1
|
Fan K, Ferguson BJ, Muñoz NB, Li MW, Lam HM. Editorial: Metabolic adjustments and gene expression reprogramming for symbiotic nitrogen fixation in legume nodules, volume II. FRONTIERS IN PLANT SCIENCE 2023; 14:1141269. [PMID: 36760634 PMCID: PMC9903052 DOI: 10.3389/fpls.2023.1141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Kejing Fan
- Center for Soybean Research of The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Brett James Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD, Australia
| | | | - Man-Wah Li
- Center for Soybean Research of The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Center for Soybean Research of The State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Ghantasala S, Roy Choudhury S. Nod factor perception: an integrative view of molecular communication during legume symbiosis. PLANT MOLECULAR BIOLOGY 2022; 110:485-509. [PMID: 36040570 DOI: 10.1007/s11103-022-01307-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Compatible interaction between rhizobial Nod factors and host receptors enables initial recognition and signaling events during legume-rhizobia symbiosis. Molecular communication is a new paradigm of information relay, which uses chemical signals or molecules as dialogues for communication and has been witnessed in prokaryotes, plants as well as in animal kingdom. Understanding this fascinating relay of signals between plants and rhizobia during the establishment of a synergistic relationship for biological nitrogen fixation represents one of the hotspots in plant biology research. Predominantly, their interaction is initiated by flavonoids exuding from plant roots, which provokes changes in the expression profile of rhizobial genes. Compatible interactions promote the secretion of Nod factors (NFs) from rhizobia, which are recognised by cognate host receptors. Perception of NFs by host receptors initiates the symbiosis and ultimately leads to the accommodation of rhizobia within root nodules via a series of mutual exchange of signals. This review elucidates the bacterial and plant perspectives during the early stages of symbiosis, explicitly emphasizing the significance of NFs and their cognate NF receptors.
Collapse
Affiliation(s)
- Swathi Ghantasala
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India
| | - Swarup Roy Choudhury
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, 517507, India.
| |
Collapse
|
3
|
Li RJ, Zhang CX, Fan SY, Wang YH, Wen J, Mysore KS, Xie ZP, Staehelin C. The Medicago truncatula hydrolase MtCHIT5b degrades Nod factors of Sinorhizobium meliloti and cooperates with MtNFH1 to regulate the nodule symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034230. [PMID: 36466271 PMCID: PMC9712974 DOI: 10.3389/fpls.2022.1034230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. In Medicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors of Sinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b of M. truncatula expressed in Escherichia coli can release lipodisaccharides from Nod factors. Analysis of M. truncatula mutant plants indicated that MtCHIT5b, together with MtNFH1, degrades S. meliloti Nod factors in the rhizosphere. MtCHIT5b expression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of a MtCHIT5b knockout mutant was not significantly altered whereas overexpression of MtCHIT5b resulted in fewer nodules. Reduced nodulation was observed when MtCHIT5b and MtNFH1 were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation of M. truncatula is regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1.
Collapse
Affiliation(s)
- Ru-Jie Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chun-Xiao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng-Yao Fan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yi-Han Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiangqi Wen
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kirankumar S. Mysore
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proc Natl Acad Sci U S A 2021; 118:2111031118. [PMID: 34716271 PMCID: PMC8612216 DOI: 10.1073/pnas.2111031118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/21/2021] [Indexed: 01/31/2023] Open
Abstract
Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.
Collapse
|
5
|
Malolepszy A, Kelly S, Sørensen KK, James EK, Kalisch C, Bozsoki Z, Panting M, Andersen SU, Sato S, Tao K, Jensen DB, Vinther M, Jong ND, Madsen LH, Umehara Y, Gysel K, Berentsen MU, Blaise M, Jensen KJ, Thygesen MB, Sandal N, Andersen KR, Radutoiu S. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. eLife 2018; 7:38874. [PMID: 30284535 PMCID: PMC6192697 DOI: 10.7554/elife.38874] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023] Open
Abstract
Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.
Collapse
Affiliation(s)
- Anna Malolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Christina Kalisch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael Panting
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Ke Tao
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dorthe Bødker Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene Heegaard Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette U Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mickael Blaise
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Knud Jørgen Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Zhang LY, Cai J, Li RJ, Liu W, Wagner C, Wong KB, Xie ZP, Staehelin C. A single amino acid substitution in a chitinase of the legume Medicago truncatula is sufficient to gain Nod-factor hydrolase activity. Open Biol 2017; 6:rsob.160061. [PMID: 27383628 PMCID: PMC4967823 DOI: 10.1098/rsob.160061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022] Open
Abstract
The symbiotic interaction between nitrogen-fixing rhizobia and legumes depends on lipo-chitooligosaccharidic Nod-factors (NFs). The NF hydrolase MtNFH1 of Medicago truncatula is a symbiotic enzyme that hydrolytically inactivates NFs with a C16 : 2 acyl chain produced by the microsymbiont Sinorhizobium meliloti 1021. MtNFH1 is related to class V chitinases (glycoside hydrolase family 18) but lacks chitinase activity. Here, we investigated the substrate specificity of MtNFH1-related proteins. MtCHIT5a and MtCHIT5b of M. truncatula as well as LjCHIT5 of Lotus japonicus showed chitinase activity, suggesting a role in plant defence. The enzymes failed to hydrolyse NFs from S. meliloti. NFs from Rhizobium leguminosarum with a C18 : 4 acyl moiety were neither hydrolysed by these chitinases nor by MtNFH1. Construction of chimeric proteins and further amino acid replacements in MtCHIT5b were performed to identify chitinase variants that gained the ability to hydrolyse NFs. A single serine-to-proline substitution was sufficient to convert MtCHIT5b into an NF-cleaving enzyme. MtNFH1 with the corresponding proline-to-serine substitution failed to hydrolyse NFs. These results are in agreement with a substrate-enzyme model that predicts NF cleavage when the C16 : 2 moiety is placed into a distinct fatty acid-binding cleft. Our findings support the view that MtNFH1 evolved from the ancestral MtCHIT5b by gene duplication and subsequent symbiosis-related neofunctionalization.
Collapse
Affiliation(s)
- Lan-Yue Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Jie Cai
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Ru-Jie Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Christian Wagner
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China
| | - Kam-Bo Wong
- Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Zhi-Ping Xie
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, People's Republic of China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, East Campus, Guangzhou 510006, People's Republic of China Shenzhen Research and Development Center of State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Baoan, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Antunes PM, Goss MJ. Communication in the Tripartite Symbiosis Formed by Arbuscular Mycorrhizal Fungi, Rhizobia and Legume Plants: A Review. ROOTS AND SOIL MANAGEMENT: INTERACTIONS BETWEEN ROOTS AND THE SOIL 2015. [DOI: 10.2134/agronmonogr48.c11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
The pleiotropic effects of extract containing rhizobial Nod factors on pea growth and yield. Open Life Sci 2014. [DOI: 10.2478/s11535-013-0277-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRhizobial lipochitooligosacharides (Nod factors) influence the development of legume roots, including growth stimulation, nodule induction and root hair curling. However, their effect on the green parts of plants is less known, therefore we evaluated seed and foliar application of an extract containing Nod factors on pea growth and yield. Pea plants were examined from emergence to full maturity, including growth dynamics and morphological (nodule number and weight, the quantity and surface area of leaves) or physiological (photosynthesis and transpiration intensity, chlorophyll and nitrogen content) parameters. The foliar application Nod factor extract, or seed dressing followed by foliar application, resulted in the best outcomes. The number and weight of root nodules, the chlorophyll content in leaves, and the intensity of net photosynthesis were all elevated. As a consequence of Nod factor treatment, the dynamics of dry mass accumulation of pea organs were improved and the pod number was increased. A significant increase in pea yield was observed after Nod factor application. Increase of nodule and pod numbers and improved growth of roots appear to be amongst the beneficial effects of Nod factor extract on the activation of secondary plant meristems.
Collapse
|
9
|
Ihara H, Hanashima S, Tsukamoto H, Yamaguchi Y, Taniguchi N, Ikeda Y. Difucosylation of chitooligosaccharides by eukaryote and prokaryote α1,6-fucosyltransferases. Biochim Biophys Acta Gen Subj 2013; 1830:4482-90. [PMID: 23688399 DOI: 10.1016/j.bbagen.2013.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND The synthesis of eukaryotic N-glycans and the rhizobia Nod factor both involve α1,6-fucosylation. These fucosylations are catalyzed by eukaryotic α1,6-fucosyltransferase, FUT8, and rhizobial enzyme, NodZ. The two enzymes have similar enzymatic properties and structures but display different acceptor specificities: FUT8 and NodZ prefer N-glycan and chitooligosaccharide, respectively. This study was conducted to examine the fucosylation of chitooligosaccharides by FUT8 and NodZ and to characterize the resulting difucosylated chitooligosaccharides in terms of their resistance to hydrolysis by glycosidases. METHODS The issue of whether FUT8 or NodZ catalyzes the further fucosylation of chitooligosaccharides that had first been monofucosylated by the other. The oligosaccharide products from the successive reactions were analyzed by normal-phase high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. The effect of difucosylation on sensitivity to glycosidase digestion was also investigated. RESULTS Both FUT8 and NodZ are able to further fucosylate the monofucosylated chitooligosaccharides. Structural analyses of the resulting oligosaccharides showed that the reducing terminal GlcNAc residue and the third GlcNAc residue from the non-reducing end are fucosylated via α1,6-linkages. The difucosylation protected the oligosaccharides from extensive degradation to GlcNAc by hexosamidase and lysozyme, and also even from defucosylation by fucosidase. CONCLUSIONS The sequential actions of FUT8 and NodZ on common substrates effectively produce site-specific-difucosylated chitooligosaccharides. This modification confers protection to the oligosaccharides against various glycosidases. GENERAL SIGNIFICANCE The action of a combination of eukaryotic and bacterial α1,6-fucosyltransferases on chitooligosaccharides results in the formation of difucosylated products, which serves to stabilize chitooligosaccharides against the action of glycosidases.
Collapse
Key Words
- COSY
- Chitooligosaccharide
- FUT8-monofucosylated chitooligosaccharide
- Fuc
- Fucosylation
- Fucosyltransferase
- GDP
- GN1
- GN2
- GN3
- GN4
- GN5
- GN6
- GNF
- GNFF′
- GNF′
- GlcNAc or N-acetylglucosamine
- Glycosidase
- HPLC
- HSQC
- Lysozyme
- MALDI
- MS
- N,N′,N″,N‴,N‴′,N‴″-hexaacetyl chitohexaose
- N,N′,N″,N‴,N‴′-pentaacetyl chitopentaose
- N,N′,N″,N‴-tetraacetyl chitotetraose
- N,N′,N″-triacetyl chitotriose
- N,N′-diacetyl chitobiose
- NMR
- NodZ-monofucosylated chitooligosaccharide
- TOCSY
- TOF
- correlation spectroscopy
- difucosylated chitooligosaccharide
- fucose
- guanine nucleotide diphosphate
- hetero-nuclear single quantum coherence
- high performance liquid chromatography
- mass spectrometry
- matrix-assisted laser desorption/ionization
- nuclear magnetic resonance
- time of flight
- total correlation spectroscopy
Collapse
Affiliation(s)
- Hideyuki Ihara
- Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Brzezinski K, Dauter Z, Jaskolski M. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:160-8. [PMID: 22281745 PMCID: PMC3266854 DOI: 10.1107/s0907444911053157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 12/09/2011] [Indexed: 12/27/2022]
Abstract
Rhizobial NodZ α1,6-fucosyltransferase (α1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5'-diphosphate-β-L-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signalling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two α1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of α1,6-FucT in complex with its substrate GDP-Fuc and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystal of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 Å resolution. The fucose residue is exposed to solvent and is disordered. The enzyme-product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-L-glucosamine (penta-NAG). The structure has been determined at 1.98 Å resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among α1,2-, α1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the loop located between strand βC2 and helix αC3. In addition, there is a shift of the αC3 helix itself upon GDP-Fuc binding.
Collapse
Affiliation(s)
- Krzysztof Brzezinski
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland
| |
Collapse
|
11
|
Tapia G, Morales-Quintana L, Inostroza L, Acuña H. Molecular characterisation of Ltchi7, a gene encoding a Class III endochitinase induced by drought stress in Lotus spp. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:69-77. [PMID: 21143727 DOI: 10.1111/j.1438-8677.2009.00311.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chitinases are enzymes that digest chitin molecules, present principally in insects and fungi. In plants, these enzymes play an important role in defence against pathogen attack, although they have also been described as induced by mechanical damage, ozone, heavy metals, cold, salinity, etc. Using an annealing control primer, we isolated a gene fragment whose translated sequence has high homology with a class III endochitinase. The gene, named Ltchi7, consisted of one ORF of 1005 bp, which codes for a peptide of 334 amino acids, including a deduced signal peptide of 27 amino acid that directs protein to the extracellular space. Phylogenetic analysis suggests that Ltchi7 is within a cluster that includes Sesbania rostrata, Medicago sativa and Glycine max class III endochitinases. This group is differentiated from other species of endochitinases by the presence of an additional extension in carboxy-terminal region. Moreover, in comparison with the majority of chitinases, Ltchi7 has two additional cysteine residues, which, according to 3D modelling studies, are very close. Gene expression analysis showed enhanced transcript abundance of this gene during drought stress in Lotus tenuis and Lotus japonicus, compared with growth under normal conditions. Furthermore, its expression is restricted to nodules and roots. Expression of this gene was also induced by salt stress, hydrogen peroxide and weakly with abscisic acid.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile.
| | | | | | | |
Collapse
|
12
|
Somers E, Vanderleyden J, Srinivasan M. Rhizosphere Bacterial Signalling: A Love Parade Beneath Our Feet. Crit Rev Microbiol 2008; 30:205-40. [PMID: 15646398 DOI: 10.1080/10408410490468786] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Plant roots support the growth and activities of a wide variety of microorganisms that may have a profound effect on the growth and/or health of plants. Among these microorganisms, a high diversity of bacteria have been identified and categorized as deleterious, beneficial, or neutral with respect to the plant. The beneficial bacteria, termed plant growth-promoting rhizobacteria (PGPR), are widely studied by microbiologists and agronomists because of their potential in plant production. Azospirillum, a genus of versatile PGPR, is able to enhance the plant growth and yield of a wide range of economically important crops in different soils and climatic regions. Plant beneficial effects of Azospirillum have mainly been attributed to the production of phytohormones, nitrate reduction, and nitrogen fixation, which have been subject of extensive research throughout the years. These elaborate studies made Azospirillum one of the best-characterized genera of PGPR. However, the genetic and molecular determinants involved in the initial interaction between Azospirillum and plant roots are not yet fully understood. This review will mainly highlight the current knowledge on Azospirillum plant root interactions, in the context of preceding and ongoing research on the association between plants and plant growth-promoting rhizobacteria.
Collapse
Affiliation(s)
- E Somers
- Centre of Microbial and Plant Genetics, K U Leuven, Heverlee, Belgium.
| | | | | |
Collapse
|
13
|
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EMH, Albrektsen AS, James EK, Thirup S, Stougaard J. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 2007; 26:3923-35. [PMID: 17690687 PMCID: PMC1994126 DOI: 10.1038/sj.emboj.7601826] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/18/2007] [Indexed: 11/08/2022] Open
Abstract
Legume-Rhizobium symbiosis is an example of selective cell recognition controlled by host/non-host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod-factor signal and that recognition depends on the structure of the lipochitin-oligosaccharide Nod-factor. We show that a single amino-acid variation in the LysM2 domain of NFR5 changes recognition of the Nod-factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin-oligosaccharide signal molecules.
Collapse
Affiliation(s)
- Simona Radutoiu
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Lene H Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Esben B Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Anna Jurkiewicz
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Eigo Fukai
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Esben M H Quistgaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Anita S Albrektsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Euan K James
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Søren Thirup
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark. Tel.: +45 89 42 50 11; Fax: +45 86 20 12 22; E-mail:
| |
Collapse
|
14
|
Tikhonovich IA, Provorov NA. Cooperation of plants and microorganisms: getting closer to the genetic construction of sustainable agro-systems. Biotechnol J 2007; 2:833-48. [PMID: 17506027 DOI: 10.1002/biot.200700014] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular research into two types of beneficial plant-microbe symbioses is reviewed: nutritional (with N(2)-fixing bacteria or mycorrhizal fungi) and defensive (with endo- and epiphytic microbes suppressing pathogens and phytophagans). These symbioses are based on the signaling interactions that result in the development of novel tissue/cellular structures and of extended metabolic capacities in the partners, which greatly improve the adaptive potential of plants due to a decrease in their sensitivity to biotic and abiotic stresses. The molecular, genetic and ecological knowledge on plant-microbe interactions provides a strategy for the organization of sustainable crop production based on substituting the agrochemicals (mineral fertilizers, pesticides) by microbial inoculants. An improvement of plant-microbe symbioses should involve the coordinated modifications in the partners' genotypes resulting in highly complementary combinations. These modifications should be based on the broad utilization of genetic resources from natural symbiotic systems aimed at: (i) increased competitiveness of the introduced (effective) with respect to local (ineffective) microbial strains, and (ii) overcoming the limiting steps in the metabolic machineries of the symbiotic systems.
Collapse
Affiliation(s)
- Igor A Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russia
| | | |
Collapse
|
15
|
Skorpil P, Broughton WJ. Molecular interactions between Rhizobium and legumes. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2006; 41:143-64. [PMID: 16623393 DOI: 10.1007/3-540-28221-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Peter Skorpil
- Laboratoire de Biologie Moléculaire des Plantes Supérieures (LBMPS), Sciences III, Université de Genève, 1212 Genève 4, Switzerland
| | | |
Collapse
|
16
|
Ovtsyna AO, Dolgikh EA, Kilanova AS, Tsyganov VE, Borisov AY, Tikhonovich IA, Staehelin C. Nod factors induce nod factor cleaving enzymes in pea roots. Genetic and pharmacological approaches indicate different activation mechanisms. PLANT PHYSIOLOGY 2005; 139:1051-64. [PMID: 16183850 PMCID: PMC1256017 DOI: 10.1104/pp.105.061705] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/14/2005] [Accepted: 06/19/2005] [Indexed: 05/04/2023]
Abstract
Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca(2+) levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by alpha-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway.
Collapse
Affiliation(s)
- Alexandra O Ovtsyna
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Pushkin
| | | | | | | | | | | | | |
Collapse
|
17
|
Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:201-62. [PMID: 15066376 DOI: 10.1016/s0074-7696(04)34005-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The N(2)-fixing nodules elicited by rhizobia on legume roots represent a useful model for studying plant development. Nodule formation implies a complex progression of temporally and spatially regulated events of cell differentiation/dedifferentiation involving several root tissues. In this review we describe the morphogenetic events leading to the development of these histologically well-structured organs. These events include (1) root hair deformation, (2) development and growth of infection threads, (3) induction of the nodule primordium, and (4) induction, activity, and persistence of the nodular meristem and/or of foci of meristematic activities. Particular attention is given to specific aspects of the symbiosis, such as the early stages of intracellular invasion and to differentiation of the intracellular form of rhizobia, called symbiosomes. These developmental aspects were correlated with (1) the regulatory signals exchanged, (2) the plant genes expressed in specific cell types, and (3) the staining procedures that allow the recognition of some cell types. When strictly linked with morphogenesis, the nodulation phenotypes of plant and bacterial mutants such as the developmental consequence of the treatment with metabolic inhibitors, metabolic intermediates, or the variation of physical parameters are described. Finally, some aspects of nodule senescence and of regulation of nodulation are discussed.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | |
Collapse
|
18
|
D'Haeze W, Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 2002; 12:79R-105R. [PMID: 12107077 DOI: 10.1093/glycob/12.6.79r] [Citation(s) in RCA: 210] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The onset of nodule development, the result of rhizobia-legume symbioses, is determined by the exchange of chemical compounds between microsymbiont and leguminous host plant. Lipo-chitooligosaccharidic nodulation (Nod) factors, secreted by rhizobia, belong to these signal molecules. Nod factors consist of an acylated chitin oligomeric backbone with various substitutions at the (non)reducing-terminal and/or nonterminal residues. They induce the formation and deformation of root hairs, intra- and extracellular alkalinization, membrane potential depolarization, changes in ion fluxes, early nodulin gene expression, and formation of nodule primordia. Nod factors play a key role during nodule initiation and act at nano- to picomolar concentrations. A correct chemical structure is required for induction of a particular plant response, suggesting that Nod factor-receptor interaction(s) precede(s) a Nod factor-induced signal transduction cascade. Current data on Nod factor structures and Nod factor-induced responses are highlighted as well as recent advances in the characterization of proteins, possibly involved in recognition of Nod factors by the host plant.
Collapse
Affiliation(s)
- Wim D'Haeze
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
19
|
Passarinho PA, de Vries SC. ArabidopsisChitinases: a Genomic Survey. THE ARABIDOPSIS BOOK 2002; 1:e0023. [PMID: 22303199 PMCID: PMC3243303 DOI: 10.1199/tab.0023] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant chitinases (EC 3.2.1.14) belong to relatively large gene families subdivided in classes that suggest class-specific functions. They are commonly induced upon the attack of pathogens and by various sources of stress, which led to associating them with plant defense in general. However, it is becoming apparent that most of them display several functions during the plant life cycle, including taking part in developmental processes such as pollination and embryo development. The number of chitinases combined with their multiple functions has been an obstacle to a better understanding of their role in plants. It is therefore important to identify and inventory all chitinase genes of a plant species to be able to dissect their function and understand the relations between the different classes. Complete sequencing of the Arabidopsis genome has made this task feasible and we present here a survey of all putative chitinase-encoding genes accompanied by a detailed analysis of their sequence. Based on their characteristics and on studies on other plant chitinases, we propose an overview of their possible functions as well as modified annotations for some of them.
Collapse
Affiliation(s)
- Paul A. Passarinho
- Wageningen University, Departement of Plant Sciences, Laboratory of Molecular Biology, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Present address: Plant Research International, Business Unit “Plant Development and Reproduction”, Cluster “Seed and Reproduction Strategies”, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Sacco C. de Vries
- Wageningen University, Departement of Plant Sciences, Laboratory of Molecular Biology, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
- Author for correspondence.
| |
Collapse
|
20
|
Hogg B, Davies AE, Wilson KE, Bisseling T, Downie JA. Competitive nodulation blocking of cv. Afghanistan pea is related to high levels of nodulation factors made by some strains of Rhizobium leguminosarum bv. viciae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:60-8. [PMID: 11843305 DOI: 10.1094/mpmi.2002.15.1.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cultivar Afghanistan peas are resistant to nodulation by many strains of Rhizobium leguminosarum bv. viciae but are nodulated by strain TOM, which carries the host specificity gene nodX. Some strains that lack nodX can inhibit nodulation of cv. Afghanistan by strain TOM. We present evidence that this "competitive nodulation-blocking" (Cnb) phenotype may result from high levels of Nod factors inhibiting nodulation of cv. Afghanistan peas. The TOM nod gene region (including nodX) is cloned on pIJ1095, and strains (including TOM itself) carrying pIJ1095 nodulate cv. Afghanistan peas very poorly but can nodulate other varieties normally. The presence of pIJ1095, which causes increased levels of Nod factor production, correlates with Cnb. Nodulation of cv. Afghanistan by TOM is also inhibited by a cloned nodD gene that increases nod gene expression and Nod factor production. Nodulation of cv. Afghanistan can be stimulated if nodD on pIJ1095 is mutated, thus severely reducing the level of Nod factor produced. Repression of nod gene expression by nolR eliminates the Cnb phenotype and can stimulate nodulation of cv. Afghanistan. Addition of Nod factors to cv. Afghanistan roots strongly inhibits nodulation. The Cnb+ strains and added Nod factors inhibit infection thread initiation by strain TOM. The sym2A allele determines resistance of cv. Afghanistan to nodulation by strains of R. leguminosarum bv. viciae lacking nodX. We tested whether sym2A is involved in Cnb by using a pea line carrying the sym2A region introgressed from cv. Afghanistan; nodulation in the introgressed line was inhibited by Cnb+ strains. Therefore, the sym2A region has an effect on Cnb, although another locus (or loci) may contribute to the stronger Cnb seen in cv. Afghanistan.
Collapse
|
21
|
Chazalet V, Uehara K, Geremia RA, Breton C. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. J Bacteriol 2001; 183:7067-75. [PMID: 11717264 PMCID: PMC95554 DOI: 10.1128/jb.183.24.7067-7075.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nodZ gene, which is present in various rhizobial species, is involved in the addition of a fucose residue in an alpha 1-6 linkage to the reducing N-acetylglucosamine residue of lipo-chitin oligosaccharide signal molecules, the so-called Nod factors. Fucosylation of Nod factors is known to affect nodulation efficiency and host specificity. Despite a lack of overall sequence identity, NodZ proteins share conserved peptide motifs with mammalian and plant fucosyltransferases that participate in the biosynthesis of complex glycans and polysaccharides. These peptide motifs are thought to play important roles in catalysis. NodZ was expressed as an active and soluble form in Escherichia coli and was subjected to site-directed mutagenesis to investigate the role of the most conserved residues. Enzyme assays demonstrate that the replacement of the invariant Arg-182 by either alanine, lysine, or aspartate results in products with no detectable activity. A similar result is obtained with the replacement of the conserved acidic position (Asp-275) into its corresponding amide form. The residues His-183 and Asn-185 appear to fulfill functions that are more specific to the NodZ subfamily. Secondary structure predictions and threading analyses suggest the presence of a "Rossmann-type" nucleotide binding domain in the half C-terminal part of the catalytic domain of fucosyltransferases. Site-directed mutagenesis combined with theoretical approaches have shed light on the possible nucleotide donor recognition mode for NodZ and related fucosyltransferases.
Collapse
Affiliation(s)
- V Chazalet
- Centre de Recherches sur les Macromolécules Végétales and Joseph Fourier University, CNRS, Grenoble, France
| | | | | | | |
Collapse
|
22
|
Goormachtig S, Van de Velde W, Lievens S, Verplancke C, Herman S, De Keyser A, Holsters M. Srchi24, a chitinase homolog lacking an essential glutamic acid residue for hydrolytic activity, is induced during nodule development on Sesbania rostrata. PLANT PHYSIOLOGY 2001; 127:78-89. [PMID: 11553736 PMCID: PMC117964 DOI: 10.1104/pp.127.1.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2001] [Revised: 04/02/2001] [Accepted: 06/04/2001] [Indexed: 05/23/2023]
Abstract
The interaction between the tropical legume Sesbania rostrata and the bacterium Azorhizobium caulinodans results in the formation of nodules on both stem and roots. Stem nodulation was used as a model system to isolate early markers by differential display. One of them, Srchi24 is a novel early nodulin whose transcript level increased already 4 h after inoculation. This enhancement depended on Nod factor-producing bacteria. Srchi24 transcript levels were induced also by exogenous cytokinins. In situ hybridization and immunolocalization experiments showed that Srchi24 transcripts and proteins were present in the outermost cortical cell layers of the developing nodules. Sequence analyses revealed that Srchi24 is similar to class III chitinases, but lacks an important catalytic glutamate residue. A fusion between a maltose-binding protein and Srchi24 had no detectable hydrolytic activity. A function in nodulation is proposed for the Srchi24 protein.
Collapse
Affiliation(s)
- S Goormachtig
- Vakgroep Moleculaire Genetica, Departement Plantengenetica, Vlaams Interuniversitair Instituut voor Biotechnologie, Universiteit Gent, Karel Lodewijk Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Müller J, Staehelin C, Xie ZP, Neuhaus-Url G, Boller T. Nod factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells. PLANT PHYSIOLOGY 2000; 124:733-40. [PMID: 11027722 PMCID: PMC59178 DOI: 10.1104/pp.124.2.733] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2000] [Accepted: 06/05/2000] [Indexed: 05/20/2023]
Abstract
Rhizobial Nod factors (NFs) function as nodulation signals that trigger symbiotic responses of leguminous host plants. NFs consist of a chitin oligomer backbone carrying a fatty acid at the non-reducing end. Depending on the rhizobial strain, NFs carry additional substituents, which may determine host specificity. Transgenic suspension-cultured soybean (Glycine max [L.] Merr.) cells expressing aequorin have been used to record cytosolic [Ca(2+)] changes upon treatment with purified NFs and chitin fragments. Both compounds elicited an increase of cytosolic [Ca(2+)] at nanomolar concentrations. The shape and amplitude of cytosolic [Ca(2+)] changes was similar to the response elicited by un-derivatized chitin oligomers. Cells challenged first with NFs did not respond to a subsequent treatment with chitin oligomers and vice versa. Dose-response experiments showed that un-derivatized chitin oligomers were more active compared with NFs. The capacity of NFs to elicit the calcium response depended on their structure. The presence of reducing end substituents in methylfucosylated NFs from Rhizobium sp. NGR234 and the O-acetyl group at the non-reducing end in NFs from Sinorhizobium meliloti attenuated the activity to cause the calcium changes. The sulfate group in NFs from Rhizobium tropici did not affect the elicitor activity. Pentameric S. meliloti NFs were more active than tetrameric molecules, whereas trimeric or dimeric degradation products were inactive. Substituents in NFs may have the function to avoid stimulation of defense reactions mediated by the perception system for chitin oligomers.
Collapse
Affiliation(s)
- J Müller
- Friedrich-Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|