protection, Antalya, Turkey
| | - M. Batuhan Demirelli
- Antalya Agriculture Production Consultancy and Marketting Company, Antalya, Turkey
| |
Collapse
|
8
|
Parisi M, Alioto D, Tripodi P. Overview of Biotic Stresses in Pepper ( Capsicum spp.): Sources of Genetic Resistance, Molecular Breeding and Genomics. Int J Mol Sci 2020; 21:E2587. [PMID: 32276403 PMCID: PMC7177692 DOI: 10.3390/ijms21072587] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Pepper (Capsicum spp.) is one of the major vegetable crops grown worldwide largely appreciated for its economic importance and nutritional value. This crop belongs to the large Solanaceae family, which, among more than 90 genera and 2500 species of flowering plants, includes commercially important vegetables such as tomato and eggplant. The genus includes over 30 species, five of which (C. annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens) are domesticated and mainly grown for consumption as food and for non-food purposes (e.g., cosmetics). The main challenges for vegetable crop improvement are linked to the sustainable development of agriculture, food security, the growing consumers' demand for food. Furthermore, demographic trends and changes to climate require more efficient use of plant genetic resources in breeding programs. Increases in pepper consumption have been observed in the past 20 years, and for maintaining this trend, the development of new resistant and high yielding varieties is demanded. The range of pathogens afflicting peppers is very broad and includes fungi, viruses, bacteria, and insects. In this context, the large number of accessions of domesticated and wild species stored in the world seed banks represents a valuable resource for breeding in order to transfer traits related to resistance mechanisms to various biotic stresses. In the present review, we report comprehensive information on sources of resistance to a broad range of pathogens in pepper, revisiting the classical genetic studies and showing the contribution of genomics for the understanding of the molecular basis of resistance.
Collapse
Affiliation(s)
- Mario Parisi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| | - Daniela Alioto
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, 80055 Portici, Naples, Italy;
| | - Pasquale Tripodi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, Italy;
| |
Collapse
|
9
|
Terret-Welter Z, Bonnet G, Moury B, Gallois JL. Analysis of tomato spotted wilt virus RNA-dependent RNA polymerase adaptative evolution and constrained domains using homology protein structure modelling. J Gen Virol 2020; 101:334-346. [PMID: 31958051 DOI: 10.1099/jgv.0.001380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tomato spotted wilt virus (TSWV; genus Orthotospovirus, family Tospoviridae) has a huge impact on a large range of plants worldwide. In this study, we determined the sequence of the large (L) RNA segment that encodes the RNA-dependent RNA polymerase (RdRp) from a TSWV isolate (LYE51) collected in the south of France. Analysis of the phylogenetic relationships of TSWV-LYE51 with other TSWV isolates shows that it is closely related to other European isolates. A 3D model of TSWV-LYE51 RdRp was built by homology with the RdRp structure of the La Crosse virus (genus Orthobunyavirus, family Peribunyaviridae). Finally, an analysis of positive and negative selection was carried out on 30 TSWV full-length RNA L sequences and compared with the phylogeny and the protein structure data. We showed that the seven codons that are under positive selection are distributed all along the RdRp gene. By contrast, the codons associated with negative selection are especially concentrated in three highly constrained domains: the endonuclease in charge of the cap-snatching mechanism, the thumb domain and the mid domain. Those three domains could constitute good candidates to look for host targets on which genetic resistance by loss of susceptibility could be developed.
Collapse
Affiliation(s)
- Zoé Terret-Welter
- Syngeta Seeds SAS, 346 Route des Pasquiers - F84260 Sarrians, France
- GAFL, INRA, Montfavet, France
| | - Grégori Bonnet
- Syngeta Seeds SAS, 346 Route des Pasquiers - F84260 Sarrians, France
| | - Benoit Moury
- INRA, UR407 Pathologie Végétale, 84140, Montfavet, France
| | | |
Collapse
|
10
|
Zhu M, van Grinsven IL, Kormelink R, Tao X. Paving the Way to Tospovirus Infection: Multilined Interplays with Plant Innate Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:41-62. [PMID: 30893008 DOI: 10.1146/annurev-phyto-082718-100309] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tospoviruses are among the most important plant pathogens and cause serious crop losses worldwide. Tospoviruses have evolved to smartly utilize the host cellular machinery to accomplish their life cycle. Plants mount two layers of defense to combat their invasion. The first one involves the activation of an antiviral RNA interference (RNAi) defense response. However, tospoviruses encode an RNA silencing suppressor that enables them to counteract antiviral RNAi. To further combat viral invasion, plants also employ intracellular innate immune receptors (e.g., Sw-5b and Tsw) to recognize different viral effectors (e.g., NSm and NSs). This leads to the triggering of a much more robust defense against tospoviruses called effector-triggered immunity (ETI). Tospoviruses have further evolved their effectors and can break Sw-5b-/Tsw-mediated resistance. The arms race between tospoviruses and both layers of innate immunity drives the coevolution of host defense and viral genes involved in counter defense. In this review, a state-of-the-art overview is presented on the tospoviral life cycle and the multilined interplays between tospoviruses and the distinct layers of defense.
Collapse
Affiliation(s)
- Min Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | - Irene Louise van Grinsven
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
11
|
|
12
|
|
13
|
Venkatesh J, An J, Kang WH, Jahn M, Kang BC. Fine Mapping of the Dominant Potyvirus Resistance Gene Pvr7 Reveals a Relationship with Pvr4 in Capsicum annuum. PHYTOPATHOLOGY 2018; 108:142-148. [PMID: 28945517 DOI: 10.1094/phyto-07-17-0231-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pepper mottle virus (PepMoV) is the most common potyvirus infection of pepper plants and causes significant yield losses. The Pvr7 gene from Capsicum chinense PI159236 and the Pvr4 gene from C. annuum CM334 both have been reported to confer dominant resistance to PepMoV. The Pvr7 locus conferring resistance to PepMoV in C. annuum '9093' was previously mapped to chromosome 10. To develop a high-resolution map of the Pvr7 locus in 9093, we constructed an intraspecific F2 mapping population consisting of 916 individuals by crossing PepMoV-resistant C. annuum '9093' and the PepMoV-susceptible C. annuum 'Jeju'. To delimit the Pvr7 target region, single-nucleotide polymorphism (SNP) markers derived from the Pvr4 region were used for genotyping the F2 population. Molecular mapping delimited the Pvr7 locus to a physical interval of 258 kb, which was the same region as Pvr4 on chromosome 10. Three SNP markers derived from Pvr4 mapping perfectly cosegregated with PepMoV resistance. Sequencing analyses of the Pvr7 flanking markers and the Pvr4-specific gene indicated that Pvr7 and Pvr4 are the same gene. Resistance spectrum analysis of 9093 against pepper potyviruses showed that 9093 has a resistance spectrum similar to that of cultivar CM334. These combined results demonstrate that, unlike previously thought, the dominant PepMoV resistance in 9093 could be derived from C. annuum 'CM334', and that Pvr4 and Pvr7 should be considered as the same locus.
Collapse
Affiliation(s)
- Jelli Venkatesh
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Jeongtak An
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Won-Hee Kang
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Molly Jahn
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| | - Byoung-Cheorl Kang
- First, second, third, and fifth authors: Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Korea; and fourth author: Department of Agronomy, College of Agriculture and Life Sciences, University of Wisconsin-Madison
| |
Collapse
|
14
|
Almási A, Nemes K, Csömör Z, Tóbiás I, Palkovics L, Salánki K. A single point mutation in Tomato spotted wilt virus NSs protein is sufficient to overcome Tsw-gene-mediated resistance in pepper. J Gen Virol 2017. [PMID: 28631603 DOI: 10.1099/jgv.0.000798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The nonstructural protein (NSs) of Tomato spotted wilt virus (TSWV) was previously identified as an avirulence determinant for Tsw-based resistance on pepper. The NSs of wild-type (WT) and resistance-breaking (RB) TSWV strains isolated in Hungary had only two amino acid substitutions (104, 461). We have analysed the ability of the NSs and their point mutant variants to trigger Tsw-mediated hypersensitive responses and RNA silencing suppressor (RSS) activity in patch assays. We identified a single amino acid change at position 104 (T-A) that was responsible for the necrosis induction or loss, while a significant difference was not detected in the RSS activity of the two parental strains. We have successfully complemented the infection of the WT strain on resistant pepper cultivar with the infectious S RNA transcript of the RB strain and the WT-T104A point mutant. Our work provides direct evidence that a single amino acid change can induce an RB phenotype.
Collapse
Affiliation(s)
- Asztéria Almási
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| | - Katalin Nemes
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| | - Zsófia Csömör
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary.,Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, H-1118 Ménesi str. 44, Budapest, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| | - László Palkovics
- Department of Plant Pathology, Faculty of Horticultural Science, Szent István University, H-1118 Ménesi str. 44, Budapest, Hungary
| | - Katalin Salánki
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1022 Herman Ottó str. 15, Budapest, Hungary
| |
Collapse
|
15
|
Kim SB, Kang WH, Huy HN, Yeom SI, An JT, Kim S, Kang MY, Kim HJ, Jo YD, Ha Y, Choi D, Kang BC. Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp. THE NEW PHYTOLOGIST 2017; 213:886-899. [PMID: 27612097 DOI: 10.1111/nph.14177] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/31/2016] [Indexed: 05/11/2023]
Abstract
Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.
Collapse
Affiliation(s)
- Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Hoang Ngoc Huy
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seon-In Yeom
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 660-701, Korea
| | - Jeong-Tak An
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Min-Young Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hyun Jung Kim
- Department of Eco-Friendly Horticulture, Cheonan Yonam College, Cheonan, 331-709, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
- Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Yeaseong Ha
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
16
|
De Oliveira AS, Koolhaas I, Boiteux LS, Caldararu OF, Petrescu A, Oliveira Resende R, Kormelink R. Cell death triggering and effector recognition by Sw-5 SD-CNL proteins from resistant and susceptible tomato isolines to Tomato spotted wilt virus. MOLECULAR PLANT PATHOLOGY 2016; 17:1442-1454. [PMID: 27271212 PMCID: PMC6638320 DOI: 10.1111/mpp.12439] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell-to-cell movement protein (NSM ) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw-5b-mediated resistance, a dominant resistance gene which belongs to the class of SD-CC-NB-LRR (Solanaceae domain-coiled coil-nucleotide-binding-leucine-rich repeat, SD-CNL) resistance genes. On transient expression of the NSM protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw-5b gene, a hypersensitive cell death response (HR) is triggered. Here, it is shown that high accumulation of the Sw-5b protein in N. benthamiana leaves, achieved by co-expression of the Sw-5b protein with RNA silencing suppressors (RSSs), leads to auto-activity in the absence of NSM . In a similar approach, Sw-5a, the highest conserved paralogue of Sw-5b from Solanum peruvianum, also triggered HR by auto-activation, whereas the highest conserved orthologue from susceptible S. lycopersicum, named Sw-5aS , did not. However, neither of the last two homologues was able to trigger an NSM -dependent HR. Truncated and mutated versions of these Sw-5 proteins revealed that the NB-ARC [nucleotide-binding adaptor shared by Apaf-1 (from humans), R proteins and CED-4 (from nematodes)] domain is sufficient for the triggering of HR and seems to be suppressed by the SD-CC domain. Furthermore, a single mutation was sufficient to restore auto-activity within the NB-ARC domain of Sw-5aS . When the latter domain was fused to the Sw-5b LRR domain, NSM -dependent HR triggering was regained, but not in the presence of its own Sw-5aS LRR domain. Expression analysis in planta revealed a nucleocytoplasmic localization pattern of Sw-5b, in which the SD-CC domain seems to be required for nuclear translocation. Although the Sw-5 N-terminal CC domain, in contrast with Rx, contains an additional SD, most findings from this study support a conserved role of domains within NB-LRR (NLR) proteins against plant viruses.
Collapse
Affiliation(s)
- Athos Silva De Oliveira
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
- Department of Cell Biology, Institute of Biological SciencesUniversity of Brasília (UnB)Asa Norte 70910‐900BrasíliaDFBrazil
| | - Ivo Koolhaas
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| | | | - Octav F. Caldararu
- Department of Bioinformatics and Structural BiochemistryInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060036Romania
| | - Andrei‐Jose Petrescu
- Department of Bioinformatics and Structural BiochemistryInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060036Romania
| | - Renato Oliveira Resende
- Department of Cell Biology, Institute of Biological SciencesUniversity of Brasília (UnB)Asa Norte 70910‐900BrasíliaDFBrazil
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| |
Collapse
|
17
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
18
|
Debreczeni DE, López C, Aramburu J, Darós JA, Soler S, Galipienso L, Falk BW, Rubio L. Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain. Arch Virol 2015; 160:2117-23. [PMID: 26026956 DOI: 10.1007/s00705-015-2453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
Tomato spotted wilt virus (TSWV) occurs worldwide and causes production losses in many important horticultural crops such as tomato and pepper. Breeding resistant cultivars has been the most successful method so far for TSWV disease control, but only two genes have been found to confer resistance against a wide spectrum of TSWV isolates: Sw-5 in tomato and Tsw in pepper. However, TSWV resistance-breaking isolates have emerged in different countries a few years after using resistant cultivars. In this paper, we report the first complete nucleotide sequences of three Spanish TSWV isolates with different biotypes according to their abilities to overcome resistance: LL-N.05 (wild type, WT), Pujol1TL3 (Sw-5 resistance breaking, SBR) and PVR (Tsw resistance-breaking, TBR). The genome of these TSWV isolates consisted of three segments: L (8913-8914 nt), M (4752-4825 nt) and (S 2924-2961 nt). Variations in nucleotide sequences and genomic RNA lengths among the different virus biotypes are reported here. Phylogenetic analysis of the five TSWV open reading frames showed evidence of reassortment between genomic segments of LL-N.05 and Pujol1TL3, which was supported by analysis with different recombination-detecting algorithms.
Collapse
Affiliation(s)
- Diana E Debreczeni
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yazhisai U, Rajagopalan PA, Raja JAJ, Chen TC, Yeh SD. Untranslatable tospoviral NSs fragment coupled with L conserved region enhances transgenic resistance against the homologous virus and a serologically unrelated tospovirus. Transgenic Res 2015; 24:635-49. [PMID: 25721329 DOI: 10.1007/s11248-015-9865-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
Abstract
Tospoviruses cause severe damages to important crops worldwide. In this study, Nicotiana benthamiana transgenic lines carrying individual untranslatable constructs comprised of the conserved region of the L gene (denoted as L), the 5' half of NSs coding sequence (NSs) or the antisense fragment of whole N coding sequence (N) of Watermelon silver mottle virus (WSMoV), individually or in combination, were generated. A total of 15-17 transgenic N. benthamiana lines carrying individual transgenes were evaluated against WSMoV and the serologically unrelated Tomato spotted wilt virus (TSWV). Among lines carrying single or chimeric transgenes, the level of resistance ranged from susceptible to completely resistant against WSMoV. From the lines carrying individual transgenes and highly resistant to WSMoV (56-63% of lines assayed), 30% of the L lines (3/10 lines assayed) and 11% of NSs lines (1/9 lines assayed) were highly resistant against TSWV. The chimeric transgenes provided higher degrees of resistance against WSMoV (80-88%), and the NSs fragment showed an additive effect to enhance the resistance to TSWV. Particularly, the chimeric transgenes with the triple combination of fragments, namely L/NSs/N or HpL/NSs/N (a hairpin construct), provided a higher degree of resistance (both 50%, with 7/14 lines assayed) against TSWV. Our results indicate that the untranslatable NSs fragment is able to enhance the transgenic resistance conferred by the L conserved region. The better performance of L/NSs/N and HpL/NSs/N in transgenic N. benthamiana lines suggests their potential usefulness in generating high levels of enhanced transgenic resistance against serologically unrelated tospoviruses in agronomic crops.
Collapse
Affiliation(s)
- Uthaman Yazhisai
- Department of Plant Pathology, College of Agriculture and Natural Resource, National Chung Hsing University, 250-Kuo-Kuang Road, Taichung, 40227, Taiwan, ROC
| | | | | | | | | |
Collapse
|
20
|
Margaria P, Ciuffo M, Rosa C, Turina M. Evidence of a tomato spotted wilt virus resistance-breaking strain originated through natural reassortment between two evolutionary-distinct isolates. Virus Res 2015; 196:157-61. [DOI: 10.1016/j.virusres.2014.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 02/03/2023]
|
21
|
Phylogenetic analysis of Tomato spotted wilt virus (TSWV) NSs protein demonstrates the isolated emergence of resistance-breaking strains in pepper. Virus Genes 2014; 50:71-8. [DOI: 10.1007/s11262-014-1131-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
|
22
|
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:307. [PMID: 25018765 PMCID: PMC4073217 DOI: 10.3389/fpls.2014.00307] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 05/17/2023]
Abstract
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Patrick Butterbach
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
23
|
Phylogenetic analysis of New Zealand tomato spotted wilt virus isolates suggests likely incursion history scenarios and mechanisms for population evolution. Arch Virol 2014; 159:993-1003. [PMID: 24232914 DOI: 10.1007/s00705-013-1909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
Abstract
Tomato spotted wilt virus (TSWV) is an internationally significant pathogen with a wide host range, vectored by thrips. We have studied the sequence variation and evolutionary mechanisms at play in parts of the L, M and S subgenomes of 23 New Zealand TSWV isolates collected between 1992 and 2009, aiming to identify the possible geographic origins of isolates. Maximum-likelihood-based phylogenetic analyses of New Zealand and overseas TSWV isolates placed the L and M subgenome sequences of two isolates (MAF04 and PFR04) in distinct clades composed primarily of Korean, Japanese and Chinese isolates, in contrast to the remaining 21 isolates, which clustered with a cosmopolitan group of isolates. The nucleocapsid (N) gene sequences of MAF04 and PFR04 plus MAF02 clustered with Japanese isolates. Consequently, we postulate that these isolates may represent a distinct incursion into New Zealand, but we do not have enough evidence to indicate an incursion pathway. Alternately, these isolates may have arrived with an incursion that included a mixture of TSWV isolates of diverse international origins. The sequences of four of the TSWV isolates contained a number of sites with a mixture of nucleotides, suggesting that these isolates either consisted of several sequence variants or were from plants with mixed infections. One isolate (MAF02) was shown to be a either a reassortant or an S subgenome recombinant. Large amounts of low-level polymorphism were detected with low amino acid change fixation rates (purifying selection). Negative selection was indicated at four amino acid sites in the New Zealand TSWV N gene sequences.
Collapse
|
24
|
Peng JC, Chen TC, Raja JAJ, Yang CF, Chien WC, Lin CH, Liu FL, Wu HW, Yeh SD. Broad-spectrum transgenic resistance against distinct tospovirus species at the genus level. PLoS One 2014; 9:e96073. [PMID: 24811071 PMCID: PMC4014477 DOI: 10.1371/journal.pone.0096073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/02/2014] [Indexed: 11/18/2022] Open
Abstract
Thrips-borne tospoviruses cause severe damage to crops worldwide. In this investigation, tobacco lines transgenic for individual WLm constructs containing the conserved motifs of the L RNA-encoded RNA-dependent RNA polymerase (L) gene of Watermelon silver mottle virus (WSMoV) were generated by Agrobacterium-mediated transformation. The WLm constructs included: (i) translatable WLm in a sense orientation; (ii) untranslatable WLmt with two stop codons; (iii) untranslatable WLmts with stop codons and a frame-shift; (iv) untranslatable antisense WLmA; and (v) WLmhp with an untranslatable inverted repeat of WLm containing the tospoviral S RNA 3'-terminal consensus sequence (5'-ATTGCTCT-3') and an NcoI site as a linker to generate a double-stranded hairpin transcript. A total of 46.7-70.0% transgenic tobacco lines derived from individual constructs showed resistance to the homologous WSMoV; 35.7-100% plants of these different WSMoV-resistant lines exhibited broad-spectrum resistance against four other serologically unrelated tospoviruses Tomato spotted wilt virus, Groundnut yellow spot virus, Impatiens necrotic spot virus and Groundnut chlorotic fan-spot virus. The selected transgenic tobacco lines also exhibited broad-spectrum resistance against five additional tospoviruses from WSMoV and Iris yellow spot virus clades, but not against RNA viruses from other genera. Northern analyses indicated that the broad-spectrum resistance is mediated by RNA silencing. To validate the L conserved region resistance in vegetable crops, the constructs were also used to generate transgenic tomato lines, which also showed effective resistance against WSMoV and other tospoviruses. Thus, our approach of using the conserved motifs of tospoviral L gene as a transgene generates broad-spectrum resistance against tospoviruses at the genus level.
Collapse
Affiliation(s)
- Jui-Chu Peng
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Division of Crop Environment, Tainan District Agricultural Research and Extension Station, COA, Tainan, Taiwan
| | - Tsung-Chi Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Joseph A. J. Raja
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ching-Fu Yang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Chu Chien
- NCHU-UCD Plant and Food Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chen-Hsuan Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Fang-Lin Liu
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Wen Wu
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Abstract
The number of virus species infecting pepper (Capsicum spp.) crops and their incidences has increased considerably over the past 30 years, particularly in tropical and subtropical pepper production systems. This is probably due to a combination of factors, including the expansion and intensification of pepper cultivation in these regions, the increased volume and speed of global trade of fresh produce (including peppers) carrying viruses and vectors to new locations, and perhaps climate change expanding the geographic range suitable for the viruses and vectors. With the increased incidences of diverse virus species comes increased incidences of coinfection with two or more virus species in the same plant. There is then greater chance of synergistic interactions between virus species, increasing symptom severity and weakening host resistance, as well as the opportunity for genetic recombination and component exchange and a possible increase in aggressiveness, virulence, and transmissibility. The main virus groups infecting peppers are transmitted by aphids, whiteflies, or thrips, and a feature of many populations of these vector groups is that they can develop resistance to some of the commonly used insecticides relatively quickly. This, coupled with the increasing concern over the impact of over- or misuse of insecticides on the environment, growers, and consumers, means that there should be less reliance on insecticides to control the vectors of viruses infecting pepper crops. To improve the durability of pepper crop protection measures, there should be a shift away from the broadscale use of insecticides and the use of single, major gene resistance to viruses. Instead, integrated and pragmatic virus control measures should be sought that combine (1) cultural practices that reduce sources of virus inoculum and decrease the rate of spread of viruliferous vectors into the pepper crop, (2) synthetic insecticides, which should be used judiciously and only when the plants are young and most susceptible to infection, (3) appropriate natural products and biocontrol agents to induce resistance in the plants, affect the behavior of the vector insects, or augment the local populations of parasites or predators of the virus vectors, and (4) polygenic resistances against viruses and vector insects with pyramided single-gene virus resistances to improve resistance durability.
Collapse
|
26
|
Taki A, Yamagishi N, Yoshikawa N. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res 2013; 176:251-8. [PMID: 23850843 DOI: 10.1016/j.virusres.2013.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/19/2022]
Abstract
Apple latent spherical virus (ALSV) is characterized by its relatively broad host range, latency in most host plants, and ability to induce gene silencing in host plants. Herein, we focus on the above characteristic of ALSV and describe our development of ALSV vector vaccines against three tospoviruses, namely, Impatiens necrotic spot virus (INSV), Iris yellow spot virus (IYSV), and Tomato spotted wilt virus (TSWV). DNA fragments of 201 nt of three tospovirus S-RNAs (silencing suppressor (NSS) and nucleocapsid protein (N) coding regions for each tospovirus) were inserted into an ALSV-RNA2 vector to obtain six types of ALSV vector vaccines. Nicotiana benthamiana plants at the five-leaf stage were inoculated with each ALSV vector vaccine and challenged with the corresponding tospovirus species. Tospovirus-induced symptoms and tospovirus replication after challenge were significantly suppressed in plants preinoculated with all ALSV vector vaccines having the N region fragment, indicating that strong resistance was acquired after infection with ALSV vector vaccines. On the other hand, cross protection was not significant in plants preinoculated with ALSV vectors having the NSs region fragment. Similarly, inoculation with an ALSV-RNA1 vector having the N region fragment in the 3'-noncoding region, but not the NSs region fragment, induced cross protection, indicating that cross protection is via RNA silencing, not via the function of the protein derived from the N region fragment. Our approach, wherein ALSV vectors and selected target inserts are used, enables rapid establishment of ALSV vector vaccines against many pathogenic RNA viruses with known sequences.
Collapse
Affiliation(s)
- Ayano Taki
- Faculty of Agriculture, Iwate University, Ueda 3-18-8, Morioka 020-8550, Japan
| | | | | |
Collapse
|
27
|
de Ronde D, Butterbach P, Lohuis D, Hedil M, van Lent JWM, Kormelink R. Tsw gene-based resistance is triggered by a functional RNA silencing suppressor protein of the Tomato spotted wilt virus. MOLECULAR PLANT PATHOLOGY 2013; 14:405-15. [PMID: 23360130 PMCID: PMC6638720 DOI: 10.1111/mpp.12016] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
As a result of contradictory reports, the avirulence (Avr) determinant that triggers Tsw gene-based resistance in Capsicum annuum against the Tomato spotted wilt virus (TSWV) is still unresolved. Here, the N and NSs genes of resistance-inducing (RI) and resistance-breaking (RB) isolates were cloned and transiently expressed in resistant Capsicum plants to determine the identity of the Avr protein. It was shown that the NSs(RI) protein triggered a hypersensitive response (HR) in Tsw-containing Capsicum plants, but not in susceptible Capsicum, whereas no HR was discerned after expression of the N(RI) (/) (RB) protein, or when NSs(RB) was expressed. Although NSs(RI) was able to suppress the silencing of a functional green fluorescence protein (GFP) construct during Agrobacterium tumefaciens transient assays on Nicotiana benthamiana, NSs(RB) had lost this capacity. The observation that RB isolates suppressed local GFP silencing during an infection indicated a recovery of RNA silencing suppressor activity for the NSs protein or the presence of another RNA interference (RNAi) suppressor. The role of NSs as RNA silencing suppressor and Avr determinant is discussed in the light of a putative interplay between RNAi and the natural Tsw resistance gene.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Scientific Opinion on the risk to plant health posed by Tomato spotted wilt virus to the EU territory with identification and evaluation of risk reduction options. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Peters SA, Bargsten JW, Szinay D, van de Belt J, Visser RGF, Bai Y, de Jong H. Structural homology in the Solanaceae: analysis of genomic regions in support of synteny studies in tomato, potato and pepper. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:602-14. [PMID: 22463056 DOI: 10.1111/j.1365-313x.2012.05012.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have analysed the structural homology in euchromatin regions of tomato, potato and pepper with special attention for the long arm of chromosome 2 (2L). Molecular organization and colinear junctions were delineated using multi-color BAC FISH analysis and comparative sequence alignment. We found large-scale rearrangements including inversions and segmental translocations that were not reported in previous comparative studies. Some of the structural rearrangements are specific for the tomato clade, and differentiate tomato from potato, pepper and other Solanaceous species. Although local gene vicinity is largely preserved, there are many small-scale synteny perturbations. Gene adjacency in the aligned segments was frequently disrupted for 47% of the ortholog pairs as a result of gene and LTR retrotransposon insertions, and occasionally by single gene inversions and translocations. Our data also suggests that long distance intra-chromosomal rearrangements and local gene rearrangements have evolved frequently during speciation in the Solanum genus, and that small changes are more prevalent than large-scale differences. The occurrence of sonata and harbinger transposable elements and other repeats near or at junction breaks is considered in the light of repeat-mediated rearrangements and a reconstruction scenario for an ancestral 2L topology is discussed.
Collapse
Affiliation(s)
- Sander A Peters
- Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Abstract
Tospoviruses are among the most serious threats to vegetable crops in the Mediterranean basin. Tospovirus introduction, spread, and the diseases these viruses cause have been traced by epidemiological case studies. Recent research has centered on the close relationship between tospoviruses and their arthropod vectors (species of the Thripidae family). Here, we review several specific features of tospovirus-thrips associations in the Mediterranean. Since the introduction of Frankliniella occidentalis in Europe, Tomato spotted wilt virus (TSWV) has become one of the limiting factors for vegetable crops such as tomato, pepper, and lettuce. An increasing problem is the emergence of TSWV resistance-breaking strains that overcome the resistance genes in pepper and tomato. F. occidentalis is also a vector of Impatiens necrotic spot virus, which was first observed in the Mediterranean basin in the 1980s. Its importance as a cause of vegetable crop diseases is limited to occasional incidence in pepper and tomato fields. A recent introduction is Iris yellow spot virus, transmitted by the onion thrips Thrips tabaci, in onion and leek crops. Control measures in vegetable crops specific to Mediterranean conditions were examined in the context of their epidemiological features and tospovirus species which could pose a future potential risk for vegetable crops in the Mediterranean were discussed.
Collapse
|
32
|
Using small RNA sequences to diagnose, sequence, and investigate the infectivity characteristics of vegetable-infecting viruses. Arch Virol 2011; 156:1209-16. [PMID: 21448740 DOI: 10.1007/s00705-011-0979-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
In a virus-infected plant, small interfering RNAs (siRNAs) corresponding to the viral genome form a large proportion of the small RNA population. It is possible to reassemble significant portions of the virus sequence from overlapping siRNA sequences and use these to identify the virus. We tested this technique with a resistance-breaking and a non-resistance-breaking strain of tomato spotted wilt virus (TSWV). We were able to assemble contigs covering 99% of the genomes of both viruses. The abundance of TSWV siRNAs allowed us to detect TSWV at early time points before the onset of symptoms, at levels too low for conventional detection. Combining traditional and bioinformatic detection methods, we also measured how replication of the resistance-breaking strain differed from the non-resistance-breaking strain in susceptible and resistant tomato varieties. We repeated this technique in identification of a squash-infecting geminivirus and also used it to identify an unspecified tospovirus.
Collapse
|
33
|
Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar JM, Moury B. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. J Gen Virol 2010; 92:961-73. [DOI: 10.1099/vir.0.029082-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
34
|
López C, Aramburu J, Galipienso L, Soler S, Nuez F, Rubio L. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J Gen Virol 2010; 92:210-5. [PMID: 20881087 DOI: 10.1099/vir.0.026708-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) causes severe economic losses in many crops worldwide and often overcomes resistant cultivars used for disease control. Comparison of nucleotide and amino acid sequences suggested that tomato resistance conferred by the gene Sw-5 can be overcome by the amino acid substitution C to Y at position 118 (C118Y) or T120N in the TSWV movement protein, NSm. Phylogenetic analysis revealed that substitution C118Y has occurred independently three times in the studied isolates by convergent evolution, whereas the substitution T120N was a unique event. Analysis of rates of non-synonymous and synonymous changes at individual codons showed that substitution C118Y was positively selected.
Collapse
Affiliation(s)
- Carmelo López
- COMAV-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Kim HJ, Han JH, Kwon JK, Park M, Kim BD, Choi D. Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum L. CM334. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1099-106. [PMID: 20033390 DOI: 10.1007/s00122-009-1237-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/30/2009] [Indexed: 05/09/2023]
Abstract
Trichomes are present on nearly all land plants and protect plants against insect herbivores, drought and UV radiation. The trichome-bearing phenotype is conferred by the dominant allele of the pepper trichome locus 1 (Ptl1) in Capsicum annuum, Mexican 'Criollo de Morelos-334' (CM334). A genetic analysis using simple sequence repeats from pepper cDNA identified the HpmsE031 marker as tightly linked to Ptl1 in 653 individuals of an F(2) population derived from a cross between CM334 and Chilsungcho varieties. A bacterial artificial chromosome (BAC) library from CM334 covering 12x of the genome was screened using the HpmsE031 SSR marker as a probe and three BAC clones were identified. The Ptl1 region was covered by one 80 kb BAC clone, TT1B7. Fluorescence in situ hybridization (FISH) confirmed that TT1B7 localized to pepper chromosome 10. One co-dominant marker, Tco, and one dominant marker, Tsca, were successfully developed from the TT1B7 BAC sequence. Tco mapped 0.33 cM up from Ptl1 and Tsca mapped 0.75 cM down from Ptl1. Analysis of the BAC sequence predicts the presence of 14 open reading frames including 60S ribosomal protein L21-like protein (Solanum demissum), protein kinase 2 (Nicotiana tabacum), hypothetical proteins, and unnamed protein products. These results will provide not only useful information for map-based cloning of Ptl1 in Capsicum but also the starting points for analysis of R-gene cluster inked with Ptl1.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Plant Sciences, Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, South Korea
| | | | | | | | | | | |
Collapse
|
36
|
Li W, Lewandowski DJ, Hilf ME, Adkins S. Identification of domains of the Tomato spotted wilt virus NSm protein involved in tubule formation, movement and symptomatology. Virology 2009; 390:110-21. [PMID: 19481775 DOI: 10.1016/j.virol.2009.04.027] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 04/19/2009] [Accepted: 04/28/2009] [Indexed: 11/18/2022]
Abstract
Deletion and alanine-substitution mutants of the Tomato spotted wilt virus NSm protein were generated to identify domains involved in tubule formation, movement and symptomatology using a heterologous Tobacco mosaic virus expression system. Two regions of NSm, G(19)-S(159) and G(209)-V(283), were required for both tubule formation in protoplasts and cell-to-cell movement in plants, indicating a correlation between these activities. Three amino acid groups, D(154), EYKK(205-208) and EEEEE(284-288) were linked with long-distance movement in Nicotiana benthamiana. EEEEE(284-288) was essential for NSm-mediated long-distance movement, whereas D(154) was essential for tubule formation and cell-to-cell movement; indicating separate genetic controls for cell-to-cell and long-distance movement. The region I(57)-N(100) was identified as the determinant of foliar necrosis in Nicotiana benthamiana, and mutagenesis of HH(93-94) greatly reduced necrosis. These findings are likely applicable to other tospovirus species, especially those within the 'New World' group as NSm sequences are highly conserved.
Collapse
Affiliation(s)
- Weimin Li
- University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | | | | | | |
Collapse
|
37
|
Lovato FA, Inoue-Nagata AK, Nagata T, de Avila AC, Pereira LAR, Resende RO. The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 2008; 137:245-52. [PMID: 18722487 DOI: 10.1016/j.virusres.2008.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 07/13/2008] [Accepted: 07/20/2008] [Indexed: 11/30/2022]
Abstract
In sweet pepper, the Tsw gene, originally described in Capsicum chinense, has been widely used as an efficient gene for inducing a hypersensitivity response (HR) derived Tomato spotted wilt virus (TSWV) resistance. Since previously reported studies suggested that the TSWV-S RNA mutation(s) are associated with the breakdown of Tsw mediated TSWV resistance in peppers, the TSWV genes N (structural nucleocapsid protein) and NS(S) (non-structural silencing suppressor protein) were cloned into a Potato virus X (PVX)-based expression vector, and inoculated into the TSWV-resistant C. chinense genotype, PI 159236, to identify the Tsw-HR viral elicitor. Typical HR-like chlorotic and necrotic lesions followed by leaf abscission were observed only in C. chinense plants inoculated with the PVX-N construct. Cytopathological analyses of these plants identified fragmented genomic DNA, indicative of programmed cell death (PCD), in mesophyll cell nuclei surrounding PVX-N-induced necrotic lesions. The other constructs induced only PVX-like symptoms without HR-like lesions and there were no microscopic signs of PCD. The mechanism of TSWV N-gene HR induction is apparently species specific as the N gene of a related tospovirus, Tomato chlorotic spot virus, was not a HR elicitor and did not cause PCD in infected cells.
Collapse
|
38
|
Lin KH, Lo HF, Lee SP, George Kuo C, Chen JT, Yeh WL. RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 2007; 143:142-54. [PMID: 17362348 DOI: 10.1111/j.2006.0018-0661.01938.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Tomato production is limited to a large extent by climates with high temperatures. Yield-related traits in tomatoes are generally thought to be quantitative inherited traits that are significantly affected by variation in environmental factors. Breeding for heat tolerance is restricted due to the complexity of the traits. The objective of this study was to identify random amplified polymorphic DNA (RAPD) markers linked to heat-tolerance traits in tomatoes under heat stress. Forty-three F(7) recombinant inbred lines (RILs) derived from a wild cross between CL 5915 (heat-tolerant) and L4422 (heat-sensitive) were obtained and scored for flower number, fruit number, fruit set, fruit weight and yield under screen house conditions during the hot (summer) season of 2003. The distributions of average fruit weight, fruit number, fruit set and yield in the F(7) population were strongly skewed towards heat susceptibility, characteristic of L4422. Significant positive correlation was observed between fruit weight and yield, and between fruit number, fruit set and yield. However, the increase in yield and fruit set by selecting for large flower number may be fairly minor due to non-significant correlation between these traits. Selecting for flower number may not be a useful tool for improving yield under heat stress. A total of 200 RAPD primers were screened, among which 14 were identified as associated with heat-tolerance using bulk segregant analysis (BSA) based on the F(7) population grown in a heat-stressed environment. Some RAPD markers were unique to one specific trait, and others were linked to two traits. All markers for heat tolerance related traits had positive gene effects as a result of the contribution of the CL5915 gene that bolstered these traits. One hundred F(2) plants derived from the same parents (CL5915xL4422) were grown in the same location during the summer of 2004 to test for the stability and reliability of the 14 markers identified. Selection for the desired heat-tolerance genotypes corresponded well with targeting heat tolerance traits using the selected heat tolerance RAPD markers identified. Marker-assisted selection (MAS) for heat tolerance may be efficiently conducted by selecting individuals that contain high fruit number, high fruit weight, and high yield markers (P06, X01, D06 and D11), which would thus facilitate conventional breeding using CL5915 as a donor parent.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Horticulture, Chinese Culture University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
39
|
Margaria P, Ciuffo M, Pacifico D, Turina M. Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:547-58. [PMID: 17506332 DOI: 10.1094/mpmi-20-5-0547] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
All known pepper cultivars resistant to Tomato spotted wilt virus (TSWV) possess a single dominant resistance gene, Tsw. Recently, naturally occurring resistance-breaking (RB) TSWV strains have been identified, causing major concerns. We used a collection of such strains to identify the specific genetic determinant that allows the virus to overcome the Tsw gene in Capsicum spp. A reverse genetic approach is still not feasible for TSWV; therefore, we analyzed reassortants between wild-type (WT) and RB strains. Our results confirmed that the S RNA, which encodes both the nucleocapsid protein (N) and a nonstructural protein (NSs), carries the genetic determinant responsible for Tsw resistance breakdown. We then used full-length S RNA segments or the proteins they encode to compare the sequences of WT and related RB strains, and obtained indirect evidence that the NSs protein is the avirulence factor in question. Transient expression of NSs protein from WT and RB strains showed that they both can equally suppress post-transcriptional gene silencing (PTGS). Moreover, biological characterization of two RB strains carrying deletions in the NSs protein showed that NSs is important in maintaining TSWV infection in newly emerging leaves over time, preventing recovery. Analysis of another RB strain phenotype allowed us to conclude that local necrotic response is not sufficient for resistance in Capsicum spp. carrying the Tsw gene.
Collapse
Affiliation(s)
- P Margaria
- Istituto di Virologia Vegetale, Sez. di Torino, CNR, Strada delle Cacce 73, Torino 10135, Italy
| | | | | | | |
Collapse
|
40
|
Djian-Caporalino C, Lefebvre V, Sage-Daubèze AM, Palloix A. Capsicum. GENETIC RESOURCES, CHROMOSOME ENGINEERING, AND CROP IMPROVEMENT 2006. [DOI: 10.1201/9781420009569.ch6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Sharman M, Persley DM. Field isolates of Tomato spotted wilt virusovercoming resistance in capsicum in Australia. AUSTRALASIAN PLANT PATHOLOGY 2006; 35:123. [PMID: 0 DOI: 10.1071/ap06014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
42
|
Accotto GP, Nervo G, Acciarri N, Tavella L, Vecchiati M, Schiavi M, Mason G, Vaira AM. Field Evaluation of Tomato Hybrids Engineered with Tomato spotted wilt virus Sequences for Virus Resistance, Agronomic Performance, and Pollen-Mediated Transgene Flow. PHYTOPATHOLOGY 2005; 95:800-807. [PMID: 18943013 DOI: 10.1094/phyto-95-0800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Tomato hybrids obtained from homozygous progeny of line 30-4, engineered for Tomato spotted wilt virus (TSWV) resistance, were tested under field conditions in two locations with their corresponding nontransgenic hybrids. No transgenic hybrid became infected, but 33 to 50% of plants of each nontransgenic hybrid became infected with a severe reduction of marketable fruit production. The transgenic hybrids conformed to the standard agronomic characteristics of the corresponding nontransgenic ones. Fruit were collected from the nontransgenic plots included in the experimental field and from border rows, and seed were used to estimate the flow of the transgene via pollen. No transgene flow was detected in the protected crops; however, in the open field experiment, 0.32% of tomato seedlings were found to contain the genetic modification. Immunity to TSWV infection in 30-4 hybrids was confirmed in laboratory conditions using mechanical inoculation and grafting. Thrips inoculation in leaf discs of line 30-4 demonstrated that TSWV replication was inhibited at the primary infection site but not in leaf discs of a commercial hybrid containing the naturally occurring resistance gene Sw-5. Due to the high economic value of tomato crops worldwide and the importance of TSWV, the engineered resistance described here is of practical value for breeding into cultivars of commercial interest, because it could be combined with naturally occurring resistance, thus greatly reducing the ability of the virus to develop resistance-breaking strains.
Collapse
|
43
|
Sin SH, McNulty BC, Kennedy GG, Moyer JW. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci U S A 2005; 102:5168-73. [PMID: 15753307 PMCID: PMC552972 DOI: 10.1073/pnas.0407354102] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tomato spotted wilt virus (TSWV) is transmitted exclusively by thrips in nature. A reassortment-based viral genetic system was used to map transmissibility by thrips to the medium (M) RNA of TSWV. To locate determinants of thrips transmission in the M RNA, 30 single-lesion isolates (SLIs) were generated from a single TSWV isolate that was inefficiently transmitted by thrips. Three of the 30 SLIs were transmitted by thrips, and 27 were not. Sequence analysis of the M RNA, thrips transmissibility assays, G(C) protein analysis, and transmission electron microscopic studies revealed that a specific nonsynonymous mutation (C1375A) in the G(N)/G(C) ORF of the M RNA resulted in the loss of thrips transmissibility without inhibition of virion assembly. This was in contrast to other nontransmissible SLIs, which had frameshift and/or nonsense mutations in the G(N)/G(C) ORF but were defective in virion assembly. The G(C) glycoprotein was detectable in the C1375A mutants but not in the frameshift or nonsense mutants. We report a specific viral determinant associated with virus transmission by thrips. In addition, the loss of transmissibility was associated with the accumulation of defective haplotypes in the population, which are not transmissible by thrips, rather than with the presence of a dominant haplotype that is inefficiently transmitted by thrips. These results also indicate that the glycoproteins may not be required for TSWV infection of plant hosts but are required for transmissibility by thrips.
Collapse
Affiliation(s)
- Sang-Hoon Sin
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
44
|
Decroocq V, Foulongne M, Lambert P, Gall OL, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J. Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genomics 2005; 272:680-9. [PMID: 15666162 DOI: 10.1007/s00438-004-1099-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 11/26/2004] [Indexed: 11/26/2022]
Abstract
Plum pox virus (PPV), the causative agent of sharka disease in Prunoideae, is one of the most serious problems affecting stone fruit production in Europe and America. Resistance to PPV was previously described in a Prunus davidiana clone, P1908, and introduced into peach (Prunus persica) genotypes. Genetic resistance to PPV displays a complex pattern of quantitative inheritance. An analysis of quantitative trait loci (QTLs) for resistance was performed on an F1 interspecific peach population obtained from a cross between the susceptible nectarine cultivar Summergrand and P. davidiana. The hybrids were graft-inoculated with PPV in duplicate following a classical procedure. The incidence of infection was evaluated four times, over two vegetative cycles, by symptom observation and enzyme-linked immunoadsorbent assays (ELISA). Restriction of systemic downward movement of the PPV virus was also evaluated by testing the susceptible rootstocks. Using both analysis of variance and non-parametric tests, six genomic regions involved in PPV resistance were detected. Depending on the scoring data considered, between 22 and 51% of the phenotypic variance could be explained by the quantitative model. One QTL, located in the distal region of linkage group 1, maps in a genomic region that is syntenic to the location of a resistance gene previously identified in the apricot cv. Goldrich. Some QTLs appeared to be temporally specific, reflecting the environmental dependence of PPV-resistance scoring. Candidate gene fragments were amplified by PCR, isolated and mapped on the peach interspecific linkage map. We report here the co-localization of three analogues of virus resistance genes with two distinct genomic regions linked to PPV resistance in P. davidiana.
Collapse
Affiliation(s)
- V Decroocq
- INRA Centre de Bordeaux, IBVM, UMR GDPP, Virology, BP81, 33883 Villenave d'Ornon, France.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Genetic resistance to plant viruses has been used for at least 80 years to control agricultural losses to viral diseases. To date, hundreds of naturally occurring genes for resistance to plant viruses have been reported from studies of both monocot and dicot crops, their wild relatives, and the plant model, Arabidopsis. The isolation and characterization of a few of these genes in the past decade have resulted in detailed knowledge of some of the molecules that are critical in determining the outcome of plant viral infection. In this chapter, we have catalogued genes for resistance to plant viruses and have summarized current knowledge regarding their identity and inheritance. Insofar as information is available, the genetic context, genomic organization, mechanisms of resistance and agricultural deployment of plant virus resistance genes are also discussed.
Collapse
Affiliation(s)
- Byoung-Cheorl Kang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
46
|
Thabuis A, Palloix A, Pflieger S, Daubèze AM, Caranta C, Lefebvre V. Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 106:1473-85. [PMID: 12750791 DOI: 10.1007/s00122-003-1206-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2002] [Accepted: 09/25/2002] [Indexed: 05/20/2023]
Abstract
Phytophthora capsici Leonian, known as the causal agent of the stem, collar and root rot, is one of the most serious problems limiting the pepper crop in many areas in the world. Genetic resistance to the parasite displays complex inheritance. Quantitative trait locus (QTL) analysis was performed in three intraspecific pepper populations, each involving an unrelated resistant accession. Resistance was evaluated by artificial inoculations of roots and stems, allowing the measurement of four components involved in different steps of the plant-pathogen interaction. The three genetic maps were aligned using common markers, which enabled the detection of QTLs involved in each resistance component and the comparison of resistance factors existing among the three resistant accessions. The major resistance factor was found to be common to the three populations. Another resistance factor was found conserved between two populations, the others being specific to a single cross. This comparison across intraspecific germplasm revealed a large variability for quantitative resistance loci to P. capsici. It also provided insights both into the allelic relationships between QTLs across pepper germplasm and for the comparative mapping of resistance factors across the Solanaceae.
Collapse
Affiliation(s)
- A Thabuis
- INRA, Genetics and Breeding of Fruits and Vegetables, BP 94, 84143 Montfavet cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Maris PC, Joosten NN, Peters D, Goldbach RW. Thrips Resistance in Pepper and Its Consequences for the Acquisition and Inoculation of Tomato spotted wilt virus by the Western Flower Thrips. PHYTOPATHOLOGY 2003; 93:96-101. [PMID: 18944162 DOI: 10.1094/phyto.2003.93.1.96] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
ABSTRACT Different levels of thrips resistance were found in seven Capsicum accessions. Based on the level of feeding damage, host preference, and host suitability for reproduction, a thrips susceptible and a resistant accession were selected to study their performance as Tomato spotted wilt virus (TSWV) sources and targets during thrips-mediated virus transmission. Vector resistance did not affect the virus acquisition efficiency in a broad range of acquisition access periods. Inoculation efficiency was also not affected in short inoculation periods, but was significantly lower on plants of the thrips resistant accession during longer inoculation access periods. Under the experimental conditions used, the results obtained show that transmission of TSWV is little affected by vector resistance. However, due to a lower reproduction rate on resistant plants and a lower preference of thrips for these plants, beneficial effects of vector resistance might be expected under field conditions.
Collapse
|
48
|
Roggero P, Masenga V, Tavella L. Field Isolates of Tomato spotted wilt virus Overcoming Resistance in Pepper and Their Spread to Other Hosts in Italy. PLANT DISEASE 2002; 86:950-954. [PMID: 30818554 DOI: 10.1094/pdis.2002.86.9.950] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Isolates of Tomato spotted wilt virus (TSWV) severely and systemically infecting commercial pepper cultivars with resistance introgressed from Capsicum chinense PI152225 were found in Albenga (northwestern Italy) in July 2000. Experimentally, these resistance-breaking (RB) isolates overcame the resistance in C. chinense PI152225, but they produced infection in other hosts similarly to non-RB isolates from the same area. The RB isolates were indistinguishable from TSWV by serology and electron microscopy, and they were efficiently transmitted by Frankliniella occidentalis. Such isolates were recovered on the same farm in tomato, pepper, and artichoke 2 and 12 months later, suggesting natural spread from the resistant plants and survival. The RB isolates survived in experimental mixed infections with a non-RB isolate in susceptible pepper and C. chinense, but cross-protection in pepper acted against them. Commercial TSWV-resistant pepper but not resistant tomato cultivars from different companies were susceptible to these RB isolates after mechanical inoculation. Similar isolates were not detected among TSWV samples collected from 1993 to 2000 in the area. The management of TSWV and thrips using resistant pepper cultivars is discussed.
Collapse
Affiliation(s)
- Piero Roggero
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Vera Masenga
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, I-10135 Torino, Italy
| | - Luciana Tavella
- Di.Va.P.R.A. Entomologia e Zoologia applicate all' Ambiente "C. Vidano", Università, Via L. da Vinci 44, I-10095 Grugliasco, Torino, Italy
| |
Collapse
|
49
|
Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:629-638. [PMID: 11332727 DOI: 10.1094/mpmi.2001.14.5.629] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Xanthomonas campestris pv. vesicatoria is the causal agent of bacterial spot disease on pepper (Capsicum spp.) and tomato (Lycopersicon spp.). Analysis of 17 different Lycopersicon accessions with avrBs4-expressing X. campestris pv. vesicatoria strains identified 15 resistant and two susceptible tomato genotypes. Genetic analysis revealed that AvrBs4 recognition in tomato is governed by a single locus, designated Bs4 (bacterial spot resistance locus no. 4). Amplified fragment length polymorphism and bulked DNA templates from resistant and susceptible plants were used to define a 2.6-cM interval containing the Bs4 locus. A standard tomato mapping population was employed to localize Bs4-linked markers on the short arm of chromosome 5. Investigation of X. campestris pv. vesicatoria hrp mutant strains revealed that AvrBs4 secretion and avirulence activity are hrp dependent. Agrobacterium-based delivery of the avrBs4 gene into tomato triggered a plant response that phenotypically resembled the hypersensitive response induced by avrBs4-expressing X. campestris pv. vesicatoria strains, suggesting symplastic perception of the avirulence protein. Mutations in the avrBs4 C-terminal nuclear localization signals (NLSs) showed that NLSs are dispensable for Bs4-mediated recognition. Our data suggest that tomato Bs4 and pepper Bs3 employ different recognition modes for detection of the highly homologous X. campestris pv. vesicatoria avirulence proteins AvrBs4 and AvrBs3.
Collapse
Affiliation(s)
- A Ballvora
- Centre National de la Recherche Scientifique, Institut des Sciences Végétales, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Hoffmann K, Qiu WP, Moyer JW. Overcoming host- and pathogen-mediated resistance in tomato and tobacco maps to the M RNA of Tomato spotted wilt virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:242-9. [PMID: 11204788 DOI: 10.1094/mpmi.2001.14.2.242] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A viral genetic system was used to map the determinants of the ability of Tomato spotted wilt virus (TSWV) to overcome the R gene (Sw-5) in tomato and the resistance conferred by the nucleocapsid gene of TSWV (N gene) in tobacco. A complete set of reassortant genotypes was generated from TSWV isolates A and D. TSWV-A was able to overcome the Sw-5 gene in tomato and the TSWV N gene in tobacco, whereas TSWV-D was repressed by both forms of resistance. The ability to overcome both forms of resistance was associated with the M RNA segment of TSWV-A (M(A)). Overcoming the Sw-5 gene was linked solely to the presence of M(A), and the ability of M(A) to overcome the TSWV N gene was modified by the L RNA and the S RNA of TSWV-A, which is consistent with previous reports that suggest that the nucleocapsid gene is not the primary determinant for overcoming the nucleocapsid-mediated resistance. Sequence analysis of the M RNA segment of TSWV-A, -D, and the type isolate BR-01 revealed multiple differences in the coding and noncoding regions, which prevented identification of the resistance-breaking nucleotide sequences.
Collapse
Affiliation(s)
- K Hoffmann
- Department of Virology, DLO Research Institute for Plant Protection (IPO-DLO), Wageningen, The Netherlands
| | | | | |
Collapse
|