1
|
Poveda J, Francisco M, Cartea ME, Velasco P. Development of Transgenic Brassica Crops Against Biotic Stresses Caused by Pathogens and Arthropod Pests. PLANTS 2020; 9:plants9121664. [PMID: 33261092 PMCID: PMC7761317 DOI: 10.3390/plants9121664] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/28/2020] [Accepted: 11/25/2020] [Indexed: 11/26/2022]
Abstract
The Brassica genus includes one of the 10 most agronomically and economically important plant groups in the world. Within this group, we can find examples such as broccoli, cabbage, cauliflower, kale, Brussels sprouts, turnip or rapeseed. Their cultivation and postharvest are continually threatened by significant stresses of biotic origin, such as pathogens and pests. In recent years, numerous research groups around the world have developed transgenic lines within the Brassica genus that are capable of defending themselves effectively against these enemies. The present work compiles all the existing studies to date on this matter, focusing in a special way on those of greater relevance in recent years, the choice of the gene of interest and the mechanisms involved in improving plant defenses. Some of the main transgenic lines developed include coding genes for chitinases, glucanases or cry proteins, which show effective results against pathogens such as Alternaria brassicae, Leptosphaeria maculans or Sclerotinia sclerotiorum, or pests such as Lipaphis erysimi or Plutella xylostella.
Collapse
Affiliation(s)
- Jorge Poveda
- Correspondence: ; Tel.: +34-986-85-48-00 (ext. 232)
| | | | | | | |
Collapse
|
2
|
Nováková M, Kim PD, Šašek V, Burketová L, Jindřichová B, Šantrůček J, Valentová O. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus. Biotechnol Prog 2016; 32:918-28. [PMID: 27009514 DOI: 10.1002/btpr.2266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/21/2016] [Indexed: 12/18/2022]
Abstract
The Dothideomycete Leptosphaeria maculans, a worldwide fungal pathogen of oilseed rape (Brassica napus), secretes a broad spectrum of molecules into the cultivation medium during growth in vitro. Here, candidate elicitor molecules, which induce resistance in B. napus to L. maculans, were identified in the cultivation medium. The elicitation activity was indicated by increased transcription of pathogenesis-related gene 1 (PR1) and enhanced resistance of B. napus plants to the invasion of L. maculans. The elicitation activity was significantly lowered when the cultivation medium was heated to 80°C. Active components were further characterized by specific cleavage with the proteolytic enzymes trypsin and proteinase K and with glycosidases α-amylase and β-glucanase. The elicitor activity was eliminated by proteolytic digestion while glycosidases had no effect. The filtered medium was fractionated by either ion-exchange chromatography or isoelectric focusing. Mass spectrometry analysis of the most active fractions obtained by both separation procedures revealed predominantly enzymes that can be involved in the degradation of plant cell wall polysaccharides. This is the first study searching for L. maculans-specific secreted elicitors with a potential to be used as defense-activating agents in the protection of B. napus against L. maculans in agriculture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:918-928, 2016.
Collapse
Affiliation(s)
- Miroslava Nováková
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.,Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Phuong Dinh Kim
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Vladimír Šašek
- Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Barbora Jindřichová
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.,Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jiří Šantrůček
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Olga Valentová
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
3
|
Potlakayala SD, Reed DW, Covello PS, Fobert PR. Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic Acid. PHYTOPATHOLOGY 2007; 97:794-802. [PMID: 18943928 DOI: 10.1094/phyto-97-7-0794] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Systemic acquired resistance (SAR) is an induced defense response that confers long-lasting protection against a broad range of microbial pathogens. Here we show that treatment of Brassica napus plants with the SAR-inducing chemical benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) significantly enhanced resistance against virulent strains of the bacterial pathogen Pseudomonas syringae pv. maculicola and the fungal pathogen Leptosphaeria maculans. Localized preinoculation of plants with an avirulent strain of P. syringae pv. maculicola also enhanced resistance to these pathogens but was not as effective as BTH treatment. Single applications of either SAR-inducing pretreatment were effective against P. syringae pv. maculicola, even when given more than 3 weeks prior to the secondary challenge. The pretreatments also led to the accumulation of pathogenesis-related (PR) genes, including BnPR-1 and BnPR-2, with higher levels of transcripts observed in the BTH-treatment material. B. napus plants expressing a bacterial salicylate hydroxylase transgene (NahG) that metabolizes salicylic acid to catechol were substantially compromised in SAR and accumulated reduced levels of PR gene transcripts when compared with untransformed controls. Thus, SAR in B. napus displays many of the hallmarks of classical SAR including long lasting and broad host range resistance, association with PR gene activation, and a requirement for salicylic acid.
Collapse
|
4
|
Rouxel T, Balesdent MH. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. MOLECULAR PLANT PATHOLOGY 2005; 6:225-41. [PMID: 20565653 DOI: 10.1111/j.1364-3703.2005.00282.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED SUMMARY Leptosphaeria maculans is the most ubiquitous pathogen of Brassica crops, and mainly oilseed brassicas (oilseed rape, canola), causing the devastating 'stem canker' or 'blackleg'. This review summarizes our current knowledge on the pathogen, from taxonomic issues to specific life traits. It mainly illustrates the importance of formal genetics approaches on the pathogen side to dissect the interaction with the host plants. In addition, this review presents the main current research topics on L. maculans and focuses on the L. maculans genome initiative recently begun, including its main research issues. TAXONOMY Leptosphaeria maculans (Desm.) Ces. & de Not. (anamorph Phoma lingam Tode ex Fr.). Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes (Loculoascomycetes), Order Pleosporales, Genus Leptosphaeria, Species maculans. HOST RANGE cultivated Brassicas such as Brassica napus (oilseed rape, canola), B. rapa, B. juncea, B. oleracea, etc., along with numerous wild crucifers species. Arabidopsis thaliana was recently reported to be a potential host for L. maculans. Primary disease symptoms are greyish-green collapse of cotyledon or leaf tissue, without a visible margin, bearing tiny black spots (pycnidia). The fungus then develops an endophytic symptomless growth for many months. Secondary symptoms, at the end of the growing season, are dry necroses of the crown tissues with occasional blackening (stem canker or blackleg) causing lodging of the plants. Pseudothecia differentiate on leftover residues. Seedling damping-off and premature ripening are also reported under certain environmental conditions. USEFUL WEBSITES Leptosphaeria maculans sequencing project at Genoscope: http://www.genoscope.cns.fr/externe/English/Projets/Projet_DM/organisme_DM.html; the SECURE site: http://www.secure.rothamsted.ac.uk/ the 'Blackleg' group at the University of Melbourne: http://www.botany.unimelb.edu.au/blackleg/overview.htm.
Collapse
Affiliation(s)
- T Rouxel
- INRA-PMDV, Route de Saint Cyr, 78026 Versailles Cedex, France
| | | |
Collapse
|
5
|
Ayliffe MA, Steinau M, Park RF, Rooke L, Pacheco MG, Hulbert SH, Trick HN, Pryor AJ. Aberrant mRNA processing of the maize Rp1-D rust resistance gene in wheat and barley. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:853-864. [PMID: 15305606 DOI: 10.1094/mpmi.2004.17.8.853] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The maize Rp1-D gene confers race-specific resistance against Puccinia sorghi (common leaf rust) isolates containing a corresponding avrRp1-D avirulence gene. An Rp1-D genomic clone and a similar Rp1-D transgene regulated by the maize ubiquitin promoter were transformed independently into susceptible maize lines and shown to confer Rp1-D resistance, demonstrating that this resistance can be transferred as a single gene. Transfer of these functional transgenes into wheat and barley did not result in novel resistances when these plants were challenged with isolates of wheat stem rust (P. graminis), wheat leaf rust (P. triticina), or barley leaf rust (P. hordei). Regardless of the promoter employed, low levels of gene expression were observed. When constitutive promoters were used for transgene expression, a majority of Rp1-D transcripts were truncated in the nucleotide binding site-encoding region by premature polyadenylation. This aberrant mRNA processing was unrelated to gene function because an inactive version of the gene also generated such transcripts. These data demonstrate that resistance gene transfer between species may not be limited only by divergence of signaling effector molecules and pathogen avirulence ligands, but potentially also by more fundamental gene expression and transcript processing limitations.
Collapse
|
6
|
Expression ofCryptogein in tobacco plants exhibits enhanced disease resistance and tolerance to salt stress. CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf02889751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Frost D, Way H, Howles P, Luck J, Manners J, Hardham A, Finnegan J, Ellis J. Tobacco transgenic for the flax rust resistance gene L expresses allele-specific activation of defense responses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:224-32. [PMID: 14964536 DOI: 10.1094/mpmi.2004.17.2.224] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tobacco was transformed with three different alleles (L2, L6, and L10) of the flax rust resistance gene L, a member of the toll interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat (TIR-NBS-LRR) class of plant disease resistance genes. L6 transgenics had a stunted phenotype, expressed several defense response genes constitutively, and had increased resistance to the fungus Cercospora nicotianae and the oomycete Phytophthora parasitica pv. nicotianae. L2 and L10 transgenics, with one exception for L10, did not express these phenotypes, indicating that the activation of tobacco defense responses is L6 allele-specific. The phenotype of the exceptional L10 transgenic plant was associated with the presence of a truncated L10 gene resulting from an aberrant T-DNA integration. The truncated gene consisted of the promoter, the complete TIR region, and 39 codons of the NBS domain fused inframe to a tobacco retrotransposon-like sequence. A similar truncated L10 gene, constructed in vitro, was transiently expressed in tobacco leaves and gave rise to a strong localized necrotic reaction. Together, these results suggest that defense signaling properties of resistance genes can be expressed in an allele-specific and pathogen-independent manner when transferred between plant genera.
Collapse
Affiliation(s)
- Donna Frost
- CSIRO Plant Industry, Cnr Clunies Ross Street and Barry Drive, Acton ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bohman S, Staal J, Thomma BPHJ, Wang M, Dixelius C. Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:9-20. [PMID: 14675428 DOI: 10.1046/j.1365-313x.2003.01927.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Out of 168 Arabidopsis accessions screened with isolates of Leptosphaeria maculans, one (An-1) showed clear disease symptoms. In order to identify additional components involved in containment of L. maculans in Arabidopsis, a screen for L. maculans-susceptible (lms) mutants was performed. Eleven lms mutants were isolated, which displayed differential susceptibility responses to L. maculans. lms1 was crossed with Columbia (Col-0) and Ws-0, and mapping data for both populations showed the highest linkage to a region on chromosome 2. Reduced levels of PR-1 and PDF1.2 expression were found in lms1 compared to wild-type plants 48 h after pathogen inoculation. In contrast, the lms1 mutant displayed upregulation of either marker gene upon chemical treatment, possibly as an effect of an altered ethylene (ET) response. To assess the contribution of different defence pathways, genotypes implicated in salicylic acid (SA) signalling plants expressing the bacterial salicylate hydroxylase (nahG) gene, non-expressor of PR1 (npr1)-1 and phytoalexin-deficient (pad4-1), jasmonic acid (JA) signalling (coronatine insensitive (coi)1-16, enhanced disease susceptibility (eds)8-1 and jasmonic acid resistant (jar)1-1) and ET signalling (eds4-1, ethylene insensitive (ein)2, ein3-1 and ethylene resistant (etr)1-1) were screened. All the genotypes screened were as resistant as wild-type plants, demonstrating the dispensability of the pathways in L. maculans resistance. When mutants implicated in cell death responses were assayed, responsive to antagonist 1 (ran1)-1 exhibited a weak susceptible phenotype, whereas accelerated cell death (acd)1-20 showed a rapid lesion development. Camalexin is only partially responsible for L. maculans containment in Arabidopsis, as pad3-1 and enhanced susceptibility to Alternaria (esa)1 clearly showed a susceptible response while wild-type levels of camalexin were present in An-1 and lms1. The data presented point to the existence of multiple defence mechanisms controlling the containment of L. maculans in Arabidopsis.
Collapse
Affiliation(s)
- Svante Bohman
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Box 7080, 75007 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
9
|
Wretblad S, Bohman S, Dixelius C. Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:477-484. [PMID: 12795374 DOI: 10.1094/mpmi.2003.16.6.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Using a polymerase chain reaction-based strategy, we have isolated a cDNA sequence from Brassica nigra, denoted Lm1, which significantly improves blackleg resistance when expressed in transgenic oilseed rape, B. napus. Lm1 was shown to map to locations on linkage groups 3 and 8 in the Brassica B-genome previously linked to both cotyledon, adult leaf, and stem resistance. B. napus plants transformed with Lm1 under the control of a constitutive promoter exhibited broad spectrum resistance to all L. maculans isolates tested, but enhanced resistance to Alternaria brassicae and Verticillium longisporum was not observed. A transcript corresponding to the cDNA size was induced in B. nigra 12 h after fungal challenge from a level of weak constitutive expression previous to inoculation. The Lm1 sequence bears no resemblance to previously characterized plant resistance genes but has two predicted transmembrane motifs. Several sequences with high homology to Lm1 were found in the databases. Lm1 appears to be a member of a larger group of related genes present in a variety of plant species. Most of them have unknown functions, but homology between Lm1 and the nodule inception gene of Lotus japonicus suggests an intriguing link between defense-related and symbiotic pathways.
Collapse
Affiliation(s)
- Sofia Wretblad
- Department of Plant Biology, Swedish University of Agricultural Sciences, Box 7080, S-750 07 Uppsala, Sweden
| | | | | |
Collapse
|
10
|
Xiao S, Charoenwattana P, Holcombe L, Turner JG. The Arabidopsis genes RPW8.1 and RPW8.2 confer induced resistance to powdery mildew diseases in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:289-94. [PMID: 12744457 DOI: 10.1094/mpmi.2003.16.4.289] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant disease resistance (R) gene products recognize pathogen avirulence (Avr) gene products and induce defense responses. It is not known if an R gene can function in different plant families, however. The Arabidopsis thaliana R genes RPW8.1 and RPW8.2 confer resistance to the powdery mildew pathogens Erysiphe orontii, E. cichoracearum, and Oidium lycopersici, which also infect plants from other families. We produced transgenic Nicotiana tabacum, N. benthamiana, and Lycopersicon esculentum plants containing RPW8.1 and RPW8.2. Transgenic N. tabacum plants had increased resistance to E. orontii and O. lycopersici, transgenic N. benthamiana plants had increased resistance to E. cichoracearum, but transgenic L. esculentum plants remained susceptible to these pathogens. The defense responses induced in transgenic N. tabacum and N. benthamiana were similar to those mediated by RPW8.1 and RPW8.2 in Arabidopsis. Apparently, RPW8.1 and RPW8.2 could be used to control powdery mildew diseases of plants from other families.
Collapse
Affiliation(s)
- Shunyuan Xiao
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | |
Collapse
|
11
|
Hennin C, Diederichsen E, Höfte M. Resistance to fungal pathogens triggered by the Cf9-Avr9 response in tomato and oilseed rape in the absence of hypersensitive cell death. MOLECULAR PLANT PATHOLOGY 2002; 3:31-41. [PMID: 20569306 DOI: 10.1046/j.1464-6722.2001.00093.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary In tomato and related species, the Cf9 resistance gene induces hypersensitive cell death and activates downstream defence pathways upon recognition of the Avr9 elicitor. We investigated whether the Cf9-Avr9 response without hypersensitive cell death symptoms increases resistance to several fungi. A low Avr9 dose that does not cause hypersensitive cell death was injected in Cf9 tomato and transgenic Cf9 oilseed rape plants. Subsequently, the injected leaves were infected with different fungal pathogens. The disease development of Botrytis cinerea was delayed in Cf9 tomato when the pathogen was inoculated on, or around, the Avr9 injection site. Disease development of Leptosphaeria maculans and Sclerotinia sclerotiorum was delayed on Cf9 oilseed rape plant parts located around the Avr9 injection site. Disease development of Oidium lycopersicum in Cf9 tomato or Erysiphe polygoni in Cf9 oilseed rape was not restricted on leaves injected with Avr9. The Avr9 injection induced systemic resistance to L. maculans and E. polygoni in Cf9 oilseed rape. F(1)(Cf9xAvr9) oilseed rape plants, obtained from crosses of transgenic Cf9x transgenic Avr9 oilseed rape, exhibited higher levels of resistance to L. maculans and E. polygoni but not to S. sclerotiorum, than wild-type plants. F(1)(Cf9xAvr9) plants treated with benzothiadiazole (BTH) did not show elevated levels of expression of some pathogenesis-related genes but developed higher levels of resistance to L. maculans than BTH-treated wild-type plants. This report demonstrates that the hypersensitive cell death which is associated with the Cf9-Avr9 response is not required for quantitative disease resistance.
Collapse
Affiliation(s)
- Caroline Hennin
- Faculty of Agricultural and Applied Biological Sciences, Laboratory of Phytopathology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
12
|
Luderer R, Joosten MH. Avirulence proteins of plant pathogens: determinants of victory and defeat. MOLECULAR PLANT PATHOLOGY 2001; 2:355-364. [PMID: 20573025 DOI: 10.1046/j.1464-6722.2001.00086.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
summary The simplest way to explain the biochemical basis of the gene-for-gene concept is by direct interaction between a pathogen-derived avirulence (Avr) gene product and a receptor protein, which is encoded by the matching resistance (R) gene of the host plant. The number of R genes for which the matching Avr gene has been cloned is increasing. The number of host-pathogen relationships, however, for which a direct interaction between R and Avr gene products could be proven is still very limited. This observation suggests that in various host-pathogen relationships no physical interaction between R and Avr proteins occurs, and that perception of AVR proteins by their matching R gene products is indirect. Indirect perception implies that at least a third component is required. The 'Guard hypothesis' proposes that this third component could be the virulence target of an AVR protein. Binding of the AVR protein to its virulence target is perceived by the matching R protein, which is 'guarding' the virulence target. An intriguing aspect of the 'Guard hypothesis' is that the Avr gene product causes avirulence of the pathogen through interaction with its virulence target in the plant. This would mean that, although AVR proteins are generally thought to be bifunctional (avirulence as well as virulence factors), this dual function might be based on a single biochemical event. This review focuses on the way AVR proteins are perceived by their matching R gene products. The various components that determine the outcome of the interaction will be discussed, with an emphasis on the dual function of AVR proteins.
Collapse
Affiliation(s)
- R Luderer
- Laboratory of Phytopathology, Wageningen University, Marijkeweg 22, 6709 PG Wageningen, the Netherlands
| | | |
Collapse
|